SlideShare uma empresa Scribd logo
1 de 24
Baixar para ler offline
Financial Crises and Time-Varying Risk Premia in
a Small Open Economy: A Markov-Switching
DSGE Model for Estonia
Boris Blagov
University of Hamburg
September 2013
Introduction
• Non-linearities in DSGE models
• Currency board in DSGE models
◦ Absence of money
◦ Fixed exchange rate
e = 0
◦ Identity between the interest rates (Galí 2008)
i = i∗
2
Introduction
1996 1998 2000 2002 2004 2006 2008 2010
0
5
10
15
20
1996 1998 2000 2002 2004 2006 2008 2010
−15
−10
−5
0
5
10
Top: Interbank interest rates in %, Estonia’s TALIBOR (—) and EURIBOR (- -).
Bottom: Real GDP growth. Source: Eesti Pank.
3
Model Overview
• Follows Benignio (2001), Monacelli (2005), Justiniano and Preston
(2010)
• Consumers maximize utility by choosing consumption and labour,
have access to foreign markets
• Consumption is a bundle of home produced goods (H) and imported
goods (F)
• Nominal rigidities in terms of sticky prices (hybrid inflation
dynamics)
• Perfect labour market
• LOOP does not hold/incomplete asset markets/imperfect risk sharing
• Currency board (fixed exchange rate)
• Markov-Switching component
4
The Model
Domestic Demand: Consumers maximize utility
E0
∞
∑
t=0
βt
ϑt
C1−σ
t
1−σ
−
N
1+ϕ
t
1+ϕ
s.t.
PtCt +Bt +etB∗
t = Bt−1(1+it−1)+etB∗
t−1(1+i∗
t−1)Φ(Dt)+WtNt +Tt
• Φ(Dt,φt) is a debt elastic interest rate premium with
Φt = exp{−χ(Dt +φt)}
• Dt is the real quantity of the consumer’s net foreign asset position in
relation to steady state output ¯Y
Dt =
EtB∗
t−1
¯YPt−1
• The usual Euler equation applies
5
The Model
Domestic Supply: Calvo pricing and hybrid inflation dynamics
(1+βδH)πH,t = βEt{πH,t+1}+δHπH,t−1 +λHmct +µH,t
(1+βδF)πF,t = βEt{πF,t+1}+δFπF,t−1 +λFψt +µF,t
with λH = (1−θH)(1−βθH)
θH
and λF = (1−θF)(1−βθF)
θF
and Ψt =
EP∗
t
PF,t
= 1 ⇔ ψt = et +p∗
t −pF,t = 0, i.e. LOOP may not hold
6
The Model
Integration in the world economy:
Terms of Trade: st = pF,t −pH,t
Real exchange rate: qt = et +p∗
t −pt = ψt +(1−α)st
CPI inflation: πt = (1−α)πH,t +απF,t
Nominal exchange rate dynamics: et = qt −qt−1 +πt −π∗
t
UIP: (it −Et{πt+1})−(i∗
t −Et{π∗
t+1}) = Et{qt+1}−qt −χdt −φt
Evolution of the net FA position: dt − 1
β dt−1 = yt −ct −α(qt +αst)
7
The Model
Monetary policy:
et = 0
substituting through the above equations:
it = i∗
t −χdt −φt
Exogenous Processes
φt = ρφφt−1 +ε
φ
t with ε
φ
t ∼ N(0,σ2
φ(st))
at = ρaat−1 +εa
t with εa
t ∼ N(0,σ2
a)
ϑt = ρϑϑt−1 +εϑ
t with εϑ
t ∼ N(0,σ2
ϑ)
µH,t = ρµµH,t−1 +ε
µH
t with ε
µH
t ∼ N(0,σ2
µH
)
µF,t = ρµµF,t−1 +ε
µF
t with ε
µF
t ∼ N(0,σ2
µF
)
y∗
t = cy∗ y∗
t−1 +ε
y∗
t with ε
y∗
t ∼ N(0,σ2
y∗ )
π∗
t = cπ∗π∗
t−1 +επ∗
t with επ∗
t ∼ N(0,σ2
π∗ )
i∗
t = ci∗i∗
t−1 +εi∗
t with εi∗
t ∼ N(0,σ2
i∗ )
8
Markov-Switching extension
The different states are characterized by time-varying stochastic volatility
of the risk-premium
φt = ρφφt−1 +ε
φ
t with ε
φ
t ∼ N(0,σ2
φ(st))
which evolve according to
P =
p11 p12
p21 p22
The equations may then be cast in the following matrix form:
B1(st)xt = Et{A1(st,st+1)xt+1}+B2(st)xt−1 +C1(st)zt
zt = R(st)zt−1 +εt with εt ∼ N(0,Σ2
(st))
9
Solving a Markov-switching DSGE Model
• 2nd Order Perturbation Method (Foerster et.al [2013], wp)
• Forward Solution Method (Cho [2011], wp)
• Minimal State Variable (MSV) Solution method (Farmer et.al [2011],
JEDC)
• Solution under bounded shocks (Davig and Leeper [2007], AER)
The first three use unbounded shocks and use the notion of a MSV
solution. That is, the system has a solution of the sort:
xt = Ωxt−1 +Γεt +ϒwt
with xt = ΩXt−1 +Γεt being the "fundamental part" and ϒwt being a
sunspot component.
10
Forward Solution
xt = Et{A(st,st+1)xt+1}+B(st)xt−1 +C(st)zt
with zt following an AR(1) process. From the perspective of time period t
by forward iteration the model in period t +k may be represented by:
xt = Et{Mk(st,st+1,...,st+k)xt+k}+Ωk(st)xt−1 +Γk(st)zt
where Ω1(st) = B(st), Γ1(st) = C(st) and for k = 2,3...
Ωk(st) = Ξk−1(st)−1
B(st)
Γk(st) = Ξk−1(st)−1
