SlideShare uma empresa Scribd logo
1 de 32
Magnetic anisotropy
in (III,Mn)V semiconductors: an FMR study

                        Konrad Dziatkowski




 Division of Solid State Physics      Department of Physics
    Department of Physics           University of Texas at Austin
     University of Warsaw
Advisors
•Prof. Andrzej Twardowski (U. of Warsaw)
•Prof. Jacek K. Furdyna (U. of Notre Dame)
•Prof. Bernard Clerjaud (U. Pierre et Marie Curie, Paris)

Coworkers
•Dr. Marta Palczewska, Mariusz Pawłowski (Institute of Electronic
Materials Technology, Warsaw)
•Dr. Tomasz Słupiński (U. of Warsaw)
•Dr. Xinyu Liu, Zhiguo Ge, Weng Lee-Lim, Ben Fehrman (U. of Notre Dame)
•Prof. Adam Barcz (Institute of Electron Technology, Warsaw)
•Dr. Rafał Jakiela (Institute of Physics PAS, Warsaw)

Supporting institutions
•U.S. Department of State
•Foundation for Polish Science
•(polish) Ministry of Science and Higher Education
University of Warsaw
•established in 1816; then: about 800 of students and 40-50 of faculty




•now: about 56,000 of students and 3,000 of faculty
Department of Physics UW
•physics was present at UW from the very
beginning in 1816; established as
an independent department in 1969
•now: about 700 of students and about
200 of faculty
•physics of particles, nuclear physics,
optics, solid state physics, biophysics,
medical physics, relativity and gravitation,
geophysics, astronomy, ...
Division of Solid State Physics
•about 12 of students and about 25 of faculty
•physics of semiconductors (III-V, II-VI, oxides, DMS), superconductors,
graphene, polymers, ...
•(magneto)optics in FIR-NIR-VIS-UV, (magneto)transport, magnetometry,
hydrostatic and uniaxial pressures, electroreflectance, ...
•MOCVD, Czochralski, AMMONO (for nitrides), photolitography, Kelvin
Probe Microscopy; characterization by Hall, DLTS, SQUID, electrochemical
CV profiling, ...
Spintronics (spin-based electronics)
•a field of electronics involving nanoscale devices
in which the information is carried/stored with use
of the spin of an electron rather than its electric charge

                                     antiferromagnet (AFM)
                                     pinned ferromagnet (FM)
                                     nonmagnetic spacer (NM)
                                     ferromagnet (FM)

                SVD - spin valve device
                MTJ - magnetic tunnel junction


•magnitude of passed current is modulated by the relative
orientation of the magnetization in ferromagnetic films
                                                 P. A. Gruenberg, Rev. Mod. Phys. 80, 1531 (2008)

                                                 A. Fert, Rev. Mod. Phys. 80, 1517 (2008)
Dilute magnetic semiconductors
•an alloy of parent, nonmagnetic semiconductor (e.g. GaAs, CdTe)
with the atoms of magnetic elements (e.g. Mn, Co)



        host semiconductor                          magnetic ions



•host materials
  III-V: GaAs, GaP, GaN, AlAs, AlN, InAs, InN, InP, ...
  II-VI: CdTe, CdSe, CdS, ZnTe, ZnS, PbTe, ...
  IV: Ge, Si

•magnetic dopants:
  Mn, Cr, Fe, Co, ...
Ferromagnets among (III,Mn)V

          alloy                 Tc           Ref.

    (Ga,Mn)As                  173            [1]

     (In,Mn)As                  90            [2]

  (In,Ga,Mn)As                 110            [3]

     (Ga,Mn)N                    8            [4]


[1] K. Y. Wang et al., AIP Conf. Proc. 772, 333 (2005)
[2] T. Schallenberg and H. Munekata, Appl. Phys. Lett. 89, 042507 (2006)
[3] T. Słupiński et al., Appl. Phys. Lett. 80, 1592 (2002)
[4] E. Sarigiannidou et al., Phys. Rev. B 74, 041306 (2006)


                                                                      A. H. MacDonald et al., Nature Mater. 4, 195 (2005)
Ferromagnetism of (Ga,Mn)As
•exchange interaction between band holes and manganese ions

  itinerant band holes               Jpd                       localized electrons from
  of p shell                                                   d shell of Mn ions
                                                T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006)

•Jpd < 0 - antiferromagnetic coupling
 |Jpd| ~ 0.9 - 3.3 ... - 14 eV

•effective RKKY-like interaction between manganese ions

           JMn-Mn ~ Jpd · [sin(2kF r) - 2kF r·cos(2kF r)] / (2kF r)4
                     2

                                           F. Matsukura et al., Phys. Rev. B 57, R2037 (1998)



•ferromagnetic Mn-Mn coupling
Growth of ferromagnetic (Ga,Mn)As
•low temperature molecular beam epitaxy

                                                                                                       formation of MnAs




                              substrate temperature (oC)
                                                           300

