SlideShare uma empresa Scribd logo
1 de 49
Baixar para ler offline
May 2023
The Evolution of the Most
Widely used Serial Bus
A study of I2C, its applications, and future
with I3C
Agenda
1 Overview of I2C Protocol
2
I2C Open-Drain Bidirectional
Communication Basics and
Examples
3 Design and Application practices
4 Challenges associated with I2C
and Product Solutions
05 I2C NPIs
06 Why I3C?
07 Differences to I3C Standard
08 I3C Protocol
I2C
01 Overview of I2C Protocol
02 I2C Open-Drain Bidirectional
Communication Basics and Examples
03 Design and Application Practices
04 Challenges associated with I2C and
Product Solutions
05 I2C NPIs
Overview of I2C Protocol
01
Nexperia •
Overview of I2C Protocol: Development and History
nexperia.com - public 5
Why was I2C developed?
• The Inter-Integrated Circuit (I2C) was developed in 1982 by Phillips Semiconductor
• Primary aim to reduce complexity of communication between MCUs and peripherals
• Reduces wire count for communication, as opposed to SPI(Multiwire 1979)
• Two-wire multi-controller/target low speed serial bus (Standard mode 100kHz)
• Ease of implementation, 7-bit addressing allows 128 unique addresses (112 target devices/16 addresses reserved). 10-bit
extension available on some devices
• Multiple controllers and targets can be connected to same I2C Bus.
• Bi-directional data transfer to and from all devices.
• Two wires of I2C Bus are called SCL and SDA.
• SCL used to provide clock signal to synchronize data transfer
• SDA used to communicate address, data, and ack/nack
• Pins of I2C compliant devices are open-drain and need external pullup resistors
Nexperia •
Overview of I2C Protocol: Different Modes
6
Primary differences between I2C modes?
• Different Maximum Speeds.
• Different Maximum Capacitance values
I2C modes
Mode Maximum Capacitance Maximum Speed
Standard mode 400pF 100kHz
Fast mode 400pF 400kHz
Fast mode plus (Fm+) 550pF 1MHz
High-speed mode (Hs) 400pF 3.4MHz
https://assets.nexperia.com/documents/user-manual/UM10204.pdf
nexperia.com - public
Nexperia •
Overview of I2C Protocol: System Example
nexperia.com - public 7
I2C Open-Drain Bidirectional
Communication Basics and
Examples
02
Nexperia •
I2C Open-Drain Bidirectional Communication Basics
• Buffer input
• MOSFET Open-Drain
configuration
nexperia.com - public 9
Nexperia •
I2C Open-Drain Bidirectional Communication Basics
Start Condition: The controller pulls the SDA
line low while SCL is high, signaling the start of
communication.
Address Frame: The 7-bit (or possibly 10 bit)
sequence that is unique to each target device.
Read/Write Bit: The 8th bit follows the address
frame to signal to the target device whether
the controller is requesting or writing data.
ACK/NACK Bit: Every 8-bit frame in a message
is followed by an ACK/NACK. The target device
pulls down SDA signal to inform the controller
that the data frame was successfullyreceived.
Stop Condition: The controller releases the
SDA line from low to high, while SCL is high SCL Controller
MOSFET: Pulsing SCL
SDA Controller:
MOSFET: Communicating Address
frame.
Buffer: listening for “target” ACK
SCL Target:
Buffer: Receiving Data
MOSFET: Sending ACK
SCL
SDA
nexperia.com - public 10
Nexperia •
I2C Operation Examples: Important specifications
SYMBOL PARAMETER TYPICAL UNITS
fSCL SCL clock frequency kHz
tLOW Low period of SCL signal us
tHIGH Higher period of SCL signal us
tr Rise time (SDA) ns
tf Fall time (SDA) ns
tSU(STA) Set-up time for Repeated Start us
tHD(STA) Hold time for Start/ Repeated Start us
tSU(DAT) Data set-up time ns
tHD(DAT) Data hold time us
tSU(STOP) Set-up time for stop condition us
nexperia.com - public 11
Nexperia •
I2C Operation Examples: Timing parameters
Re-Start Setup Time and Re-Start/StartHold Time
Rise and Fall time
Data Setup time Stop Setup Time
nexperia.com - public 12
Nexperia •
I2C Operation Examples: I2C User Manual
13
https://assets.nexperia.com/documents/user-manual/UM10204.pdf
nexperia.com - public
Nexperia •
I2C Operation Examples: 8-bit Write
I2C: Target Device Register Write I2C: Target Device Register Read
nexperia.com - public 14
Design and Application
Practices
03
nexperia.com - public 15
Nexperia •
I2C Design and Application practices: Pull-up resistor
16
nexperia.com - public
Nexperia •
I2C Design and Application practices: Pull-up resistor sizing Rp(max)
17
I2C
SDA
INPUT
I2C
SDA
OUTPUT
VDD SUPPLY
SDA pin
Rp
VO
MOSFET
Current
Cb
𝑉(𝑡) = 𝑉𝐷𝐷(1 − 𝑒−
𝑡
𝑅𝐶)
𝑉(𝑡1) = 0.3 × 𝑉𝐷𝐷 = 𝑉𝐷𝐷(1 − 𝑒−
𝑡1
𝑅𝐶) 𝑡ℎ𝑒𝑛 𝑡1 = 0.35667 × 𝑅𝐶
𝑉(𝑡2) = 0.7 × 𝑉𝐷𝐷 = 𝑉𝐷𝐷(1 − 𝑒
−
𝑡2
𝑅𝐶) 𝑡ℎ𝑒𝑛 𝑡2 = 1.20397 × 𝑅𝐶
tr=t2-t1=0.8473 × 𝑅𝐶
Rearranging equation:
𝑅𝑝(𝑚𝑎𝑥) =
𝑡𝑟
0.8473 × 𝐶𝑏
nexperia.com - public
Nexperia •
I2C Design and Application practices: Pull-up resistor sizing Rp(min)
18
(VDD-VOLmax)/Rpmin= IOL
Rearranging equation:
Rpmin= (VDD-VOLmax)/IOL
I2C
SDA
INPUT
I2C
SDA
OUTPUT
VDD SUPPLY
SDA pin
Rp
VOL
MOSFET
Current
nexperia.com - public
Nexperia •
I2C Design and Application practices: BUS net capacitance
19
TRACE WIDTH
TRACE THICKNESS
LAYER HEIGHT
εr
Imperial version:
CL = capacitance per unit length in pf/inch
w= width of the trace in mils
h = height of the trace above power plane in mils
t = thickness of trace in mils
εr = dielectric constant of material between
trace and power plane (FR-4 is ~4.5)
Metric version:
CL = capacitance per unit length in pf/cm
w= width of the trace in mm
h = height of the trace above power plane in mm
t = thickness of trace in mm
εr = dielectric constant of material between
trace and power plane (FR-4 is ~4.5)
LAYER
THICKNESS
C= εrεo(L*W)/d [F]
W
L
