SlideShare uma empresa Scribd logo
1 de 11
Baixar para ler offline
CLAUSIUS–CLAPEYRON EQUATION
 relates the latent heat (heat of transformation)
 of vaporization or condensation to the rate of
 change of vapor pressure with temperature

 or, in the case of a solid-liquid transformation, it
 relates the latent heat of fusion or solidification
 to the rate of change of melting point with
 pressure
DERIVATION
Imagine a piston containing a vapor in equilibrium
with its liquid. Thus,


       A(l)    A(g)


If the piston to be pulled out, at constant
temperature; liquid evaporates and the pressure
remains constant. If the piston is pushed in, vapor
condenses, at constant temperature and pressure.
DERIVATION
During this process, the Gibbs free energy (G) of
the system remains constant.
In the equilibrium system, ∆G = ∆H - T∆S
     where H is the latent heat of vaporization, T the
     temperature and S the entropy of the system
Since G of the said system remains constant,
         G2 – G1 = ∆G = ∆H - T∆S = 0
Thus,
                    ∆H = T∆S
DERIVATION
However, for gases, ∆H = ∆U + P∆V, where U
is the internal energy of the system, making the
previous equation
            ∆H =T∆S = ∆U + P∆V
Given two states in the compression, the
changes in entropy (∆S), internal energy (∆U)
and volume (∆V) would become constant.
DERIVATION
Differentiating both sides with respect to
temperature, we get
                             dP
                    ∆S =          ∆V
                             dT

               dP       ∆S        S2 – S1
                    =        =
               dT       ∆V        V2 – V1
DERIVATION
However, the change in entropy ∆S is given by
                    ∆S = L / T
where L is the latent heat of vaporization

Thus, we arrive at the Clausius – Clapeyron
equation
              dP     ∆S        L
                  =      =
              dT     ∆V T (V2 – V1)
DERIVATION
When the transition is to a gas phase, the final
volume can be many times the size of the initial
volume and thus
        ΔV           can be approximated
as V2. Furthermore, at low pressures, the gas
phase may be approximated by the ideal gas law
PV = nRT, changing the previous equation to:

             dP       ∆S       LP
                  =        =
             dT       ∆V       nRT2
DERIVATION
Since ∆Hvap = L / n,

                dP         dT   ∆Hvap
                       =
                P          T2    R

Also since ∆Hvap is independent of pressure and
temperature and R is a constant, integrating both
sides, we get
                           1 ∆Hvap
              ln P =                 + C
                           T    R
DERIVATION
If the vapor pressure was measured at two
separate temperatures, we have two points on the
same line.
                       1 ∆Hvap
             ln P1 =           + C
                          T1 R
                          1 ∆Hvap
            ln P2 =                    + C
                          T2    R

Subtracting these two, we get
                               ∆Hvap    1    1
        ln P2 - ln P1 =
                                R
                                       (T    T1
                                                  )
                                        2
DERIVATION
Finally, we get

                P2       ∆Hvap    1   1
           ln
                P1
                     =
                          R
                                 (T   T1
                                           )
                                  2



the more commonly known form of the Clausius –
Clapeyron equation

Mais conteúdo relacionado

Mais procurados (20)

10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamics10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamics
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Thermodynamics II
Thermodynamics IIThermodynamics II
Thermodynamics II
 
Stability of metal complexes
Stability of metal complexesStability of metal complexes
Stability of metal complexes
 
Thermodynamics part -2
Thermodynamics  part -2Thermodynamics  part -2
Thermodynamics part -2
 
2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy
 
Phase Equilibria
Phase EquilibriaPhase Equilibria
Phase Equilibria
 
Ionic solids
Ionic solidsIonic solids
Ionic solids
 
Fugacity & fugacity coefficient
Fugacity & fugacity coefficientFugacity & fugacity coefficient
Fugacity & fugacity coefficient
 