                                                                                      metallic (Ga,Mn)As

                                                           200       insulator

                                                                                           roughening

                                                           100                            policrystalline

                                                                 0               0.02            0.04            0.06      0.08
                                                                                  concentration of Mn in Ga1-xMnxAs

after: H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999)




•ion implantation + pulsed layer melting
M. A. Scarpulla et al., Appl. Phys. Lett. 82, 1251 (2003)
Growth of ferromagnetic (Ga,Mn)As
•substitutional manganese
                                5
>> electronic configuration: 3d                reduction of:
>> acceptor                                    >> concentration of holes
>> magnetic moment per ion: 5mB                >> magnetization
                                               >> Curie temperature
•interstitial manganese
>> double donor (electric compensation)
>> antiferromagnetic coupling with substitutional
manganese (magnetic compensation)


•antistructural defect AsGa
>> native for LT-MBE
Growth of ferromagnetic (Ga,Mn)As
•TC above 300 K ?




 S. Mack et al., Appl. Phys. Lett. 92, 192502 (2008)   Y. J. Cho et al., J. Appl. Phys. 103, 07D132 (2008)
Motivation
•lack of unambiguous description (qualitative and quantitative)
for the collective excitations of spin system (ferromagnetic resonance)
in dilute ferromagnetic semiconductors

•recognition of complex magnetic anisotropy of solitude films
and multilayered structure based on (III,Mn)V, identification of various
components of the anisotropy and establishing the possibilities
for its modifications

•understanding of relations joining magnetic anisotropy
with interlayer exchange coupling in (III,Mn)V-based SVDs or MTJs
                     antiferromagnet (AFM)
                     pinned ferromagnet (FM)
                     nonmagnetic spacer (NM)
                     ferromagnet (FM)

SVD - spin valve device
MTJ - magnetic tunnel junction
Materials
•solitude films of (Ga,Mn)As and (In,Ga,Mn)As
                                                                          AFM
•double layers MnO / (Ga,Mn)As
                                                                          FM
•(Ga,Mn)As / GaAs / (Ga,Mn)As structures
                                                                          NM
                                                                          FM

                                             growers: T. Słupiński (UW),
                                             X. Liu and Z. Ge (U. of Notre Dame)

Experimental technique

•electron spin resonance (ESR) spectrometer with microwave klystron
of X-band (~ 9 GHz)

•continuous-flow helium cryostat, T = 4 - 300 K
•electromagnet up to 1.4 T
Ferromagnetic resonance (FMR)

           long range
      ferromagnetic order    +          resonance transitions between
                                          Zeeman-splitted spin states

•ground state: saturation

•resonance: collective excitation




                                          energy
of the entire spin system                                                        hw
                                                   saturation

•uniform mode of FMR: coherent
                                                                magnetic field
behavior (”precession”) of all spins

         w = g×mB×Hrez / h

•non-uniform modes (spin waves):          P

non-trivial spatial dependence of the
                                          dP/dH




local phase of excitation                                       magnetic field
Anisotropy of FMR




                                    (arb. units)
    anisotropy of FMR                                                                      ferromagnetic
                                                                                             resonance




    ß ß ß                                          dirt in cryostat


   anisotropic magnetic
        properties                                                                  Hres

            magnetization                               [001]            magnetic field,
              easy axis
                                                         q            polar angle
                                                   H
       minimum of
    the resonance field

                                                   j
                            [100]                                             [010]

                              azimuthal angle
Polar anisotropy

                                                                                                                       [001]




                              (degrees)




                                                                                       (degrees)
                                                                                                                               polar
                                                                                                                       q
                                                                                                                               angle
                                                                                                                   H



                              polar angle,
                                                                                                      (Ga,Mn)As




                                                                                       polar angle,
                                                                                                        200 nm

                                                                                                      bufor GaAs
                                                                                                        220 nm

                                                                                                      GaAs (001)
                                                            magnetic field,
                                                                                                                       SL-A1
         magnetic field,
     magnetic field markers
     spin wave resonance                               FMR line

                                             K. Dziatkowski et al., Phys. Rev. B 70, 115202 (2004)



•both for (Ga,Mn)As/GaAs and (In,Ga,Mn)As/(In,Ga)As/InP
the magnetization easy axis is confined in the growth plane
Magnetic interactions vs anisotropy


  dipol-dipol
  interaction      Þ            shape
                              anisotropy           in epitaxial (III,Mn)V
                                                 the crystalline anisotropy
                                                      dominates over
   exchange
  interaction      Þ          crystalline
                              anisotropy
                                                     shape anisotropy




                compressive       tensile
                   strain          strain   X. Liu et al., Phys. Rev. B 67, 205204 (2003)