C = Parallel plate capacitance [F]
W= width of trace
L = Length of trace
d = thickness of dielectric
εr = (relative permattivity) dielectric constant of
material between trace and power plane (FR-4 is
~4.5)
εo = permittivity of a vacuum in Farads per
metre 8.85x10-14 [F/cm]
εr
nexperia.com - public
Nexperia •
I2C Design and Application practices Layout strategies
20
SCL
SCL
SCL
SCL
SDA
SDA
SDA
SDA
External noise
Inductive noise
Better shielding
nexperia.com - public
Challenges associated with
I2C and Product Solutions
04
nexperia.com - public 21
Nexperia •
Challenges associated with I2C
22
>400pF
VOC Sensor
GPIO
Expander
Temp
Sensor
ADC
LED
Controller
Humidity
Sensor
DAC
I2C LCD
Display
PMIC
uC Controller
Rp
VDD
SCL
SDA
SCL
SDA
SCL
SDA
SCL
SDA
Controller Target Devices
EEPROM Digital Pot
Pressure
Sensor
Memory
Proximity
Sensor
Barometric
Sensor
3-axis acc Thermal Etc.
SDA
SCL
SDA
SCL
SDA
nexperia.com - public
Nexperia •
Challenges associated with I2C: Device solutions
23
• Examples: Driving off-board communication
• Large cable capacitance
• Examples: Partitioning board devices
• 400pF each PORTX
nexperia.com - public
Nexperia •
Challenges associated with I2C: Device Solutions
24
• GPIO expander to dynamically address
the target devices.
• Sets all address pins high, and when the
controller wants to communicate to a
specific device, it would set the device
address pin to low through the GPIO
expander
H
H
H
H
H
H
H
L
nexperia.com - public
I2C NPIs
05
nexperia.com - public 25
Nexperia •
1 In planning / considered
26
Public
I2C edge
repeater
Products
• NCA9700DQ
• NCA9701GX 1
Benefits
✓ Voltage level translation from
0.9V to 3.6V at both port A and
port B
✓ Guaranteed 1 MHz operation
(true I²C Fast-mode Plus, Fm+)
and can drive up to 550pF at
1MHz
✓ No static voltage offset, low VOL
✓ Input and output rising-edge
signal accelerators at all I/O’s
✓ Glitch-free and sequence-
independent IC power-up
Applications
• Cell phones / Tablets / PC
• Devices for IoT applications
• Power-sensitive applications
I2C NPIs
GPIO Expanders, Repeaters & Switches
I2C GPIO
Expander
Products
• NCA9555PW / NCA9555BY
• NCA9539PW
• NCA9535PW
• NCA9595PW
Benefits
✓ Operating voltage range
• VCC =0.9V – 3.6V
✓ 5V tolerant I/O’s (16)
✓ Power-up with all channels
configured as inputs with weak
pull-up resistors
✓ Glitch free power supply
sequencing
✓ Low Standby-Current
consumption
✓ Latched outputs with 25mA drive
Applications
• Servers, Routers
• Gaming consoles
I2C Switch
Products
• NCA9548PW (TSSOP24) 1
Benefits
✓ Operating voltage range
• VCC = 1.65V – 5.5V
✓ 1-to-8 Bidirectional translating
switches I2C Bus and SMBus
compatible
✓ Active-low reset input
✓ Glitch free power-up
✓ Low RON switches
✓ Channel selection through an I2C
Bus, in any combination
✓ Power up with all switch
channels deselected
Applications
• Products with I2C slave address
conflicts
Nexperia •
Product Introduction | NCA9555PW, NCA9555BY
27
Features
▪ Single supply GPIO expander supporting 1.65V to 5.5V operation
▪ Serial to parallel (SDA to P0-P16) and parallel to serial (P0-P16)
conversion with I2C protocol
▪ Schmitt-trigger action allows slow input transition and better switching
noise immunity at the SCL and SDA inputs
▪ Low power consumption 2.5 µA max
▪ 400 kHz operation (FM I2C mode)
▪ Glitch free Power up with all channels configured as inputs with Pull-ups
▪ Latched outputs with 25 mA drive maximum capability for directly
driving LEDs
▪ Polarity Inversion Register
▪ External RESET pin to reset state machine and internal registers
▪ Noise filters on SCL and SDA inputs
Benefits
❑ Reduces the PCB design complexity through trace reduction and
routing simplification
❑ Lowers I/O usage & reduces the system cost
❑ Board-space and Processor-pin saving
Functional block diagram
Applications
▪ Servers, Routers, Hardware control monitors, IOTs, Gaming consoles
▪ TV & Monitors, Battery powered applications and Automotive
Tools and Resources
▪ Datasheet NCA9555PW
▪ Evaluation Board (EVM), Demo Board
▪ Package Schematic Symbol
▪ Application note
▪ IBIS model
Public
Nexperia •
NCA95xx I²C GPIO expander – Application areas
28
VCC
NCA9555 #2
VCC
8
8
l
I²C
Control
Master
SDA SCL
NCA9555 #2
I²C Control
NCA9555 #1
I/O
Port 1
I/O
Port 1
INT
8
8
SCL SDA
Address
selection
LEDs
...
Switches
...
Enable 1
Vout 1
Vin 1
Enable N
Vout N
Vin N
From 16
to up to 128
I/O lines
IC controls & feedback signals
inputs (enable, mode select, ....)
outputs (power good, thermal
alarms, etc.)
SW 1 SW X
Generic readback of states
...
Public
Nexperia •
Features and Options
I2C GPIO Expander Family
29
NCA9555
NCA9539
NCA9535
NCA9595
16 Channel
NCA9539 NCA9555
NCA9535
NCA9595
RESET Pin
YES NO
Internal Pull-up
NCA9555
NO
NCA9535
NCA9539
YES
NO
NCA9595
YES
Configurable
Pull-ups
NCA9555, NCA9539 and NCA9535 are drop-in
replacement from competition TI and NXP
➢ TI: TCA9555, TCA9539, TCA9535
➢ NXP: PCA9555A, PCA9539A, PCA9535A
➢ NCA9555 will be available in TSSOP24 and
HWQFN24 package
➢ NCA9539 and NCA9535 will be available in
TSSOP24 package
NCA9595 is a new product in the market
featuring benefits such as low power
consumption and reduce BOM cost
➢ NCA9595 will be available in TSSOP24 and
HWQFN24 package (Sleeper)
Public
Nexperia •
NCA95xx I²C GPIO expander family – Types and their specifics
30
NCA95xx family
• NCA9555PW TSSOP24
NCA9555BY HWQFN24
- integrated 100 kΩ pull-up resistors for GPIO pins
• NCA9535PW TSSOP24
- no integrated termination of GPIO pins
– advantage: no extra current for active outputs in low state
• NCA9595PW TSSOP24