C(st)+Et{Fk−1(st,st+1)Γk−1(st+1)}R
Ξk−1(st) = (In −Et{A(st,st+1)Ωk−1(st+1)})
Fk−1(st,st+1) = Ξk−1(st)−1
A(st,st+1)
11
It may be shown that given initial values, under some regularity conditions
such as invertibility of Ξ ∀k the sequences Ωk(st) and Γk(st) are well
defined, unique and real-valued. The model is said to be forward
convergent if the parameter matrices are convergent with k → ∞, i.e:
lim
k→∞
Ωk(st) = Ω∗
(st)
lim
k→∞
Γk(st) = Γ∗
(st)
lim
k→∞
Fk(st,st+1) = F∗
(st,st+1)
If (no-bubble condition):
lim
k→∞
Et{Mk(st,st+1,...,st+k)xt+k} = 0n×1
then the (fundamental) solution is:
xt = Ω∗
(st)xt−1 +Γ∗
(st)zt
As k tends to infinity, the above condition should hold and all solutions
where it does not should be ruled out as they are not economically
relevant. Thus, if the model is forward convergent and the "no-bubble
condition" is satisfied, then the above is the only relevant MSV solution.
12
Determinacy and Uniqueness
The existence of the above solution alone is necessary but not sufficient
condition for determinacy, due to the volatility induced by the
regime-switching feature. There may exist a non-fundamental part that is
arbitrary and there may be a multiplicity of equilibria. Assuming the
non-fundamental component takes the form
wt = Et{F(st,st+1)wt+1}
then the concept for determinacy and indeterminacy deals with interaction
of the matrices when switching between states. Defining
ΨΩ∗×Ω∗ = [pijΩ∗
j ⊗Ω∗
j ] and ΨF∗×F∗ = [pijF∗
j ⊗F∗
j ]
then, mean-square stability is characterized by
rσ(ΨΩ∗×Ω∗ ) < 1 rσ(ΨF∗×F∗ ) ≤ 1
13
Solution and Estimation
Solution:
xt = Ω∗
(st)xt−1 +Γ∗
(st)zt
Combined with the measurement equation
Yt = Hxt +Rt
Likelihood: Kalman filter is inoperable ⇒ Kim’s filter
Maximization: Covariance Matrix Adaptation Evoltuion Strategy
(CMA-ES)
Posterior: Formed through Bayes’ rule, conditioning on the states.
p(θ,P,S|Y) =
p(Y |θ,P,S)p(S|P)p(θ,P)
p(Y |θ,P,S)p(S|P)p(P,θ)d(θ,P,S)
14
Taking the Model to Data
Estonia: Real GDP growth, Consumption growth, Inflation (HICP),
3-month TALIBOR (—)
Europe: Real GDP growth, Inflation (HICP), 3-month EURIBOR (- -)
1996 1998 2000 2002 2004 2006 2008 2010 2012
−15
−10
−5
0
5
10
GDP
1996 1998 2000 2002 2004 2006 2008 2010 2012
−10
−5
0
5
10
Consumption
1996 1998 2000 2002 2004 2006 2008 2010 2012
−3
−2
−1
0
1
2
3
Inflation
1996 1998 2000 2002 2004 2006 2008 2010 2012
−1
−0.5
0
0.5
1
1.5
2
TALIBOR and EURIBOR
15
Priors
Dist. Mean Std.Dev.
p11 Beta 0.9 0.1
p22 Beta 0.9 0.1
β PM 0.995 —
ϕ Gamma 2 0.25
θH Beta 0.75 0.1
θF Beta 0.5 0.1
α PM 0.5 —
σ Gamma 1 1
η Gamma 2 0.25
δH Beta 0.5 0.15
δF Beta 0.5 0.15
χ Gamma 0.01 0.01
ρa Beta 0.7 0.1
ρµF Beta 0.7 0.1
Dist. Mean Std.Dev.
ρµH Beta 0.7 0.1
ρν Beta 0.7 0.1
ρφ Beta 0.7 0.1
cy∗ Beta 0.85 0.1
cπ∗ Beta 0.85 0.1
ci∗ Beta 0.85 0.1
σµF IGamma 1 ∞
σµH IGamma 1 ∞
σa IGamma 1 ∞
σν IGamma 1 ∞
σφ IGamma 0.8 ∞
σy∗ IGamma 1 ∞
σπ∗ IGamma 1 ∞
σi∗ IGamma 1 ∞
16
Posterior Estimates
Distribution Prior Mean M1 M2 : St = 1 M2 : St = 2
p11 Beta 0.900 — 0.936
[0.862, 0.984] —
p22 Beta 0.900 — 0.942
[0.852, 0.993] —
β PM 0.995 0.995 0.995 —
σ Gamma 1.000 2.339
[1.371, 3.694]
2.424
[1.434, 3.800] —
ϕ Gamma 2.000 1.985
[1.608, 2.404]
1.982
[1.598, 2.399] —
θH Beta 0.750 0.910
[0.880, 0.938]
0.912
[0.882, 0.939] —
θF Beta 0.500 0.631
[0.544, 0.717]
0.645
[0.556, 0.733] —
α PM 0.500 0.500 0.500 —
η Gamma 2.000 2.366
[2.011, 2.760]
2.411
[2.062, 2.781] —
δH Beta 0.500 0.215
[0.094, 0.371]
0.217
[0.096, 0.369] —
δF Beta 0.500 0.590
[0.386, 0.786]
0.594
[0.395, 0.788] —
17
Posterior Estimates
Distribution Prior Mean M1 M2 : St = 1 M2 : St = 2
χ Gamma 0.010 0.028
[0.014, 0.043]
0.017
[0.006, 0.029] —
σµF IGamma 1.000 1.225
[0.857, 1.673]
1.159
[0.799, 1.618] —
σµH IGamma 1.000 0.458
[0.326, 0.620]
0.425
[0.298, 0.586] —
σa IGamma 1.000 0.855
[0.209, 2.358]
1.060
[0.205, 3.474] —
σν IGamma 1.000 11.265
[7.040, 17.150]
11.438
[7.154, 17.458] —
σφ IGamma 0.800 0.472
[0.406, 0.548]
0.119
[0.090, 0.156]
0.665
[0.533, 0.831]
σy∗ IGamma 1.000 0.684