                                            W. L. Lim et al., Phys. Rev. B 74, 045303 (2006)

                                            K. Dziatkowski et al., Phys. Rev. B 70, 115202 (2004)
Model of FMR
•Laudau-Lifschitz equation: dM / dt = g M ´ H

•small deviations of M from equilibrium

•harmonic solutions
                 (wres / g)2 = ( Fqq × Fjj - Fqj ) / (M2sin2q)
                                              2

                  q, j - polar and azimuthal angle of M at equilibrium

                        F = FZeeman + Fshape + Fcrystal


•Hres(jH), qH = p/2
                        Þ
                                      parametrized by
•Hres(qH), jH = p/4
                                      H4II, H4^, H2II, H2^, geff
•Hres(qH), jH = -p/4

                               J. Smit and H. G. Beljers, Phillips Res. Rep. 10, 113 (1955)

                               M. Farle, Rep. Prog. Phys. 61, 755 (1998)
Polar anisotropy




                                                                                  fitting of the model to the experimental data
                            (degrees)




                                                                   (degrees)
                            polar angle,




                                                                   polar angle,
        magnetic field,                          magnetic field,
   magnetic field markers
   spin wave resonance                     FMR line




                                                                                                                                  polar angle,   (degrees)
Azimuthal anisotropy
                                                                                                                                         model




                                                                                                                      (arb. units)
resonance field,




                                                     resonance field,




                                                                                                                      resonance field,
                      azimuthal angle,   (degrees)                      azimuthal angle,   (degrees)                                     azimuthal angle,   (degrees)


                                                                                                                                                             (In,Ga,Mn)As
FCT lattice Þ biaxial anisotropy                                                                                                                  H          50 nm
            Þ four-fold symmetry (90o rotation)                                                               [100]    j                                     (In,Ga)As
                                                                                                                                                            100 nm
                        ? ? ? Þ uniaxial anisotropy                                                             azimuthal
                                                                                                                                                             InP (001)
                              Þ two-fold symmetry (180o rotation)                                                   angle
                                                                                                                                              SL-B2
                   U. Welp et al.,                                       specific reconstruction of (001) GaAs
                   Appl. Phys. Lett. 85, 260 (2004)                      surface promoting correlated arrangements
                   M. Sawicki et al.,
                                                                         of manganese ions along [110] or [1-10]
                   Phys. Rev. B 71, 121302 (2005)
Reorientation of the easy axis of magnetization

          temperature-induced
      reorientation of the easy axis
            of magnetization




                                                        resonance field,
                             ?
   different dependence of biaxial
                                                                                                                            azimuthal angle,    (degrees)
  and uniaxial anisotropy constants
          on magnetization                                                                                  4.5




                                                                           Resonance Magnetic Field (kOe)
                                                                                                                   [001]
K.-Y. Wang et al., Phys. Rev. Lett. 95, 217204 (2005)
                                                                                                                    [110]

two magnetic phases with different                                                                          3.0
                                                                                                                                                              g=2


 anisotropies and different critical                                                                               [110]


          temperatures                                                                                             [100]
                                                                                                                                                        TC

K. Hamaya et al., Phys. Rev.Lett. 94, 147203 (2005)                                                         1.5
                                                                                                               0              20        40         60        80
                                                                                                                                   Temperature (K)
Other magnetic anisotropies in (III,Mn)V
resonance field,




                   polar angle,   (degrees)            vicinal angle,




           vicinal GaAs substrate              [001]
                      ß
 anisotropy dependent on the orientation      Hrf
                                                            Hdc
  of (dynamic) microwave magnetic field
speculation !!        ß
      nonlinear response of (Ga,Mn)As [110]
         on rf magnetic excitation                              [110]
Exchange bias - discovery and basic idea
W. H. Meiklejohn and C. P. Bean,   •due to interfacial exchange interaction an
Phys. Rev. 102, 1413 (1956)
                                   antiferromagnet - which is unaffected by the
                                   magnetic field reversal - acts on a ferromagnet
                                   as a source of gain or loss of magnetic energy




•under field cooling (FC) conditions:
the hysteresis loop is shifted out of
H = 0 position due to exchange
coupling between antiferromagnetic
CoO and ferromagnetic Co                         J. Nogues and I. K. Schuller,
                                                 J. Magn. Magn. Mater. 192, 203 (1999)
Exchange biasing of (Ga,Mn)As with MnO

               40                                                      400
                    (a)                                                          (b)
                                                                                                            HC




                                                       HC & HEB (Oe)
 M (emu/cm )
3




               20                                                      300
                                                                                                            HEB

                0                                                      200

                                             15 nm
           -20                               30 nm                     100
                                             60 nm
           -40                                                           0
             -1.0         -0.5     0.0     0.5   1.0                         0         20      40      60        80
                                 H (kOe)                                                    dFM (nm)
K. Dziatkowski et al., Appl. Phys. Lett. 88, 142513 (2006)


•proximity phenomenon

•exchange bias in MnO/(Ga,Mn)As reveals no training effect
for the alternating magnetic fields up to 9 kOe
Unidirectional anisotropy
                                                                                        MnO
                                                                                       15 nm
                                         FMR line
                                                                                  (Ga,Mn)As
(arb. units)