- additional 2 I²C registers for switchable pull-up resistors
• NCA9539PW TSSOP24
- additional Reset pin (low active)
A2 address selection pin is sacrificed ( 4 adress options)
- no internal termination like NCA9435
Public
Nexperia •
Product Preview | NCA9701AGX/DQ
31
NCA9701AGX/DQ - Dual channel voltage translating I2C repeater / accelerator
• Server
• Routers
• Personal Computers
• Industrial Automation Equipment
• Products with many I2C slaves
and / or long PCB traces
 Dual channel bidirectional I2C buffer (Autosense topology)
 Voltage level translation from 0.9 V to 3.6 V at both port A and port B
 Guaranteed 1 MHz operation (true I²C Fast-mode Plus, Fm+)
 No static voltage offset, low VOL
 Very low VOL on I/O pins of the port A; VOL regulated to 0.09 * VCCB
on I/O pins of the port B
 Input and output rising-edge signal accelerators at all I/Os
 Lock-free operation
 Glitch-free and sequence-independent IC power-up
 Open-drain input/outputs
 Series connection and star connection of NCA9701A devices possible
 I²C clock stretching support
 Compatibility with I²C bus and SMBus protocols
 Integrated pull-up resistors (BOM cost reduction) and possibility of
connecting external pull-up resistors
 I2C clock stretching, and multiple master arbitration supported
Value proposition Key applications
Portfolio / release plan
Product CES [Wk] CQS [Wk] RFS [Wk]
NCA9700DQ Available May 2023 July 2023
Parametrics
Parametrics
Product VCCA, VCCB
Low-state
Current
Frequency
Data set-up time
gain
Temperature Range
NCA9700 0.9V – 3.6V
Both
channels
Low =
3.9mA
SM, FM, FM+
CL(A) = 10 pF; CL(B)
= 160pF  45ns
CL(A) = 85 pF; CL(B)
= 85 pF  104ns
−40 °C to 85 °C
Public
In Development, (Engineering Samples Available)
I3C
06 Why I3C
07 Differences to I2C Standard
08 I3C Protocol
Why I3C?
06
Nexperia •
Why I3C?
nexperia.com - public
Controller
Target
SCL
SDA
Target
INT
INT
Controller
Target
SCL
SDA
Target
Controller
Target
MISO
SCK
MOSI
Target
INT
INT
/CS0
/CS1
SLOW
Speed
Wiring
SPI I3C
I2C
34
Nexperia •
The I3C wiring advantage
I3C topology
nexperia.com - public
MCU
(controller)
I3C
Temp
sensor
I3C
GPIO
I3C
ADC
I3C
Temp
sensor
I3C
DAC2
I3C
DAC1
I3C BUS
SDA&SCL
SDA
SCL
I3C target can take master
role
SDA&SCL
SDA&SCL
SDA&SCL
SDA&SCL
SDA&SCL
🚌
35
Nexperia •
The I3C Energy and Speed advantage
12,5
25
1
0
5
10
15
20
25
30
SDR DDR I2C FM+
RAW
Bitrate
[mBps]
Speed
0
0,5
1
1,5
2
2,5
3
3,5
4
SDR DDR I2C FM+
[mJoules
per
Megabit]
Energy
I3C I3C
Note: excluded higher speed / lower energy HDR-TSPL/TSP modes
nexperia.com - public 36
Nexperia •
I3C Standardization
nexperia.com - public 37
Differences to I2C Standard
07
Nexperia •
I3C physical level changes - SCL
SCL line is open drain
SCL line can be used bidirectional
(=> clock stretching feature)
I2C
nexperia.com - public
SCL line is always operated in push pull mode
SCL line is unidirectional from controller to Target
I3C
I2C
Target
I2C
controller
R
Vcc
SCL
I3C
Target
I3C
controller
SCL
39
Nexperia •
I3C physical level changes - SDA
SDA is always open drain
SDA line is bidirectional
Additional usage:
acknowledge data transfer
I2C
nexperia.com - public
SDA line is partially open drain and mostly operated in push pull mode
Additional usage:
Acknowledge in open drain mode
Push pull mode:
• Write transfer: DATA & Parity information
• Read transfer: DATA & Target can signal end of transfer
I3C
I2C
Target
I2C
controller
R
Vcc
SDA
I3C
Target
R
I3C
controller
SDA
I3C controller controls
Pull-up resistor or
high keeper
40
Nexperia •
I3C physical level changes – Push pull on SDA
When the bus is idle
After a start condition
During device address [*]
sending
For legacy I2C transfers
During Acknowledgment phases
Open drain active when:
nexperia.com - public
Push-pull active when:
• In all other cases
• After a restart condition
push pull mode can be used
to send the target address
1 MHz [**]
[**] HS 3.4 MHz present,
but rarely used in real world
[*] A mixed push pull/open drain
addressing mode is also defined 41
Nexperia •
I3C modes
All modes work with max. 12.5 MHz clock
nexperia.com - public
Speed [Mbit/s]
SDR 12.5
HDR-DDR 25
HDR-TS [*] ~37.5
Multi lane 100’s
[*] Ternary Symbol available in 2 flavors (pure and legacy)
=> SCL & SDA are used for data transfer 42
I3C protocol
08
Nexperia •
Write transfers
I3C
I2C
Transfers
Note: Simplification - Many more transfer types are possible, e.g. with restart, longer data payload, …
ACK T-BIT
0x07
P
Address +
R/W bit
S
Controller
Target
ACK ACK
0x07
Address +
R/W bit
S
P
Read transfers
I3C
I2C
ACK T-BIT
DATA
P
Address +
R/W bit
S
ACK NAK
DATA
Address +
R/W bit
S
P
T-Bit for writes:
Controller sends a single
bit parity bit.
T-Bit for reads:
NOT a parity bit.
The target returns 1,
when it wants the
transfer to be finished.
nexperia.com - public 44
Nexperia •
Write transfers
I3C
Transfers
ACK T-BIT
0x07
Address +
R/W bit
S
Controller
Target
P
Read transfers
I3C ACK T-BIT
DATA
Address +
R/W bit
S P
Open drain
low speed
PushPull
high speed
nexperia.com - public 45
Nexperia •
I3C Disadvantages
Supports up to 50pF bus load only
Estimation are 10 .. 20 target devices (quote from MIPI alliance)
MIPI alliance is working on extending the range
A chance to invest into repeater circuits
Specified only from 1.2V onwards [*]
Already now it is clear that the lower side must be extended
IBI feature increases bus latency
Already now it is clear that the lower side must be extended
Specification quality & size
nexperia.com - public 46
[*] for I3C basic spec
Nexperia • nexperia.com - public 47
[*] for I3C basic spec
Nexperia •