Hyperfine splitting
Hyperfine splittingHyperfine splitting
Hyperfine splitting
 
Postulates of quantum mechanics
Postulates of quantum mechanics Postulates of quantum mechanics
Postulates of quantum mechanics
 
Concept of fugacity.pdf
Concept of fugacity.pdfConcept of fugacity.pdf
Concept of fugacity.pdf
 
Chemical potential
Chemical  potentialChemical  potential
Chemical potential
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Postulates of quantum mechanics & operators
Postulates of quantum mechanics & operatorsPostulates of quantum mechanics & operators
Postulates of quantum mechanics & operators
 
Trans effect And Its Applications
Trans effect And Its ApplicationsTrans effect And Its Applications
Trans effect And Its Applications
 
Third law of td from wikipedia
Third law of td from wikipediaThird law of td from wikipedia
Third law of td from wikipedia
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase Equilibrium
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
 
Crystal field stabilization energy
Crystal field stabilization energyCrystal field stabilization energy
Crystal field stabilization energy
 

Destaque

clausius clapeyron equation
clausius clapeyron equationclausius clapeyron equation
clausius clapeyron equationElfa Ma'rifah
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyronKỳ Lê Xuân
 
Simplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsSimplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsStephen
 
Máquina frigorífica por absorción
Máquina frigorífica por absorciónMáquina frigorífica por absorción
Máquina frigorífica por absorciónMiguel Sanchez
 
3rd Line Of Defense
3rd Line Of Defense3rd Line Of Defense
3rd Line Of DefenseMarx Endico
 
Distillation, Vaporization, Evaporation etc
Distillation, Vaporization, Evaporation etcDistillation, Vaporization, Evaporation etc
Distillation, Vaporization, Evaporation etcSourav Shipu
 
SIM difference between Evaporation and Vaporization
SIM difference between Evaporation and VaporizationSIM difference between Evaporation and Vaporization
SIM difference between Evaporation and VaporizationShane Abbie Fernandez
 
Deducción Clausius-Clapeyron
Deducción Clausius-ClapeyronDeducción Clausius-Clapeyron
Deducción Clausius-Clapeyroncecymedinagcia
 
Types of phase daigram
Types of phase daigramTypes of phase daigram
Types of phase daigramGulfam Hussain
 
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Triplenlace Química
 
strength of materials
strength of materialsstrength of materials
strength of materialsGowtham Raja
 

Destaque (20)

clausius clapeyron equation
clausius clapeyron equationclausius clapeyron equation
clausius clapeyron equation
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyron
 
Simplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsSimplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron Equations
 
Ch.12
Ch.12Ch.12
Ch.12
 
Máquina frigorífica por absorción
Máquina frigorífica por absorciónMáquina frigorífica por absorción
Máquina frigorífica por absorción
 
maquinas-termicas
 maquinas-termicas maquinas-termicas
maquinas-termicas
 
egypt
egyptegypt
egypt
 
3rd Line Of Defense
3rd Line Of Defense3rd Line Of Defense
3rd Line Of Defense
 
Distillation, Vaporization, Evaporation etc
Distillation, Vaporization, Evaporation etcDistillation, Vaporization, Evaporation etc
Distillation, Vaporization, Evaporation etc
 
Bab ii1
Bab ii1Bab ii1
Bab ii1
 
SIM difference between Evaporation and Vaporization
SIM difference between Evaporation and VaporizationSIM difference between Evaporation and Vaporization
SIM difference between Evaporation and Vaporization
 
Deducción Clausius-Clapeyron
Deducción Clausius-ClapeyronDeducción Clausius-Clapeyron
Deducción Clausius-Clapeyron
 
Types of phase daigram
Types of phase daigramTypes of phase daigram
Types of phase daigram
 
Phy351 ch 5
Phy351 ch 5Phy351 ch 5
Phy351 ch 5
 
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
 
Maquinas Termicas
Maquinas TermicasMaquinas Termicas
Maquinas Termicas
 
Máquinas térmicas
Máquinas térmicasMáquinas térmicas
Máquinas térmicas
 
Entropy
EntropyEntropy
Entropy
 
Phase Diagram
Phase DiagramPhase Diagram
Phase Diagram
 
strength of materials
strength of materialsstrength of materials
strength of materials
 