                                                                                  15 - 60 nm
                  dirt in
                                                                                  bufor GaAs
                  cryostat    ESR line                                              164 nm

                                                                                  GaAs (001)
FMR signal,




                                                     unidirectional anisotropy,
                             magnetic field,


                      interfacial exchange
                 interaction MnO«(Ga,Mn)As
                                ß
                                                                                    thickness of (Ga,Mn)As,
               unidirectional anisotropy, breaking
                          O
                   of 180 -rotation symmetry         K. Dziatkowski et al., Acta Phys. Polon. A 110, 319 (2006)
Unidirectional anisotropy




                                                  anisotropy field,
        resonance field,




                                                  unidirectional
                             temperature,                             temperature,



•nonmonotonic temperature dependence of unidirectional anisotropy
field      Ü               interplay between bi- and uniaxial magnetic anisotropies

•interfacial exchange coupling in MnO/(Ga,Mn)As relatively robust
with respect to temperature
Fully coupled (Ga,Mn)As / GaAs / (Ga,Mn)As

                                                                              (Ga,Mn)As
                                                                                     9 nm
                                                                                     GaAs
                                                                                3 - 12 nm
(arb. units)




                                                                              (Ga,Mn)As
                                                                                  14 nm
                                                                              bufor GaAs
                                                                                  137 nm

                                                                              GaAs (001)
FMR signal,




                                                             •for 3nm-thin GaAs spacer the observed
                                                             anisotropy resembles that observed for
                                                             a single FM layer
                magnetic field,                              •diffusion of manganse from (Ga,Mn)As
K. Dziatkowski et al., Acta Phys. Polon. A 112, 227 (2007)   into GaAs and the effective thinning
                                                             of GaAs spacer is a likely cause
Fully coupled (Ga,Mn)As / GaAs / (Ga,Mn)As

                                                                                                                     (Ga,Mn)As
                                                                                                                            9 nm
                                                                                                                            GaAs
                                                                                                                       3 - 12 nm
     resonance field,




                                                      resonance field,
                                                                                                                     (Ga,Mn)As
                                                                                                                         14 nm
                                                                                                                    bufor GaAs
                                                                                                                        137 nm

                                                                                                                    GaAs (001)
                        polar angle,   (degrees)                         polar angle,   (degrees)

                                                   uniform mode of FMR
                                                   spin wave mode




•other authors point out the possible redistribution of the hole wave
function resulting in the electronic coupling of two (Ga,Mn)As layers
                                                                                             Z. Ge et al., Appl. Phys. Lett. 91, 152109 (2007)
Acoustic and optic modes of FMR

                                               acoustic       Hrf        optic
                                                mode                     mode

                                                                    H
(arb. units)




               dirt in                  •for GaAs spacer of ³ 6nm thickness: two FMR
               cryostat
FMR signal,




                                        lines corresponding to different collective
                                        (magnetic) excitations of the entire sample
                            FMR lines




                  magnetic field,
Interlayer exchange coupling vs anisotropy


                                                                                                                |JIEC| ~ 10 erg/cm
                                                optic mode                                                              –4       2
                                                  (weak)
   resonance field,




                                                                separation of modes,
                                                acoustic mode
                                                   (strong)

                                                acoustic mode
                                                   (strong)
                                                optic mode
                                                  (weak)



                       GaAs spacer thickness,                                          GaAs spacer thickness,




                      •separation and ordering of two FMR lines depend
                      on the quantitative balance of magnetocrystalline
                      anisotropy energy and interlayer exchange coupling
Summary
•unambiguous qualitative and quantitative description for the anisotropic
FMR in (III,Mn)V semiconductors
•peculiarities of magnetic anisotropy in solitude layers and heterostructures
made of (III,Mn)V, identification of various components of magnetic anisotropy
(biaxial, uniaxial, demagnetization, step-induced, dynamic, unidirectional, ...)
•dominating role of crystalline anisotropy
•reorientation of the magnetization easy axis promoted by an interplay
between bi- and uniaxial (magneto)crystalline anisotropies
•robust proximity effects - exchange bias and unidirectional anisotropy -
in the exchange coupled MnO/(Ga,Mn)As system
•influence of bi- and uniaxial anisotropies competition on unidirectional
anisotropy
•full coupling or acoustic/optic modes of FMR in (Ga,Mn)As/GaAs/(Ga,Mn)As
•quantitative relation joining magnetic anisotropy with interlayer
exchange coupling in (Ga,Mn)As-based FM/NM/FM trilayers

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Magnetic Materials, Properties of magnetic materials and it's application
Magnetic Materials, Properties of magnetic materials and it's applicationMagnetic Materials, Properties of magnetic materials and it's application
Magnetic Materials, Properties of magnetic materials and it's application
 