[0.592, 0.791]
0.685
[0.593, 0.795] —
σπ∗ IGamma 1.000 0.375
[0.321, 0.438]
0.376
[0.321, 0.440] —
σi∗ IGamma 1.000 0.100
[0.086, 0.116]
0.100
[0.086, 0.116] —
M: -430.723 -405.5175
18
Estimated Probabilities of the High State
1996 1998 2000 2002 2004 2006 2008 2010
0
5
10
15
20
1996 1998 2000 2002 2004 2006 2008 2010
0
0.2
0.4
0.6
0.8
1
Figure: Top: Interbank interest rates, TALIBOR (—) and EURIBOR (- -).
Bottom: Smoothed ( ) and not-smoothed (- -) probability of σφ(st) = σφ(high).
19
2 4 6 8 10 12
−1
−0.5
0
0.5
Consumption
2 4 6 8 10 12
−0.5
0
0.5
Output
2 4 6 8 10 12
−0.5
0
0.5
1
Interest Rate
2 4 6 8 10 12
−0.02
0
0.02
0.04
Real Exchange Rate
2 4 6 8 10 12
−0.05
0
0.05
Terms of Trade
2 4 6 8 10 12
−0.02
−0.01
0
0.01
Inflation
2 4 6 8 10 12
−0.04
−0.02
0
0.02
Inflation Home Goods
2 4 6 8 10 12
−4
−2
0
2
Marginal Cost
2 4 6 8 10 12
0
0.5
1
Net FA Position
Figure: Impulse Responses following a risk premium shock for State 1: σφ(low) (- -),
State 2: σφ(high) (-.-) and the no-switching version M1 (—) .
20
Variance Decomposition and Moments
2 4 6 8 10 12
0
20
40
60
80
100
ε
y
*
ε
π
*
εi
*
εµ
F
εµ
H
εa
εν
ε
φ
2 4 6 8 10 12
0
20
40
60
80
100
ε
y
*
ε
π
*
εi
*
εµ
F
εµ
H
εa
εν
ε
φ
Figure: State-conditioned variance decomposition of the interest rate.
y c π i y∗ π∗ i∗
data 4.5103 4.0453 0.8323 0.4635 1.3184 0.3754 0.2169
M2 : State 1 3.4937 4.1860 0.8307 0.2480 1.2781 0.4434 0.1710
M2 : State 2 3.5142 4.2666 0.8291 0.6966 1.2705 0.4443 0.1708
Table: Standard deviation of the actual data and implied by the model based on 5000
random simulations.
21
Robustness Checks
Differences between the specifications:
M1: No regime shifts.
M2: Switching in the volatility of the risk premium σ2
φ.
M3: Switching in the volatility in other structural shocks: σ2
a, σ2
ϑ, σ2
µH
, σ2
µF
, σ2
φ.
M4: Switching in σ2
φ and χ.
M5: Switching in σ2
φ where the data are linearly detrended.
Estimated coefficients
M3 : St = 1 M3 : St = 2 M4 : St = 1 M4 : St = 2 M5 : St = 1 M5 : St = 2
χ 0.015
[0.006, 0.028]
— 0.014
[0.006, 0.025]
0.024
[0.005, 0.051]
0.025
[0.021, 0.030]
—
σµF
0.966
[0.611, 1.442]
1.245
[0.810, 1.836]
1.160
[0.798, 1.611]
— 1.203
[0.829, 1.676]
—
σµH
0.403
[0.275, 0.570]
0.474
[0.327, 0.662]
0.433
[0.312, 0.583]
— 0.469
[0.338, 0.629]
—
σν
9.569
[5.430, 15.636]
10.440
[6.404, 16.143]
11.473
[7.203, 17.380]
— 14.568
[9.090, 22.368]
—
σφ
0.121
[0.092, 0.160]
0.673
[0.535, 0.842]
0.119
[0.090, 0.156]
0.680
[0.537, 0.866]
0.145
[0.664, 1.175]
0.887
[0.097, 0.201]
σa
0.769
[0.207, 2.007]
1.040
[0.212, 3.117]
0.816
[0.206, 2.346]
— 0.870
[0.211, 2.472]
—
M: -409.2437 -405.0004 -418.835
22
Conclusion
• The Markov-switching extension is able to capture the non-linearities
of TALIBOR
• Risk-premium shocks play negligible role during normal times, but
have more profound effects when the system is under pressure
• Successful at identifying the banking and financial crisis
• Outperforms the standard model in terms of model fit
• Allows for state-contingent analysis
• The extension is computationally more intensive
• The switching is exogenous and the number of states is ad-hoc
• The framework is flexible and unexplored, presenting many
opportunities for further research
23
0.8 1
0
5
10
p11
0.5 1
0
2
4
6
8
10
p22
1 2 3
0
0.5
1
1.5
ϕ
0.8 0.9 1
0
5
10
15
20
θH
0.4 0.6 0.8
0
2
4
6
θF
0 2 4 6 8
0
0.2
0.4
0.6
σ
2 3
0
0.5
1
1.5
η
0 0.2 0.4 0.6 0.8
0
1
2
3
4
δH
0 0.5 1
0
1
2
3
δF
0 0.02 0.04 0.06
0
10
20
30
40
χ
0.2 0.4 0.6 0.8 1
0
1
2
3
ρa
0.2 0.4 0.6 0.8 1
0
1
2
3
4
ρµF
0.2 0.4 0.6 0.8 1
0
1
2
3
ρµH
0.2 0.4 0.6 0.8 1
0
1
2
3
ρν
0 0.5 1
0
1
2
3
4
ρφ
0.6 0.8 1
0
2
4
6
cy∗
0 0.5 1
0
1
2
3
cπ∗
0.6 0.8 1
0
2
4
6
8
ci∗
0 1 2 3
0
0.5
1
1.5
σµF
0 0.5 1
0
1
2
3
4
σµH
0 5 10 1
0
0.2
0.4
0.6
0.8
σa
0 10 20 30
0
0.05
0.1
σν
0.050.10.150.20.25
0
5
10
15
20
σφ
0.5 1
0
2
4
6
σy∗
0.2 0.4 0.6
0
2
4
6
8
10
σπ∗
0.05 0.1 0.15
0
10
20
30
40
σi∗
0.5 1 1.5
0
1
2
3
4
σφ
Figure: Prior (dashed) and posterior (solid) distributions of M2 (no Markov-Switching).
24