Mais conteúdo relacionado

Semelhante a Webinar Gravado: Um Estudo sobre a I2C e o Futuro com a I3C

O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014
O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014
O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014Fabio Souza
 
Microcontroladores PIC.pptx
Microcontroladores PIC.pptxMicrocontroladores PIC.pptx
Microcontroladores PIC.pptxfmtpereira
 
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1Embarcados
 
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placas
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placasAUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placas
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placasMarceloAraujo432589
 
Webinar Embarcados: Construa seus dispositivos com ARM mbed
Webinar Embarcados: Construa seus dispositivos com ARM mbedWebinar Embarcados: Construa seus dispositivos com ARM mbed
Webinar Embarcados: Construa seus dispositivos com ARM mbedEmbarcados
 
Barramento Spi e i²c
Barramento Spi e i²cBarramento Spi e i²c
Barramento Spi e i²cYgor Aguiar
 
Arduino Hack Day por Vinicius Senger
Arduino Hack Day por Vinicius SengerArduino Hack Day por Vinicius Senger
Arduino Hack Day por Vinicius SengerGlobalcode
 
Apresentação safety control
Apresentação safety controlApresentação safety control
Apresentação safety controlsafetycontrol
 
Manual modem-intelbras-gkm-1220
Manual modem-intelbras-gkm-1220Manual modem-intelbras-gkm-1220
Manual modem-intelbras-gkm-1220maxytetsu
 
Projeto de Elasticidade e Evolução do Projeto FIBRE
Projeto de Elasticidade e Evolução do Projeto FIBREProjeto de Elasticidade e Evolução do Projeto FIBRE
Projeto de Elasticidade e Evolução do Projeto FIBREFIBRE Testbed
 
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdf
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdfRedes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdf
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdfAlan Coelho
 
Webinar: Projeto de Hardware: ASIC e FPGA
Webinar: Projeto de Hardware: ASIC e FPGAWebinar: Projeto de Hardware: ASIC e FPGA
Webinar: Projeto de Hardware: ASIC e FPGAEmbarcados
 

Semelhante a Webinar Gravado: Um Estudo sobre a I2C e o Futuro com a I3C (20)

O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014
O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014
O impacto do arduino no mundo dos embarcados - TRILHA EMBEDDED - TDC2014
 
Microcontroladores PIC.pptx
Microcontroladores PIC.pptxMicrocontroladores PIC.pptx
Microcontroladores PIC.pptx
 
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1
Webinar: Explorando o kit de avaliação LoRa: Semtech SX1302C915GW1
 
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placas
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placasAUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placas
AUTOMAÇÃO INDUSTRIAL COM ESP32 e outras placas
 
PAINEL DE TELEMETRIA PT5430
PAINEL DE TELEMETRIA PT5430PAINEL DE TELEMETRIA PT5430
PAINEL DE TELEMETRIA PT5430
 
Microcontroladores AVR
Microcontroladores AVRMicrocontroladores AVR
Microcontroladores AVR
 
AVR
AVRAVR
AVR
 
ARM
ARMARM
ARM
 
Webinar Embarcados: Construa seus dispositivos com ARM mbed
Webinar Embarcados: Construa seus dispositivos com ARM mbedWebinar Embarcados: Construa seus dispositivos com ARM mbed
Webinar Embarcados: Construa seus dispositivos com ARM mbed
 
Mini curso arduino
Mini curso arduinoMini curso arduino
Mini curso arduino
 
Barramento Spi e i²c
Barramento Spi e i²cBarramento Spi e i²c
Barramento Spi e i²c
 
Arduino Hack Day por Vinicius Senger
Arduino Hack Day por Vinicius SengerArduino Hack Day por Vinicius Senger
Arduino Hack Day por Vinicius Senger
 
Apresentação safety control
Apresentação safety controlApresentação safety control
Apresentação safety control
 
Manual modem-intelbras-gkm-1220
Manual modem-intelbras-gkm-1220Manual modem-intelbras-gkm-1220
Manual modem-intelbras-gkm-1220
 
Projeto de Elasticidade e Evolução do Projeto FIBRE
Projeto de Elasticidade e Evolução do Projeto FIBREProjeto de Elasticidade e Evolução do Projeto FIBRE
Projeto de Elasticidade e Evolução do Projeto FIBRE
 
Apresentacao nexto xpress
Apresentacao nexto xpressApresentacao nexto xpress
Apresentacao nexto xpress
 
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdf
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdfRedes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdf
Redes_Industriais_Introducao (2021_01_24 20_56_02 UTC).pdf
 
Redes industriais introducao
Redes industriais introducaoRedes industriais introducao
Redes industriais introducao
 
IEC61850_revisao_julho_2009.ppt
IEC61850_revisao_julho_2009.pptIEC61850_revisao_julho_2009.ppt
IEC61850_revisao_julho_2009.ppt
 
Webinar: Projeto de Hardware: ASIC e FPGA
Webinar: Projeto de Hardware: ASIC e FPGAWebinar: Projeto de Hardware: ASIC e FPGA
Webinar: Projeto de Hardware: ASIC e FPGA
 