Tailoring Magnetic Anisotropies in Ferromagnetic Semiconductors
Tailoring Magnetic Anisotropies in Ferromagnetic SemiconductorsTailoring Magnetic Anisotropies in Ferromagnetic Semiconductors
Tailoring Magnetic Anisotropies in Ferromagnetic Semiconductors
 
superparamagnetism and its biological applications
superparamagnetism  and its biological applicationssuperparamagnetism  and its biological applications
superparamagnetism and its biological applications
 
Magnetic material
Magnetic materialMagnetic material
Magnetic material
 
ferromagnetism
ferromagnetismferromagnetism
ferromagnetism
 
Magnetic Properties of Materials | Physics
Magnetic Properties of Materials | PhysicsMagnetic Properties of Materials | Physics
Magnetic Properties of Materials | Physics
 
Lecture 20
Lecture 20Lecture 20
Lecture 20
 
2. Magnetism 1.ppt
2. Magnetism 1.ppt2. Magnetism 1.ppt
2. Magnetism 1.ppt
 
Magnetism
MagnetismMagnetism
Magnetism
 
spintronics
 spintronics spintronics
spintronics
 
Basics of magnetic materials
Basics of magnetic materialsBasics of magnetic materials
Basics of magnetic materials
 
Magnetic properties
Magnetic propertiesMagnetic properties
Magnetic properties
 
Magnetic material
Magnetic materialMagnetic material
Magnetic material
 
Physics feromagnetism
Physics feromagnetismPhysics feromagnetism
Physics feromagnetism
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
CMR_Formal_Presentation2
CMR_Formal_Presentation2CMR_Formal_Presentation2
CMR_Formal_Presentation2
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Ferroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materialsFerroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materials
 
Magnetic domain and domain walls
 Magnetic domain and domain walls Magnetic domain and domain walls
Magnetic domain and domain walls
 

Semelhante a Magnetic anisotropy in (III,Mn)V

Ph.D. Research Talk
Ph.D. Research TalkPh.D. Research Talk
Ph.D. Research Talk
ajblattn
 

Semelhante a Magnetic anisotropy in (III,Mn)V (20)

Ph.D. Research Talk
Ph.D. Research TalkPh.D. Research Talk
Ph.D. Research Talk
 
Magnetic Materials - PPT.pdf
Magnetic Materials - PPT.pdfMagnetic Materials - PPT.pdf
Magnetic Materials - PPT.pdf
 
52910793-Spintronics.pptx
52910793-Spintronics.pptx52910793-Spintronics.pptx
52910793-Spintronics.pptx
 
14.00 o8 j stephen
14.00 o8 j stephen14.00 o8 j stephen
14.00 o8 j stephen
 
Mriphysics shashi (2)
Mriphysics shashi (2)Mriphysics shashi (2)
Mriphysics shashi (2)
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Thin epitaxial ferromagnetic metal films on GaAs(001) for spin injection and ...
Thin epitaxial ferromagnetic metal films on GaAs(001) for spin injection and ...Thin epitaxial ferromagnetic metal films on GaAs(001) for spin injection and ...
Thin epitaxial ferromagnetic metal films on GaAs(001) for spin injection and ...
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentation
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]
 
Report on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & SpintronicsReport on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & Spintronics
 
types of magnets
types of  magnetstypes of  magnets
types of magnets
 
Sebastian
SebastianSebastian
Sebastian
 
Magnetic materials final
Magnetic materials finalMagnetic materials final
Magnetic materials final
 
Mri
MriMri
Mri
 
Magnets in orthodontics.1
Magnets in orthodontics.1Magnets in orthodontics.1
Magnets in orthodontics.1
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMag2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMag
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptx
 

Último

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Magnetic anisotropy in (III,Mn)V