Mais conteúdo relacionado

Mais procurados

Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]
NBER
 
6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm 6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm
Quang Hoang
 
Datamining 2nd Decisiontree
Datamining 2nd DecisiontreeDatamining 2nd Decisiontree
Datamining 2nd Decisiontree
sesejun
 
Datamining 2nd decisiontree
Datamining 2nd decisiontreeDatamining 2nd decisiontree
Datamining 2nd decisiontree
sesejun
 
Optimalpolicyhandout
OptimalpolicyhandoutOptimalpolicyhandout
Optimalpolicyhandout
NBER
 
5. cem granger causality ecm
5. cem granger causality  ecm 5. cem granger causality  ecm
5. cem granger causality ecm
Quang Hoang
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
Quang Hoang
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jiří Šmída
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
Quang Hoang
 

Mais procurados (20)

Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]
 
6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm 6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm
 
Datamining 2nd Decisiontree
Datamining 2nd DecisiontreeDatamining 2nd Decisiontree
Datamining 2nd Decisiontree
 
Datamining 2nd decisiontree
Datamining 2nd decisiontreeDatamining 2nd decisiontree
Datamining 2nd decisiontree
 
WCSB 2012
WCSB 2012 WCSB 2012
WCSB 2012
 
Workshop 2011 of Quantitative Finance
Workshop 2011 of Quantitative FinanceWorkshop 2011 of Quantitative Finance
Workshop 2011 of Quantitative Finance
 
Optimalpolicyhandout
OptimalpolicyhandoutOptimalpolicyhandout
Optimalpolicyhandout
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
5. cem granger causality ecm
5. cem granger causality  ecm 5. cem granger causality  ecm
5. cem granger causality ecm
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Workshop 2013 of Quantitative Finance
Workshop 2013 of Quantitative FinanceWorkshop 2013 of Quantitative Finance
Workshop 2013 of Quantitative Finance
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 

Semelhante a Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open Economy: A Markov-Switching DSGE Model for Estonia

Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4
Cdiscount
 
Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...
Bowei Chen
 

Semelhante a Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open Economy: A Markov-Switching DSGE Model for Estonia (20)

Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4
 
Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...
 
Is the Macroeconomy Locally Unstable and Why Should We Care?
Is the Macroeconomy Locally Unstable and Why Should We Care?Is the Macroeconomy Locally Unstable and Why Should We Care?
Is the Macroeconomy Locally Unstable and Why Should We Care?
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default risk
 
Scalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilityScalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatility
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
Model reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsModel reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specifications
 
An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...
An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...
An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...
 
Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016
Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016 Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016
Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016
 
diff equation
diff equationdiff equation
diff equation
 
CMU_13
CMU_13CMU_13
CMU_13
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
Decrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory AlloysDecrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory Alloys
 
The Limits of Leverage
The Limits of LeverageThe Limits of Leverage
The Limits of Leverage
 
The dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learningThe dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learning
 
HJB Equation and Merton's Portfolio Problem
HJB Equation and Merton's Portfolio ProblemHJB Equation and Merton's Portfolio Problem
HJB Equation and Merton's Portfolio Problem
 
Precautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond CovariancePrecautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond Covariance
 
Markov chain
Markov chainMarkov chain
Markov chain
 
Levy processes in the energy markets
Levy processes in the energy marketsLevy processes in the energy markets
Levy processes in the energy markets
 

Mais de Eesti Pank

Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
Eesti Panga majandusprognoos 2023‒2026. 19.12.2023Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
Eesti Pank
 
Eesti finantssektori olukord ja peamised riskid
Eesti finantssektori olukord ja peamised riskidEesti finantssektori olukord ja peamised riskid
Eesti finantssektori olukord ja peamised riskid
Eesti Pank
 
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
Eesti Pank
 

Mais de Eesti Pank (20)

Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
Eesti Panga majandusprognoos 2023‒2026. 19.12.2023Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
Eesti Panga majandusprognoos 2023‒2026. 19.12.2023
 
Eesti finantssektori olukord ja peamised riskid
Eesti finantssektori olukord ja peamised riskidEesti finantssektori olukord ja peamised riskid
Eesti finantssektori olukord ja peamised riskid
 
Eesti Panga majandusprognoos 2023‒2025
Eesti Panga majandusprognoos 2023‒2025Eesti Panga majandusprognoos 2023‒2025
Eesti Panga majandusprognoos 2023‒2025
 
Finantssstabiilsuse ülevaade 2023/1
Finantssstabiilsuse ülevaade 2023/1Finantssstabiilsuse ülevaade 2023/1
Finantssstabiilsuse ülevaade 2023/1
 
Juuso Vanhala. Persistent misallocation or a necessary temporary evil?
Juuso Vanhala. Persistent misallocation or a necessary temporary evil?Juuso Vanhala. Persistent misallocation or a necessary temporary evil?
Juuso Vanhala. Persistent misallocation or a necessary temporary evil?
 