Mais de Embarcados

Webinar: Controle de motores BLDC e de indução trifásico
Webinar: Controle de motores BLDC e de indução trifásicoWebinar: Controle de motores BLDC e de indução trifásico
Webinar: Controle de motores BLDC e de indução trifásicoEmbarcados
 
Webinar_ Julho 2023 - Embarcados.pdf
Webinar_ Julho 2023 - Embarcados.pdfWebinar_ Julho 2023 - Embarcados.pdf
Webinar_ Julho 2023 - Embarcados.pdfEmbarcados
 
Webinar: Especificação de Componentes Passivos
Webinar: Especificação de Componentes PassivosWebinar: Especificação de Componentes Passivos
Webinar: Especificação de Componentes PassivosEmbarcados
 
Webinar: Projeto de hardware utilizando Conversores DC/DC
Webinar: Projeto de hardware utilizando Conversores DC/DCWebinar: Projeto de hardware utilizando Conversores DC/DC
Webinar: Projeto de hardware utilizando Conversores DC/DCEmbarcados
 
Webinar: Comunicação TCP/IP segura
Webinar: Comunicação TCP/IP seguraWebinar: Comunicação TCP/IP segura
Webinar: Comunicação TCP/IP seguraEmbarcados
 
Webinar: Desvendando o Yocto Project
Webinar: Desvendando o Yocto ProjectWebinar: Desvendando o Yocto Project
Webinar: Desvendando o Yocto ProjectEmbarcados
 
Webinar: Bancada de eletrônica profissional
Webinar: Bancada de eletrônica profissionalWebinar: Bancada de eletrônica profissional
Webinar: Bancada de eletrônica profissionalEmbarcados
 
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...Embarcados
 
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...Embarcados
 
Webinar: Microcontroladores Infineon TRAVEO T2G
Webinar: Microcontroladores Infineon TRAVEO T2GWebinar: Microcontroladores Infineon TRAVEO T2G
Webinar: Microcontroladores Infineon TRAVEO T2GEmbarcados
 
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAs
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAsWebinar: Introdução à Reconfiguração dinâmica parcial em FPGAs
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAsEmbarcados
 
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...Embarcados
 
Cristais e Ressonadores Murata
Cristais e Ressonadores MurataCristais e Ressonadores Murata
Cristais e Ressonadores MurataEmbarcados
 
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potência
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potênciaWebinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potência
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potênciaEmbarcados
 
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?Embarcados
 
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassez
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassezWebinar: Estratégias para comprar componentes eletrônicos em tempos de escassez
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassezEmbarcados
 
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...Embarcados
 
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiro
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiroWebinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiro
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiroEmbarcados
 
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...Embarcados
 
Webinar: A revolução da Ethernet a um par de cabo
Webinar: A revolução da Ethernet a um par de caboWebinar: A revolução da Ethernet a um par de cabo
Webinar: A revolução da Ethernet a um par de caboEmbarcados
 

Mais de Embarcados (20)

Webinar: Controle de motores BLDC e de indução trifásico
Webinar: Controle de motores BLDC e de indução trifásicoWebinar: Controle de motores BLDC e de indução trifásico
Webinar: Controle de motores BLDC e de indução trifásico
 
Webinar_ Julho 2023 - Embarcados.pdf
Webinar_ Julho 2023 - Embarcados.pdfWebinar_ Julho 2023 - Embarcados.pdf
Webinar_ Julho 2023 - Embarcados.pdf
 
Webinar: Especificação de Componentes Passivos
Webinar: Especificação de Componentes PassivosWebinar: Especificação de Componentes Passivos
Webinar: Especificação de Componentes Passivos
 
Webinar: Projeto de hardware utilizando Conversores DC/DC
Webinar: Projeto de hardware utilizando Conversores DC/DCWebinar: Projeto de hardware utilizando Conversores DC/DC
Webinar: Projeto de hardware utilizando Conversores DC/DC
 
Webinar: Comunicação TCP/IP segura
Webinar: Comunicação TCP/IP seguraWebinar: Comunicação TCP/IP segura
Webinar: Comunicação TCP/IP segura
 
Webinar: Desvendando o Yocto Project
Webinar: Desvendando o Yocto ProjectWebinar: Desvendando o Yocto Project
Webinar: Desvendando o Yocto Project
 
Webinar: Bancada de eletrônica profissional
Webinar: Bancada de eletrônica profissionalWebinar: Bancada de eletrônica profissional
Webinar: Bancada de eletrônica profissional
 
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...
Webinar: Como projetar sensores de baixo consumo utilizando microcontroladore...
 
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...
Webinar: Desvendando o seguidor de linha: sensores, montagem e programação co...
 
Webinar: Microcontroladores Infineon TRAVEO T2G
Webinar: Microcontroladores Infineon TRAVEO T2GWebinar: Microcontroladores Infineon TRAVEO T2G
Webinar: Microcontroladores Infineon TRAVEO T2G
 
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAs
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAsWebinar: Introdução à Reconfiguração dinâmica parcial em FPGAs
Webinar: Introdução à Reconfiguração dinâmica parcial em FPGAs
 
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...
Webinar: Microprocessadores 32 bits, suas principais aplicações no mercado br...
 
Cristais e Ressonadores Murata
Cristais e Ressonadores MurataCristais e Ressonadores Murata
Cristais e Ressonadores Murata
 
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potência
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potênciaWebinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potência
Webinar: Silicon Carbide (SiC): A tecnologia do futuro para projetos de potência
 
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?
Webinar: Por que dominar sistema operacional Linux deveria ser a sua prioridade?
 
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassez
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassezWebinar: Estratégias para comprar componentes eletrônicos em tempos de escassez
Webinar: Estratégias para comprar componentes eletrônicos em tempos de escassez
 
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...
Webinar: ChatGPT - A nova ferramenta de IA pode ameaçar ou turbinar a sua car...
 
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiro
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiroWebinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiro
Webinar: Power over Ethernet (PoE) e suas aplicações no mercado brasileiro
 
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...
Webinar: Utilizando o Yocto Project para automatizar o desenvolvimento em Lin...
 