  • 1. Magnetic anisotropy in (III,Mn)V semiconductors: an FMR study Konrad Dziatkowski Division of Solid State Physics Department of Physics Department of Physics University of Texas at Austin University of Warsaw
  • 2. Advisors •Prof. Andrzej Twardowski (U. of Warsaw) •Prof. Jacek K. Furdyna (U. of Notre Dame) •Prof. Bernard Clerjaud (U. Pierre et Marie Curie, Paris) Coworkers •Dr. Marta Palczewska, Mariusz Pawłowski (Institute of Electronic Materials Technology, Warsaw) •Dr. Tomasz Słupiński (U. of Warsaw) •Dr. Xinyu Liu, Zhiguo Ge, Weng Lee-Lim, Ben Fehrman (U. of Notre Dame) •Prof. Adam Barcz (Institute of Electron Technology, Warsaw) •Dr. Rafał Jakiela (Institute of Physics PAS, Warsaw) Supporting institutions •U.S. Department of State •Foundation for Polish Science •(polish) Ministry of Science and Higher Education
  • 3. University of Warsaw •established in 1816; then: about 800 of students and 40-50 of faculty •now: about 56,000 of students and 3,000 of faculty
  • 4. Department of Physics UW •physics was present at UW from the very beginning in 1816; established as an independent department in 1969 •now: about 700 of students and about 200 of faculty •physics of particles, nuclear physics, optics, solid state physics, biophysics, medical physics, relativity and gravitation, geophysics, astronomy, ...
  • 5. Division of Solid State Physics •about 12 of students and about 25 of faculty •physics of semiconductors (III-V, II-VI, oxides, DMS), superconductors, graphene, polymers, ... •(magneto)optics in FIR-NIR-VIS-UV, (magneto)transport, magnetometry, hydrostatic and uniaxial pressures, electroreflectance, ... •MOCVD, Czochralski, AMMONO (for nitrides), photolitography, Kelvin Probe Microscopy; characterization by Hall, DLTS, SQUID, electrochemical CV profiling, ...
  • 6. Spintronics (spin-based electronics) •a field of electronics involving nanoscale devices in which the information is carried/stored with use of the spin of an electron rather than its electric charge antiferromagnet (AFM) pinned ferromagnet (FM) nonmagnetic spacer (NM) ferromagnet (FM) SVD - spin valve device MTJ - magnetic tunnel junction •magnitude of passed current is modulated by the relative orientation of the magnetization in ferromagnetic films P. A. Gruenberg, Rev. Mod. Phys. 80, 1531 (2008) A. Fert, Rev. Mod. Phys. 80, 1517 (2008)
  • 7. Dilute magnetic semiconductors •an alloy of parent, nonmagnetic semiconductor (e.g. GaAs, CdTe) with the atoms of magnetic elements (e.g. Mn, Co) host semiconductor magnetic ions •host materials III-V: GaAs, GaP, GaN, AlAs, AlN, InAs, InN, InP, ... II-VI: CdTe, CdSe, CdS, ZnTe, ZnS, PbTe, ... IV: Ge, Si •magnetic dopants: Mn, Cr, Fe, Co, ...
  • 8. Ferromagnets among (III,Mn)V alloy Tc Ref. (Ga,Mn)As 173 [1] (In,Mn)As 90 [2] (In,Ga,Mn)As 110 [3] (Ga,Mn)N 8 [4] [1] K. Y. Wang et al., AIP Conf. Proc. 772, 333 (2005) [2] T. Schallenberg and H. Munekata, Appl. Phys. Lett. 89, 042507 (2006) [3] T. Słupiński et al., Appl. Phys. Lett. 80, 1592 (2002) [4] E. Sarigiannidou et al., Phys. Rev. B 74, 041306 (2006) A. H. MacDonald et al., Nature Mater. 4, 195 (2005)
  • 9. Ferromagnetism of (Ga,Mn)As •exchange interaction between band holes and manganese ions itinerant band holes Jpd localized electrons from of p shell d shell of Mn ions T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006) •Jpd < 0 - antiferromagnetic coupling |Jpd| ~ 0.9 - 3.3 ... - 14 eV •effective RKKY-like interaction between manganese ions JMn-Mn ~ Jpd · [sin(2kF r) - 2kF r·cos(2kF r)] / (2kF r)4 2 F. Matsukura et al., Phys. Rev. B 57, R2037 (1998) •ferromagnetic Mn-Mn coupling
  • 10. Growth of ferromagnetic (Ga,Mn)As •low temperature molecular beam epitaxy formation of MnAs substrate temperature (oC) 300 metallic (Ga,Mn)As 200 insulator roughening 100 policrystalline 0 0.02 0.04 0.06 0.08 concentration of Mn in Ga1-xMnxAs after: H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999) •ion implantation + pulsed layer melting M. A. Scarpulla et al., Appl. Phys. Lett. 82, 1251 (2003)
  • 11. Growth of ferromagnetic (Ga,Mn)As •substitutional manganese 5 >> electronic configuration: 3d reduction of: >> acceptor >> concentration of holes >> magnetic moment per ion: 5mB >> magnetization >> Curie temperature •interstitial manganese >> double donor (electric compensation) >> antiferromagnetic coupling with substitutional manganese (magnetic compensation) •antistructural defect AsGa >> native for LT-MBE