Karsten Staehr. Macroeconomic News and Sovereign Interest Rate Spreads before...
Karsten Staehr. Macroeconomic News and Sovereign Interest Rate Spreads before...Karsten Staehr. Macroeconomic News and Sovereign Interest Rate Spreads before...
Karsten Staehr. Macroeconomic News and Sovereign Interest Rate Spreads before...
 
Tööturu Ülevaade 1/2023
Tööturu Ülevaade 1/2023Tööturu Ülevaade 1/2023
Tööturu Ülevaade 1/2023
 
Eesti Panga majandusprognoos 2023-2025
Eesti Panga majandusprognoos 2023-2025Eesti Panga majandusprognoos 2023-2025
Eesti Panga majandusprognoos 2023-2025
 
Majanduse Rahastamise Ülevaade. Veebruar 2023
Majanduse Rahastamise Ülevaade. Veebruar 2023Majanduse Rahastamise Ülevaade. Veebruar 2023
Majanduse Rahastamise Ülevaade. Veebruar 2023
 
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
The Sufficiency of Debt Relief as a Panacea to Sovereign Debt Crisis in Sub-S...
 
Luck and skill in the performance of global equity funds in Central and Easte...
Luck and skill in the performance of global equity funds in Central and Easte...Luck and skill in the performance of global equity funds in Central and Easte...
Luck and skill in the performance of global equity funds in Central and Easte...
 
Adjusting to Economic Sanctions
Adjusting to Economic SanctionsAdjusting to Economic Sanctions
Adjusting to Economic Sanctions
 
Pangalaenude intressimarginaalid Eestis erinevate laenutüüpide lõikes
Pangalaenude intressimarginaalid Eestis erinevate laenutüüpide lõikesPangalaenude intressimarginaalid Eestis erinevate laenutüüpide lõikes
Pangalaenude intressimarginaalid Eestis erinevate laenutüüpide lõikes
 
Eesti Pank Economic forecast 2022–2025
Eesti Pank Economic forecast 2022–2025Eesti Pank Economic forecast 2022–2025
Eesti Pank Economic forecast 2022–2025
 
Eesti Panga majandusprognoos 2022–2025
Eesti Panga majandusprognoos 2022–2025Eesti Panga majandusprognoos 2022–2025
Eesti Panga majandusprognoos 2022–2025
 
Madis Müller. Inflatsiooni põhjused, väljavaated ja rahapoliitika roll
Madis Müller. Inflatsiooni põhjused, väljavaated ja rahapoliitika rollMadis Müller. Inflatsiooni põhjused, väljavaated ja rahapoliitika roll
Madis Müller. Inflatsiooni põhjused, väljavaated ja rahapoliitika roll
 
Marko Allikson. Energiaturu olukorrast
Marko Allikson. Energiaturu olukorrastMarko Allikson. Energiaturu olukorrast
Marko Allikson. Energiaturu olukorrast
 
Fabio Canovaand Evi Pappa. Costly disasters, energy consumption, and the role...
Fabio Canovaand Evi Pappa. Costly disasters, energy consumption, and the role...Fabio Canovaand Evi Pappa. Costly disasters, energy consumption, and the role...
Fabio Canovaand Evi Pappa. Costly disasters, energy consumption, and the role...
 
Romain Duval. IMF Regional Economic Outlook for Europe
Romain Duval. IMF Regional Economic Outlook for EuropeRomain Duval. IMF Regional Economic Outlook for Europe
Romain Duval. IMF Regional Economic Outlook for Europe
 
Finantsstabiilsuse Ülevaade 2022/2
Finantsstabiilsuse Ülevaade 2022/2Finantsstabiilsuse Ülevaade 2022/2
Finantsstabiilsuse Ülevaade 2022/2
 

Último

20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf
Adnet Communications
 
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
dipikadinghjn ( Why You Choose Us? ) Escorts
 
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
dipikadinghjn ( Why You Choose Us? ) Escorts
 

Último (20)

(Vedika) Low Rate Call Girls in Pune Call Now 8250077686 Pune Escorts 24x7
(Vedika) Low Rate Call Girls in Pune Call Now 8250077686 Pune Escorts 24x7(Vedika) Low Rate Call Girls in Pune Call Now 8250077686 Pune Escorts 24x7
(Vedika) Low Rate Call Girls in Pune Call Now 8250077686 Pune Escorts 24x7
 
Top Rated Pune Call Girls Viman Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Sex...
Top Rated  Pune Call Girls Viman Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Sex...Top Rated  Pune Call Girls Viman Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Sex...
Top Rated Pune Call Girls Viman Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Sex...
 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdf
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdf
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
 
The Economic History of the U.S. Lecture 25.pdf
The Economic History of the U.S. Lecture 25.pdfThe Economic History of the U.S. Lecture 25.pdf
The Economic History of the U.S. Lecture 25.pdf
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
 
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdf
 
20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf
 
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
 
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
VIP Call Girl in Mira Road 💧 9920725232 ( Call Me ) Get A New Crush Everyday ...
 
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
VIP Call Girl Service Andheri West ⚡ 9920725232 What It Takes To Be The Best ...
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
 
Booking open Available Pune Call Girls Wadgaon Sheri 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Wadgaon Sheri  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Wadgaon Sheri  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Wadgaon Sheri 6297143586 Call Hot Ind...
 