Webinar: A revolução da Ethernet a um par de cabo
Webinar: A revolução da Ethernet a um par de caboWebinar: A revolução da Ethernet a um par de cabo
Webinar: A revolução da Ethernet a um par de cabo
 

Webinar Gravado: Um Estudo sobre a I2C e o Futuro com a I3C

  • 1.
  • 2. May 2023 The Evolution of the Most Widely used Serial Bus A study of I2C, its applications, and future with I3C
  • 3. Agenda 1 Overview of I2C Protocol 2 I2C Open-Drain Bidirectional Communication Basics and Examples 3 Design and Application practices 4 Challenges associated with I2C and Product Solutions 05 I2C NPIs 06 Why I3C? 07 Differences to I3C Standard 08 I3C Protocol
  • 4. I2C 01 Overview of I2C Protocol 02 I2C Open-Drain Bidirectional Communication Basics and Examples 03 Design and Application Practices 04 Challenges associated with I2C and Product Solutions 05 I2C NPIs
  • 5. Overview of I2C Protocol 01
  • 6. Nexperia • Overview of I2C Protocol: Development and History nexperia.com - public 5 Why was I2C developed? • The Inter-Integrated Circuit (I2C) was developed in 1982 by Phillips Semiconductor • Primary aim to reduce complexity of communication between MCUs and peripherals • Reduces wire count for communication, as opposed to SPI(Multiwire 1979) • Two-wire multi-controller/target low speed serial bus (Standard mode 100kHz) • Ease of implementation, 7-bit addressing allows 128 unique addresses (112 target devices/16 addresses reserved). 10-bit extension available on some devices • Multiple controllers and targets can be connected to same I2C Bus. • Bi-directional data transfer to and from all devices. • Two wires of I2C Bus are called SCL and SDA. • SCL used to provide clock signal to synchronize data transfer • SDA used to communicate address, data, and ack/nack • Pins of I2C compliant devices are open-drain and need external pullup resistors
  • 7. Nexperia • Overview of I2C Protocol: Different Modes 6 Primary differences between I2C modes? • Different Maximum Speeds. • Different Maximum Capacitance values I2C modes Mode Maximum Capacitance Maximum Speed Standard mode 400pF 100kHz Fast mode 400pF 400kHz Fast mode plus (Fm+) 550pF 1MHz High-speed mode (Hs) 400pF 3.4MHz https://assets.nexperia.com/documents/user-manual/UM10204.pdf nexperia.com - public
  • 8. Nexperia • Overview of I2C Protocol: System Example nexperia.com - public 7
  • 10. Nexperia • I2C Open-Drain Bidirectional Communication Basics • Buffer input • MOSFET Open-Drain configuration nexperia.com - public 9
  • 11. Nexperia • I2C Open-Drain Bidirectional Communication Basics Start Condition: The controller pulls the SDA line low while SCL is high, signaling the start of communication. Address Frame: The 7-bit (or possibly 10 bit) sequence that is unique to each target device. Read/Write Bit: The 8th bit follows the address frame to signal to the target device whether the controller is requesting or writing data. ACK/NACK Bit: Every 8-bit frame in a message is followed by an ACK/NACK. The target device pulls down SDA signal to inform the controller that the data frame was successfullyreceived. Stop Condition: The controller releases the SDA line from low to high, while SCL is high SCL Controller MOSFET: Pulsing SCL SDA Controller: MOSFET: Communicating Address frame. Buffer: listening for “target” ACK SCL Target: Buffer: Receiving Data MOSFET: Sending ACK SCL SDA nexperia.com - public 10
  • 12. Nexperia • I2C Operation Examples: Important specifications SYMBOL PARAMETER TYPICAL UNITS fSCL SCL clock frequency kHz tLOW Low period of SCL signal us tHIGH Higher period of SCL signal us tr Rise time (SDA) ns tf Fall time (SDA) ns tSU(STA) Set-up time for Repeated Start us tHD(STA) Hold time for Start/ Repeated Start us tSU(DAT) Data set-up time ns tHD(DAT) Data hold time us tSU(STOP) Set-up time for stop condition us nexperia.com - public 11
  • 13. Nexperia • I2C Operation Examples: Timing parameters Re-Start Setup Time and Re-Start/StartHold Time Rise and Fall time Data Setup time Stop Setup Time nexperia.com - public 12
  • 14. Nexperia • I2C Operation Examples: I2C User Manual 13 https://assets.nexperia.com/documents/user-manual/UM10204.pdf nexperia.com - public
  • 15. Nexperia • I2C Operation Examples: 8-bit Write I2C: Target Device Register Write I2C: Target Device Register Read nexperia.com - public 14
  • 17. Nexperia • I2C Design and Application practices: Pull-up resistor 16 nexperia.com - public
  • 18. Nexperia • I2C Design and Application practices: Pull-up resistor sizing Rp(max) 17 I2C SDA INPUT I2C SDA OUTPUT VDD SUPPLY SDA pin Rp VO MOSFET Current Cb 𝑉(𝑡) = 𝑉𝐷𝐷(1 − 𝑒− 𝑡 𝑅𝐶) 𝑉(𝑡1) = 0.3 × 𝑉𝐷𝐷 = 𝑉𝐷𝐷(1 − 𝑒− 𝑡1 𝑅𝐶) 𝑡ℎ𝑒𝑛 𝑡1 = 0.35667 × 𝑅𝐶 𝑉(𝑡2) = 0.7 × 𝑉𝐷𝐷 = 𝑉𝐷𝐷(1 − 𝑒 − 𝑡2 𝑅𝐶) 𝑡ℎ𝑒𝑛 𝑡2 = 1.20397 × 𝑅𝐶 tr=t2-t1=0.8473 × 𝑅𝐶 Rearranging equation: 𝑅𝑝(𝑚𝑎𝑥) = 𝑡𝑟 0.8473 × 𝐶𝑏 nexperia.com - public
  • 19. Nexperia • I2C Design and Application practices: Pull-up resistor sizing Rp(min) 18 (VDD-VOLmax)/Rpmin= IOL Rearranging equation: Rpmin= (VDD-VOLmax)/IOL I2C SDA INPUT I2C SDA OUTPUT VDD SUPPLY SDA pin Rp VOL MOSFET Current nexperia.com - public
  • 20. Nexperia • I2C Design and Application practices: BUS net capacitance 19 TRACE WIDTH TRACE THICKNESS LAYER HEIGHT εr Imperial version: CL = capacitance per unit length in pf/inch w= width of the trace in mils h = height of the trace above power plane in mils t = thickness of trace in mils εr = dielectric constant of material between trace and power plane (FR-4 is ~4.5) Metric version: CL = capacitance per unit length in pf/cm w= width of the trace in mm h = height of the trace above power plane in mm t = thickness of trace in mm εr = dielectric constant of material between trace and power plane (FR-4 is ~4.5) LAYER THICKNESS C= εrεo(L*W)/d [F] W L C = Parallel plate capacitance [F] W= width of trace L = Length of trace d = thickness of dielectric εr = (relative permattivity) dielectric constant of material between trace and power plane (FR-4 is ~4.5) εo = permittivity of a vacuum in Farads per metre 8.85x10-14 [F/cm] εr nexperia.com - public