  • 12. Growth of ferromagnetic (Ga,Mn)As •TC above 300 K ? S. Mack et al., Appl. Phys. Lett. 92, 192502 (2008) Y. J. Cho et al., J. Appl. Phys. 103, 07D132 (2008)
  • 13. Motivation •lack of unambiguous description (qualitative and quantitative) for the collective excitations of spin system (ferromagnetic resonance) in dilute ferromagnetic semiconductors •recognition of complex magnetic anisotropy of solitude films and multilayered structure based on (III,Mn)V, identification of various components of the anisotropy and establishing the possibilities for its modifications •understanding of relations joining magnetic anisotropy with interlayer exchange coupling in (III,Mn)V-based SVDs or MTJs antiferromagnet (AFM) pinned ferromagnet (FM) nonmagnetic spacer (NM) ferromagnet (FM) SVD - spin valve device MTJ - magnetic tunnel junction
  • 14. Materials •solitude films of (Ga,Mn)As and (In,Ga,Mn)As AFM •double layers MnO / (Ga,Mn)As FM •(Ga,Mn)As / GaAs / (Ga,Mn)As structures NM FM growers: T. Słupiński (UW), X. Liu and Z. Ge (U. of Notre Dame) Experimental technique •electron spin resonance (ESR) spectrometer with microwave klystron of X-band (~ 9 GHz) •continuous-flow helium cryostat, T = 4 - 300 K •electromagnet up to 1.4 T
  • 15. Ferromagnetic resonance (FMR) long range ferromagnetic order + resonance transitions between Zeeman-splitted spin states •ground state: saturation •resonance: collective excitation energy of the entire spin system hw saturation •uniform mode of FMR: coherent magnetic field behavior (”precession”) of all spins w = g×mB×Hrez / h •non-uniform modes (spin waves): P non-trivial spatial dependence of the dP/dH local phase of excitation magnetic field
  • 16. Anisotropy of FMR (arb. units) anisotropy of FMR ferromagnetic resonance ß ß ß dirt in cryostat anisotropic magnetic properties Hres magnetization [001] magnetic field, easy axis q polar angle H minimum of the resonance field j [100] [010] azimuthal angle
  • 17. Polar anisotropy [001] (degrees) (degrees) polar q angle H polar angle, (Ga,Mn)As polar angle, 200 nm bufor GaAs 220 nm GaAs (001) magnetic field, SL-A1 magnetic field, magnetic field markers spin wave resonance FMR line K. Dziatkowski et al., Phys. Rev. B 70, 115202 (2004) •both for (Ga,Mn)As/GaAs and (In,Ga,Mn)As/(In,Ga)As/InP the magnetization easy axis is confined in the growth plane
  • 18. Magnetic interactions vs anisotropy dipol-dipol interaction Þ shape anisotropy in epitaxial (III,Mn)V the crystalline anisotropy dominates over exchange interaction Þ crystalline anisotropy shape anisotropy compressive tensile strain strain X. Liu et al., Phys. Rev. B 67, 205204 (2003) W. L. Lim et al., Phys. Rev. B 74, 045303 (2006) K. Dziatkowski et al., Phys. Rev. B 70, 115202 (2004)
  • 19. Model of FMR •Laudau-Lifschitz equation: dM / dt = g M ´ H •small deviations of M from equilibrium •harmonic solutions (wres / g)2 = ( Fqq × Fjj - Fqj ) / (M2sin2q) 2 q, j - polar and azimuthal angle of M at equilibrium F = FZeeman + Fshape + Fcrystal •Hres(jH), qH = p/2 Þ parametrized by •Hres(qH), jH = p/4 H4II, H4^, H2II, H2^, geff •Hres(qH), jH = -p/4 J. Smit and H. G. Beljers, Phillips Res. Rep. 10, 113 (1955) M. Farle, Rep. Prog. Phys. 61, 755 (1998)
  • 20. Polar anisotropy fitting of the model to the experimental data (degrees) (degrees) polar angle, polar angle, magnetic field, magnetic field, magnetic field markers spin wave resonance FMR line polar angle, (degrees)
  • 21. Azimuthal anisotropy model (arb. units) resonance field, resonance field, resonance field, azimuthal angle, (degrees) azimuthal angle, (degrees) azimuthal angle, (degrees) (In,Ga,Mn)As FCT lattice Þ biaxial anisotropy H 50 nm Þ four-fold symmetry (90o rotation) [100] j (In,Ga)As 100 nm ? ? ? Þ uniaxial anisotropy azimuthal InP (001) Þ two-fold symmetry (180o rotation) angle SL-B2 U. Welp et al., specific reconstruction of (001) GaAs Appl. Phys. Lett. 85, 260 (2004) surface promoting correlated arrangements M. Sawicki et al., of manganese ions along [110] or [1-10] Phys. Rev. B 71, 121302 (2005)
  • 22. Reorientation of the easy axis of magnetization temperature-induced reorientation of the easy axis of magnetization resonance field, ? different dependence of biaxial azimuthal angle, (degrees) and uniaxial anisotropy constants on magnetization 4.5 Resonance Magnetic Field (kOe) [001] K.-Y. Wang et al., Phys. Rev. Lett. 95, 217204 (2005) [110] two magnetic phases with different 3.0 g=2 anisotropies and different critical [110] temperatures [100] TC K. Hamaya et al., Phys. Rev.Lett. 94, 147203 (2005) 1.5 0 20 40 60 80 Temperature (K)