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsHigh Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
 
The Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfThe Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdf
 

Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open Economy: A Markov-Switching DSGE Model for Estonia

  • 1. Financial Crises and Time-Varying Risk Premia in a Small Open Economy: A Markov-Switching DSGE Model for Estonia Boris Blagov University of Hamburg September 2013
  • 2. Introduction • Non-linearities in DSGE models • Currency board in DSGE models ◦ Absence of money ◦ Fixed exchange rate e = 0 ◦ Identity between the interest rates (Galí 2008) i = i∗ 2
  • 3. Introduction 1996 1998 2000 2002 2004 2006 2008 2010 0 5 10 15 20 1996 1998 2000 2002 2004 2006 2008 2010 −15 −10 −5 0 5 10 Top: Interbank interest rates in %, Estonia’s TALIBOR (—) and EURIBOR (- -). Bottom: Real GDP growth. Source: Eesti Pank. 3
  • 4. Model Overview • Follows Benignio (2001), Monacelli (2005), Justiniano and Preston (2010) • Consumers maximize utility by choosing consumption and labour, have access to foreign markets • Consumption is a bundle of home produced goods (H) and imported goods (F) • Nominal rigidities in terms of sticky prices (hybrid inflation dynamics) • Perfect labour market • LOOP does not hold/incomplete asset markets/imperfect risk sharing • Currency board (fixed exchange rate) • Markov-Switching component 4
  • 5. The Model Domestic Demand: Consumers maximize utility E0 ∞ ∑ t=0 βt ϑt C1−σ t 1−σ − N 1+ϕ t 1+ϕ s.t. PtCt +Bt +etB∗ t = Bt−1(1+it−1)+etB∗ t−1(1+i∗ t−1)Φ(Dt)+WtNt +Tt • Φ(Dt,φt) is a debt elastic interest rate premium with Φt = exp{−χ(Dt +φt)} • Dt is the real quantity of the consumer’s net foreign asset position in relation to steady state output ¯Y Dt = EtB∗ t−1 ¯YPt−1 • The usual Euler equation applies 5
  • 6. The Model Domestic Supply: Calvo pricing and hybrid inflation dynamics (1+βδH)πH,t = βEt{πH,t+1}+δHπH,t−1 +λHmct +µH,t (1+βδF)πF,t = βEt{πF,t+1}+δFπF,t−1 +λFψt +µF,t with λH = (1−θH)(1−βθH) θH and λF = (1−θF)(1−βθF) θF and Ψt = EP∗ t PF,t = 1 ⇔ ψt = et +p∗ t −pF,t = 0, i.e. LOOP may not hold 6
  • 7. The Model Integration in the world economy: Terms of Trade: st = pF,t −pH,t Real exchange rate: qt = et +p∗ t −pt = ψt +(1−α)st CPI inflation: πt = (1−α)πH,t +απF,t Nominal exchange rate dynamics: et = qt −qt−1 +πt −π∗ t UIP: (it −Et{πt+1})−(i∗ t −Et{π∗ t+1}) = Et{qt+1}−qt −χdt −φt Evolution of the net FA position: dt − 1 β dt−1 = yt −ct −α(qt +αst) 7
  • 8. The Model Monetary policy: et = 0 substituting through the above equations: it = i∗ t −χdt −φt Exogenous Processes φt = ρφφt−1 +ε φ t with ε φ t ∼ N(0,σ2 φ(st)) at = ρaat−1 +εa t with εa t ∼ N(0,σ2 a) ϑt = ρϑϑt−1 +εϑ t with εϑ t ∼ N(0,σ2 ϑ) µH,t = ρµµH,t−1 +ε µH t with ε µH t ∼ N(0,σ2 µH ) µF,t = ρµµF,t−1 +ε µF t with ε µF t ∼ N(0,σ2 µF ) y∗ t = cy∗ y∗ t−1 +ε y∗ t with ε y∗ t ∼ N(0,σ2 y∗ ) π∗ t = cπ∗π∗ t−1 +επ∗ t with επ∗ t ∼ N(0,σ2 π∗ ) i∗ t = ci∗i∗ t−1 +εi∗ t with εi∗ t ∼ N(0,σ2 i∗ ) 8
  • 9. Markov-Switching extension The different states are characterized by time-varying stochastic volatility of the risk-premium φt = ρφφt−1 +ε φ t with ε φ t ∼ N(0,σ2 φ(st)) which evolve according to P = p11 p12 p21 p22 The equations may then be cast in the following matrix form: B1(st)xt = Et{A1(st,st+1)xt+1}+B2(st)xt−1 +C1(st)zt zt = R(st)zt−1 +εt with εt ∼ N(0,Σ2 (st)) 9
  • 10. Solving a Markov-switching DSGE Model • 2nd Order Perturbation Method (Foerster et.al [2013], wp) • Forward Solution Method (Cho [2011], wp) • Minimal State Variable (MSV) Solution method (Farmer et.al [2011], JEDC) • Solution under bounded shocks (Davig and Leeper [2007], AER) The first three use unbounded shocks and use the notion of a MSV solution. That is, the system has a solution of the sort: xt = Ωxt−1 +Γεt +ϒwt with xt = ΩXt−1 +Γεt being the "fundamental part" and ϒwt being a sunspot component. 10