  • 21. Nexperia • I2C Design and Application practices Layout strategies 20 SCL SCL SCL SCL SDA SDA SDA SDA External noise Inductive noise Better shielding nexperia.com - public
  • 22. Challenges associated with I2C and Product Solutions 04 nexperia.com - public 21
  • 23. Nexperia • Challenges associated with I2C 22 >400pF VOC Sensor GPIO Expander Temp Sensor ADC LED Controller Humidity Sensor DAC I2C LCD Display PMIC uC Controller Rp VDD SCL SDA SCL SDA SCL SDA SCL SDA Controller Target Devices EEPROM Digital Pot Pressure Sensor Memory Proximity Sensor Barometric Sensor 3-axis acc Thermal Etc. SDA SCL SDA SCL SDA nexperia.com - public
  • 24. Nexperia • Challenges associated with I2C: Device solutions 23 • Examples: Driving off-board communication • Large cable capacitance • Examples: Partitioning board devices • 400pF each PORTX nexperia.com - public
  • 25. Nexperia • Challenges associated with I2C: Device Solutions 24 • GPIO expander to dynamically address the target devices. • Sets all address pins high, and when the controller wants to communicate to a specific device, it would set the device address pin to low through the GPIO expander H H H H H H H L nexperia.com - public
  • 27. Nexperia • 1 In planning / considered 26 Public I2C edge repeater Products • NCA9700DQ • NCA9701GX 1 Benefits ✓ Voltage level translation from 0.9V to 3.6V at both port A and port B ✓ Guaranteed 1 MHz operation (true I²C Fast-mode Plus, Fm+) and can drive up to 550pF at 1MHz ✓ No static voltage offset, low VOL ✓ Input and output rising-edge signal accelerators at all I/O’s ✓ Glitch-free and sequence- independent IC power-up Applications • Cell phones / Tablets / PC • Devices for IoT applications • Power-sensitive applications I2C NPIs GPIO Expanders, Repeaters & Switches I2C GPIO Expander Products • NCA9555PW / NCA9555BY • NCA9539PW • NCA9535PW • NCA9595PW Benefits ✓ Operating voltage range • VCC =0.9V – 3.6V ✓ 5V tolerant I/O’s (16) ✓ Power-up with all channels configured as inputs with weak pull-up resistors ✓ Glitch free power supply sequencing ✓ Low Standby-Current consumption ✓ Latched outputs with 25mA drive Applications • Servers, Routers • Gaming consoles I2C Switch Products • NCA9548PW (TSSOP24) 1 Benefits ✓ Operating voltage range • VCC = 1.65V – 5.5V ✓ 1-to-8 Bidirectional translating switches I2C Bus and SMBus compatible ✓ Active-low reset input ✓ Glitch free power-up ✓ Low RON switches ✓ Channel selection through an I2C Bus, in any combination ✓ Power up with all switch channels deselected Applications • Products with I2C slave address conflicts
  • 28. Nexperia • Product Introduction | NCA9555PW, NCA9555BY 27 Features ▪ Single supply GPIO expander supporting 1.65V to 5.5V operation ▪ Serial to parallel (SDA to P0-P16) and parallel to serial (P0-P16) conversion with I2C protocol ▪ Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs ▪ Low power consumption 2.5 µA max ▪ 400 kHz operation (FM I2C mode) ▪ Glitch free Power up with all channels configured as inputs with Pull-ups ▪ Latched outputs with 25 mA drive maximum capability for directly driving LEDs ▪ Polarity Inversion Register ▪ External RESET pin to reset state machine and internal registers ▪ Noise filters on SCL and SDA inputs Benefits ❑ Reduces the PCB design complexity through trace reduction and routing simplification ❑ Lowers I/O usage & reduces the system cost ❑ Board-space and Processor-pin saving Functional block diagram Applications ▪ Servers, Routers, Hardware control monitors, IOTs, Gaming consoles ▪ TV & Monitors, Battery powered applications and Automotive Tools and Resources ▪ Datasheet NCA9555PW ▪ Evaluation Board (EVM), Demo Board ▪ Package Schematic Symbol ▪ Application note ▪ IBIS model Public
  • 29. Nexperia • NCA95xx I²C GPIO expander – Application areas 28 VCC NCA9555 #2 VCC 8 8 l I²C Control Master SDA SCL NCA9555 #2 I²C Control NCA9555 #1 I/O Port 1 I/O Port 1 INT 8 8 SCL SDA Address selection LEDs ... Switches ... Enable 1 Vout 1 Vin 1 Enable N Vout N Vin N From 16 to up to 128 I/O lines IC controls & feedback signals inputs (enable, mode select, ....) outputs (power good, thermal alarms, etc.) SW 1 SW X Generic readback of states ... Public
  • 30. Nexperia • Features and Options I2C GPIO Expander Family 29 NCA9555 NCA9539 NCA9535 NCA9595 16 Channel NCA9539 NCA9555 NCA9535 NCA9595 RESET Pin YES NO Internal Pull-up NCA9555 NO NCA9535 NCA9539 YES NO NCA9595 YES Configurable Pull-ups NCA9555, NCA9539 and NCA9535 are drop-in replacement from competition TI and NXP ➢ TI: TCA9555, TCA9539, TCA9535 ➢ NXP: PCA9555A, PCA9539A, PCA9535A ➢ NCA9555 will be available in TSSOP24 and HWQFN24 package ➢ NCA9539 and NCA9535 will be available in TSSOP24 package NCA9595 is a new product in the market featuring benefits such as low power consumption and reduce BOM cost ➢ NCA9595 will be available in TSSOP24 and HWQFN24 package (Sleeper) Public
  • 31. Nexperia • NCA95xx I²C GPIO expander family – Types and their specifics 30 NCA95xx family • NCA9555PW TSSOP24 NCA9555BY HWQFN24 - integrated 100 kΩ pull-up resistors for GPIO pins • NCA9535PW TSSOP24 - no integrated termination of GPIO pins – advantage: no extra current for active outputs in low state • NCA9595PW TSSOP24 - additional 2 I²C registers for switchable pull-up resistors • NCA9539PW TSSOP24 - additional Reset pin (low active) A2 address selection pin is sacrificed ( 4 adress options) - no internal termination like NCA9435 Public