  • 23. Other magnetic anisotropies in (III,Mn)V resonance field, polar angle, (degrees) vicinal angle, vicinal GaAs substrate [001] ß anisotropy dependent on the orientation Hrf Hdc of (dynamic) microwave magnetic field speculation !! ß nonlinear response of (Ga,Mn)As [110] on rf magnetic excitation [110]
  • 24. Exchange bias - discovery and basic idea W. H. Meiklejohn and C. P. Bean, •due to interfacial exchange interaction an Phys. Rev. 102, 1413 (1956) antiferromagnet - which is unaffected by the magnetic field reversal - acts on a ferromagnet as a source of gain or loss of magnetic energy •under field cooling (FC) conditions: the hysteresis loop is shifted out of H = 0 position due to exchange coupling between antiferromagnetic CoO and ferromagnetic Co J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)
  • 25. Exchange biasing of (Ga,Mn)As with MnO 40 400 (a) (b) HC HC & HEB (Oe) M (emu/cm ) 3 20 300 HEB 0 200 15 nm -20 30 nm 100 60 nm -40 0 -1.0 -0.5 0.0 0.5 1.0 0 20 40 60 80 H (kOe) dFM (nm) K. Dziatkowski et al., Appl. Phys. Lett. 88, 142513 (2006) •proximity phenomenon •exchange bias in MnO/(Ga,Mn)As reveals no training effect for the alternating magnetic fields up to 9 kOe
  • 26. Unidirectional anisotropy MnO 15 nm FMR line (Ga,Mn)As (arb. units) 15 - 60 nm dirt in bufor GaAs cryostat ESR line 164 nm GaAs (001) FMR signal, unidirectional anisotropy, magnetic field, interfacial exchange interaction MnO«(Ga,Mn)As ß thickness of (Ga,Mn)As, unidirectional anisotropy, breaking O of 180 -rotation symmetry K. Dziatkowski et al., Acta Phys. Polon. A 110, 319 (2006)
  • 27. Unidirectional anisotropy anisotropy field, resonance field, unidirectional temperature, temperature, •nonmonotonic temperature dependence of unidirectional anisotropy field Ü interplay between bi- and uniaxial magnetic anisotropies •interfacial exchange coupling in MnO/(Ga,Mn)As relatively robust with respect to temperature
  • 28. Fully coupled (Ga,Mn)As / GaAs / (Ga,Mn)As (Ga,Mn)As 9 nm GaAs 3 - 12 nm (arb. units) (Ga,Mn)As 14 nm bufor GaAs 137 nm GaAs (001) FMR signal, •for 3nm-thin GaAs spacer the observed anisotropy resembles that observed for a single FM layer magnetic field, •diffusion of manganse from (Ga,Mn)As K. Dziatkowski et al., Acta Phys. Polon. A 112, 227 (2007) into GaAs and the effective thinning of GaAs spacer is a likely cause
  • 29. Fully coupled (Ga,Mn)As / GaAs / (Ga,Mn)As (Ga,Mn)As 9 nm GaAs 3 - 12 nm resonance field, resonance field, (Ga,Mn)As 14 nm bufor GaAs 137 nm GaAs (001) polar angle, (degrees) polar angle, (degrees) uniform mode of FMR spin wave mode •other authors point out the possible redistribution of the hole wave function resulting in the electronic coupling of two (Ga,Mn)As layers Z. Ge et al., Appl. Phys. Lett. 91, 152109 (2007)
  • 30. Acoustic and optic modes of FMR acoustic Hrf optic mode mode H (arb. units) dirt in •for GaAs spacer of ³ 6nm thickness: two FMR cryostat FMR signal, lines corresponding to different collective (magnetic) excitations of the entire sample FMR lines magnetic field,
  • 31. Interlayer exchange coupling vs anisotropy |JIEC| ~ 10 erg/cm optic mode –4 2 (weak) resonance field, separation of modes, acoustic mode (strong) acoustic mode (strong) optic mode (weak) GaAs spacer thickness, GaAs spacer thickness, •separation and ordering of two FMR lines depend on the quantitative balance of magnetocrystalline anisotropy energy and interlayer exchange coupling
  • 32. Summary •unambiguous qualitative and quantitative description for the anisotropic FMR in (III,Mn)V semiconductors •peculiarities of magnetic anisotropy in solitude layers and heterostructures made of (III,Mn)V, identification of various components of magnetic anisotropy (biaxial, uniaxial, demagnetization, step-induced, dynamic, unidirectional, ...) •dominating role of crystalline anisotropy •reorientation of the magnetization easy axis promoted by an interplay between bi- and uniaxial (magneto)crystalline anisotropies •robust proximity effects - exchange bias and unidirectional anisotropy - in the exchange coupled MnO/(Ga,Mn)As system •influence of bi- and uniaxial anisotropies competition on unidirectional anisotropy •full coupling or acoustic/optic modes of FMR in (Ga,Mn)As/GaAs/(Ga,Mn)As •quantitative relation joining magnetic anisotropy with interlayer exchange coupling in (Ga,Mn)As-based FM/NM/FM trilayers