  • 11. Forward Solution xt = Et{A(st,st+1)xt+1}+B(st)xt−1 +C(st)zt with zt following an AR(1) process. From the perspective of time period t by forward iteration the model in period t +k may be represented by: xt = Et{Mk(st,st+1,...,st+k)xt+k}+Ωk(st)xt−1 +Γk(st)zt where Ω1(st) = B(st), Γ1(st) = C(st) and for k = 2,3... Ωk(st) = Ξk−1(st)−1 B(st) Γk(st) = Ξk−1(st)−1 C(st)+Et{Fk−1(st,st+1)Γk−1(st+1)}R Ξk−1(st) = (In −Et{A(st,st+1)Ωk−1(st+1)}) Fk−1(st,st+1) = Ξk−1(st)−1 A(st,st+1) 11
  • 12. It may be shown that given initial values, under some regularity conditions such as invertibility of Ξ ∀k the sequences Ωk(st) and Γk(st) are well defined, unique and real-valued. The model is said to be forward convergent if the parameter matrices are convergent with k → ∞, i.e: lim k→∞ Ωk(st) = Ω∗ (st) lim k→∞ Γk(st) = Γ∗ (st) lim k→∞ Fk(st,st+1) = F∗ (st,st+1) If (no-bubble condition): lim k→∞ Et{Mk(st,st+1,...,st+k)xt+k} = 0n×1 then the (fundamental) solution is: xt = Ω∗ (st)xt−1 +Γ∗ (st)zt As k tends to infinity, the above condition should hold and all solutions where it does not should be ruled out as they are not economically relevant. Thus, if the model is forward convergent and the "no-bubble condition" is satisfied, then the above is the only relevant MSV solution. 12
  • 13. Determinacy and Uniqueness The existence of the above solution alone is necessary but not sufficient condition for determinacy, due to the volatility induced by the regime-switching feature. There may exist a non-fundamental part that is arbitrary and there may be a multiplicity of equilibria. Assuming the non-fundamental component takes the form wt = Et{F(st,st+1)wt+1} then the concept for determinacy and indeterminacy deals with interaction of the matrices when switching between states. Defining ΨΩ∗×Ω∗ = [pijΩ∗ j ⊗Ω∗ j ] and ΨF∗×F∗ = [pijF∗ j ⊗F∗ j ] then, mean-square stability is characterized by rσ(ΨΩ∗×Ω∗ ) < 1 rσ(ΨF∗×F∗ ) ≤ 1 13
  • 14. Solution and Estimation Solution: xt = Ω∗ (st)xt−1 +Γ∗ (st)zt Combined with the measurement equation Yt = Hxt +Rt Likelihood: Kalman filter is inoperable ⇒ Kim’s filter Maximization: Covariance Matrix Adaptation Evoltuion Strategy (CMA-ES) Posterior: Formed through Bayes’ rule, conditioning on the states. p(θ,P,S|Y) = p(Y |θ,P,S)p(S|P)p(θ,P) p(Y |θ,P,S)p(S|P)p(P,θ)d(θ,P,S) 14
  • 15. Taking the Model to Data Estonia: Real GDP growth, Consumption growth, Inflation (HICP), 3-month TALIBOR (—) Europe: Real GDP growth, Inflation (HICP), 3-month EURIBOR (- -) 1996 1998 2000 2002 2004 2006 2008 2010 2012 −15 −10 −5 0 5 10 GDP 1996 1998 2000 2002 2004 2006 2008 2010 2012 −10 −5 0 5 10 Consumption 1996 1998 2000 2002 2004 2006 2008 2010 2012 −3 −2 −1 0 1 2 3 Inflation 1996 1998 2000 2002 2004 2006 2008 2010 2012 −1 −0.5 0 0.5 1 1.5 2 TALIBOR and EURIBOR 15
  • 16. Priors Dist. Mean Std.Dev. p11 Beta 0.9 0.1 p22 Beta 0.9 0.1 β PM 0.995 — ϕ Gamma 2 0.25 θH Beta 0.75 0.1 θF Beta 0.5 0.1 α PM 0.5 — σ Gamma 1 1 η Gamma 2 0.25 δH Beta 0.5 0.15 δF Beta 0.5 0.15 χ Gamma 0.01 0.01 ρa Beta 0.7 0.1 ρµF Beta 0.7 0.1 Dist. Mean Std.Dev. ρµH Beta 0.7 0.1 ρν Beta 0.7 0.1 ρφ Beta 0.7 0.1 cy∗ Beta 0.85 0.1 cπ∗ Beta 0.85 0.1 ci∗ Beta 0.85 0.1 σµF IGamma 1 ∞ σµH IGamma 1 ∞ σa IGamma 1 ∞ σν IGamma 1 ∞ σφ IGamma 0.8 ∞ σy∗ IGamma 1 ∞ σπ∗ IGamma 1 ∞ σi∗ IGamma 1 ∞ 16
  • 17. Posterior Estimates Distribution Prior Mean M1 M2 : St = 1 M2 : St = 2 p11 Beta 0.900 — 0.936 [0.862, 0.984] — p22 Beta 0.900 — 0.942 [0.852, 0.993] — β PM 0.995 0.995 0.995 — σ Gamma 1.000 2.339 [1.371, 3.694] 2.424 [1.434, 3.800] — ϕ Gamma 2.000 1.985 [1.608, 2.404] 1.982 [1.598, 2.399] — θH Beta 0.750 0.910 [0.880, 0.938] 0.912 [0.882, 0.939] — θF Beta 0.500 0.631 [0.544, 0.717] 0.645 [0.556, 0.733] — α PM 0.500 0.500 0.500 — η Gamma 2.000 2.366 [2.011, 2.760] 2.411 [2.062, 2.781] — δH Beta 0.500 0.215 [0.094, 0.371] 0.217 [0.096, 0.369] — δF Beta 0.500 0.590 [0.386, 0.786] 0.594 [0.395, 0.788] — 17
  • 18. Posterior Estimates Distribution Prior Mean M1 M2 : St = 1 M2 : St = 2 χ Gamma 0.010 0.028 [0.014, 0.043] 0.017 [0.006, 0.029] — σµF IGamma 1.000 1.225 [0.857, 1.673] 1.159 [0.799, 1.618] — σµH IGamma 1.000 0.458 [0.326, 0.620] 0.425 [0.298, 0.586] — σa IGamma 1.000 0.855 [0.209, 2.358] 1.060 [0.205, 3.474] — σν IGamma 1.000 11.265 [7.040, 17.150] 11.438 [7.154, 17.458] — σφ IGamma 0.800 0.472 [0.406, 0.548] 0.119 [0.090, 0.156] 0.665 [0.533, 0.831] σy∗ IGamma 1.000 0.684 [0.592, 0.791] 0.685 [0.593, 0.795] — σπ∗ IGamma 1.000 0.375 [0.321, 0.438] 0.376 [0.321, 0.440] — σi∗ IGamma 1.000 0.100 [0.086, 0.116] 0.100 [0.086, 0.116] — M: -430.723 -405.5175 18