  • 32. Nexperia • Product Preview | NCA9701AGX/DQ 31 NCA9701AGX/DQ - Dual channel voltage translating I2C repeater / accelerator • Server • Routers • Personal Computers • Industrial Automation Equipment • Products with many I2C slaves and / or long PCB traces  Dual channel bidirectional I2C buffer (Autosense topology)  Voltage level translation from 0.9 V to 3.6 V at both port A and port B  Guaranteed 1 MHz operation (true I²C Fast-mode Plus, Fm+)  No static voltage offset, low VOL  Very low VOL on I/O pins of the port A; VOL regulated to 0.09 * VCCB on I/O pins of the port B  Input and output rising-edge signal accelerators at all I/Os  Lock-free operation  Glitch-free and sequence-independent IC power-up  Open-drain input/outputs  Series connection and star connection of NCA9701A devices possible  I²C clock stretching support  Compatibility with I²C bus and SMBus protocols  Integrated pull-up resistors (BOM cost reduction) and possibility of connecting external pull-up resistors  I2C clock stretching, and multiple master arbitration supported Value proposition Key applications Portfolio / release plan Product CES [Wk] CQS [Wk] RFS [Wk] NCA9700DQ Available May 2023 July 2023 Parametrics Parametrics Product VCCA, VCCB Low-state Current Frequency Data set-up time gain Temperature Range NCA9700 0.9V – 3.6V Both channels Low = 3.9mA SM, FM, FM+ CL(A) = 10 pF; CL(B) = 160pF  45ns CL(A) = 85 pF; CL(B) = 85 pF  104ns −40 °C to 85 °C Public In Development, (Engineering Samples Available)
  • 33. I3C 06 Why I3C 07 Differences to I2C Standard 08 I3C Protocol
  • 35. Nexperia • Why I3C? nexperia.com - public Controller Target SCL SDA Target INT INT Controller Target SCL SDA Target Controller Target MISO SCK MOSI Target INT INT /CS0 /CS1 SLOW Speed Wiring SPI I3C I2C 34
  • 36. Nexperia • The I3C wiring advantage I3C topology nexperia.com - public MCU (controller) I3C Temp sensor I3C GPIO I3C ADC I3C Temp sensor I3C DAC2 I3C DAC1 I3C BUS SDA&SCL SDA SCL I3C target can take master role SDA&SCL SDA&SCL SDA&SCL SDA&SCL SDA&SCL 🚌 35
  • 37. Nexperia • The I3C Energy and Speed advantage 12,5 25 1 0 5 10 15 20 25 30 SDR DDR I2C FM+ RAW Bitrate [mBps] Speed 0 0,5 1 1,5 2 2,5 3 3,5 4 SDR DDR I2C FM+ [mJoules per Megabit] Energy I3C I3C Note: excluded higher speed / lower energy HDR-TSPL/TSP modes nexperia.com - public 36
  • 39. Differences to I2C Standard 07
  • 40. Nexperia • I3C physical level changes - SCL SCL line is open drain SCL line can be used bidirectional (=> clock stretching feature) I2C nexperia.com - public SCL line is always operated in push pull mode SCL line is unidirectional from controller to Target I3C I2C Target I2C controller R Vcc SCL I3C Target I3C controller SCL 39
  • 41. Nexperia • I3C physical level changes - SDA SDA is always open drain SDA line is bidirectional Additional usage: acknowledge data transfer I2C nexperia.com - public SDA line is partially open drain and mostly operated in push pull mode Additional usage: Acknowledge in open drain mode Push pull mode: • Write transfer: DATA & Parity information • Read transfer: DATA & Target can signal end of transfer I3C I2C Target I2C controller R Vcc SDA I3C Target R I3C controller SDA I3C controller controls Pull-up resistor or high keeper 40
  • 42. Nexperia • I3C physical level changes – Push pull on SDA When the bus is idle After a start condition During device address [*] sending For legacy I2C transfers During Acknowledgment phases Open drain active when: nexperia.com - public Push-pull active when: • In all other cases • After a restart condition push pull mode can be used to send the target address 1 MHz [**] [**] HS 3.4 MHz present, but rarely used in real world [*] A mixed push pull/open drain addressing mode is also defined 41
  • 43. Nexperia • I3C modes All modes work with max. 12.5 MHz clock nexperia.com - public Speed [Mbit/s] SDR 12.5 HDR-DDR 25 HDR-TS [*] ~37.5 Multi lane 100’s [*] Ternary Symbol available in 2 flavors (pure and legacy) => SCL & SDA are used for data transfer 42
  • 45. Nexperia • Write transfers I3C I2C Transfers Note: Simplification - Many more transfer types are possible, e.g. with restart, longer data payload, … ACK T-BIT 0x07 P Address + R/W bit S Controller Target ACK ACK 0x07 Address + R/W bit S P Read transfers I3C I2C ACK T-BIT DATA P Address + R/W bit S ACK NAK DATA Address + R/W bit S P T-Bit for writes: Controller sends a single bit parity bit. T-Bit for reads: NOT a parity bit. The target returns 1, when it wants the transfer to be finished. nexperia.com - public 44
  • 46. Nexperia • Write transfers I3C Transfers ACK T-BIT 0x07 Address + R/W bit S Controller Target P Read transfers I3C ACK T-BIT DATA Address + R/W bit S P Open drain low speed PushPull high speed nexperia.com - public 45
  • 47. Nexperia • I3C Disadvantages Supports up to 50pF bus load only Estimation are 10 .. 20 target devices (quote from MIPI alliance) MIPI alliance is working on extending the range A chance to invest into repeater circuits Specified only from 1.2V onwards [*] Already now it is clear that the lower side must be extended IBI feature increases bus latency Already now it is clear that the lower side must be extended Specification quality & size nexperia.com - public 46 [*] for I3C basic spec
  • 48. Nexperia • nexperia.com - public 47 [*] for I3C basic spec