  • 19. Estimated Probabilities of the High State 1996 1998 2000 2002 2004 2006 2008 2010 0 5 10 15 20 1996 1998 2000 2002 2004 2006 2008 2010 0 0.2 0.4 0.6 0.8 1 Figure: Top: Interbank interest rates, TALIBOR (—) and EURIBOR (- -). Bottom: Smoothed ( ) and not-smoothed (- -) probability of σφ(st) = σφ(high). 19
  • 20. 2 4 6 8 10 12 −1 −0.5 0 0.5 Consumption 2 4 6 8 10 12 −0.5 0 0.5 Output 2 4 6 8 10 12 −0.5 0 0.5 1 Interest Rate 2 4 6 8 10 12 −0.02 0 0.02 0.04 Real Exchange Rate 2 4 6 8 10 12 −0.05 0 0.05 Terms of Trade 2 4 6 8 10 12 −0.02 −0.01 0 0.01 Inflation 2 4 6 8 10 12 −0.04 −0.02 0 0.02 Inflation Home Goods 2 4 6 8 10 12 −4 −2 0 2 Marginal Cost 2 4 6 8 10 12 0 0.5 1 Net FA Position Figure: Impulse Responses following a risk premium shock for State 1: σφ(low) (- -), State 2: σφ(high) (-.-) and the no-switching version M1 (—) . 20
  • 21. Variance Decomposition and Moments 2 4 6 8 10 12 0 20 40 60 80 100 ε y * ε π * εi * εµ F εµ H εa εν ε φ 2 4 6 8 10 12 0 20 40 60 80 100 ε y * ε π * εi * εµ F εµ H εa εν ε φ Figure: State-conditioned variance decomposition of the interest rate. y c π i y∗ π∗ i∗ data 4.5103 4.0453 0.8323 0.4635 1.3184 0.3754 0.2169 M2 : State 1 3.4937 4.1860 0.8307 0.2480 1.2781 0.4434 0.1710 M2 : State 2 3.5142 4.2666 0.8291 0.6966 1.2705 0.4443 0.1708 Table: Standard deviation of the actual data and implied by the model based on 5000 random simulations. 21
  • 22. Robustness Checks Differences between the specifications: M1: No regime shifts. M2: Switching in the volatility of the risk premium σ2 φ. M3: Switching in the volatility in other structural shocks: σ2 a, σ2 ϑ, σ2 µH , σ2 µF , σ2 φ. M4: Switching in σ2 φ and χ. M5: Switching in σ2 φ where the data are linearly detrended. Estimated coefficients M3 : St = 1 M3 : St = 2 M4 : St = 1 M4 : St = 2 M5 : St = 1 M5 : St = 2 χ 0.015 [0.006, 0.028] — 0.014 [0.006, 0.025] 0.024 [0.005, 0.051] 0.025 [0.021, 0.030] — σµF 0.966 [0.611, 1.442] 1.245 [0.810, 1.836] 1.160 [0.798, 1.611] — 1.203 [0.829, 1.676] — σµH 0.403 [0.275, 0.570] 0.474 [0.327, 0.662] 0.433 [0.312, 0.583] — 0.469 [0.338, 0.629] — σν 9.569 [5.430, 15.636] 10.440 [6.404, 16.143] 11.473 [7.203, 17.380] — 14.568 [9.090, 22.368] — σφ 0.121 [0.092, 0.160] 0.673 [0.535, 0.842] 0.119 [0.090, 0.156] 0.680 [0.537, 0.866] 0.145 [0.664, 1.175] 0.887 [0.097, 0.201] σa 0.769 [0.207, 2.007] 1.040 [0.212, 3.117] 0.816 [0.206, 2.346] — 0.870 [0.211, 2.472] — M: -409.2437 -405.0004 -418.835 22
  • 23. Conclusion • The Markov-switching extension is able to capture the non-linearities of TALIBOR • Risk-premium shocks play negligible role during normal times, but have more profound effects when the system is under pressure • Successful at identifying the banking and financial crisis • Outperforms the standard model in terms of model fit • Allows for state-contingent analysis • The extension is computationally more intensive • The switching is exogenous and the number of states is ad-hoc • The framework is flexible and unexplored, presenting many opportunities for further research 23
  • 24. 0.8 1 0 5 10 p11 0.5 1 0 2 4 6 8 10 p22 1 2 3 0 0.5 1 1.5 ϕ 0.8 0.9 1 0 5 10 15 20 θH 0.4 0.6 0.8 0 2 4 6 θF 0 2 4 6 8 0 0.2 0.4 0.6 σ 2 3 0 0.5 1 1.5 η 0 0.2 0.4 0.6 0.8 0 1 2 3 4 δH 0 0.5 1 0 1 2 3 δF 0 0.02 0.04 0.06 0 10 20 30 40 χ 0.2 0.4 0.6 0.8 1 0 1 2 3 ρa 0.2 0.4 0.6 0.8 1 0 1 2 3 4 ρµF 0.2 0.4 0.6 0.8 1 0 1 2 3 ρµH 0.2 0.4 0.6 0.8 1 0 1 2 3 ρν 0 0.5 1 0 1 2 3 4 ρφ 0.6 0.8 1 0 2 4 6 cy∗ 0 0.5 1 0 1 2 3 cπ∗ 0.6 0.8 1 0 2 4 6 8 ci∗ 0 1 2 3 0 0.5 1 1.5 σµF 0 0.5 1 0 1 2 3 4 σµH 0 5 10 1 0 0.2 0.4 0.6 0.8 σa 0 10 20 30 0 0.05 0.1 σν 0.050.10.150.20.25 0 5 10 15 20 σφ 0.5 1 0 2 4 6 σy∗ 0.2 0.4 0.6 0 2 4 6 8 10 σπ∗ 0.05 0.1 0.15 0 10 20 30 40 σi∗ 0.5 1 1.5 0 1 2 3 4 σφ Figure: Prior (dashed) and posterior (solid) distributions of M2 (no Markov-Switching). 24