Semelhante a Clausius-Clapeyron equation derivation

Ch06b entropy
Ch06b entropyCh06b entropy
Ch06b entropysuresh301
 
Heat transaction
Heat transaction Heat transaction
Heat transaction VenuS70
 
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...Soumya Ranjan Sahoo
 
Manual Solution Fermi Thermodynamics
Manual Solution Fermi Thermodynamics Manual Solution Fermi Thermodynamics
Manual Solution Fermi Thermodynamics dklajd
 
aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.pptLucasB32
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Yuri Melliza
 
vapour pressure equation The Clansius-Clapeyron relation relates the.pdf
vapour pressure equation The Clansius-Clapeyron relation relates the.pdfvapour pressure equation The Clansius-Clapeyron relation relates the.pdf
vapour pressure equation The Clansius-Clapeyron relation relates the.pdfRAJATCHUGH12
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II sureshkcet
 
thermodynamicsrelations-161231100305.pdf
thermodynamicsrelations-161231100305.pdfthermodynamicsrelations-161231100305.pdf
thermodynamicsrelations-161231100305.pdfMarcia184919
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relationsnaphis ahamad
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientPEC University Chandigarh
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArunesh Gupta
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacitiesAlbania Energy Association
 

Semelhante a Clausius-Clapeyron equation derivation (20)

Ch06b entropy
Ch06b entropyCh06b entropy
Ch06b entropy
 
Heat transaction
Heat transaction Heat transaction
Heat transaction
 
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...
Plotting of different parameters entropy, enthalpy, gibbs free energy, heat c...
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
vapor pressure.pdf
vapor pressure.pdfvapor pressure.pdf
vapor pressure.pdf
 
Manual Solution Fermi Thermodynamics
Manual Solution Fermi Thermodynamics Manual Solution Fermi Thermodynamics
Manual Solution Fermi Thermodynamics
 
aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.ppt
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
vapour pressure equation The Clansius-Clapeyron relation relates the.pdf
vapour pressure equation The Clansius-Clapeyron relation relates the.pdfvapour pressure equation The Clansius-Clapeyron relation relates the.pdf
vapour pressure equation The Clansius-Clapeyron relation relates the.pdf
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
thermodynamicsrelations-161231100305.pdf
thermodynamicsrelations-161231100305.pdfthermodynamicsrelations-161231100305.pdf
thermodynamicsrelations-161231100305.pdf
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Ch07b entropy
Ch07b entropyCh07b entropy
Ch07b entropy
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacities
 
S08 chap6 web
S08 chap6 webS08 chap6 web
S08 chap6 web
 
Thermodynamic ppt
Thermodynamic pptThermodynamic ppt
Thermodynamic ppt
 
Ch.16
Ch.16Ch.16
Ch.16
 

Clausius-Clapeyron equation derivation

  • 1.
  • 2. CLAUSIUS–CLAPEYRON EQUATION relates the latent heat (heat of transformation) of vaporization or condensation to the rate of change of vapor pressure with temperature or, in the case of a solid-liquid transformation, it relates the latent heat of fusion or solidification to the rate of change of melting point with pressure
  • 3. DERIVATION Imagine a piston containing a vapor in equilibrium with its liquid. Thus, A(l) A(g) If the piston to be pulled out, at constant temperature; liquid evaporates and the pressure remains constant. If the piston is pushed in, vapor condenses, at constant temperature and pressure.
  • 4. DERIVATION During this process, the Gibbs free energy (G) of the system remains constant. In the equilibrium system, ∆G = ∆H - T∆S where H is the latent heat of vaporization, T the temperature and S the entropy of the system Since G of the said system remains constant, G2 – G1 = ∆G = ∆H - T∆S = 0 Thus, ∆H = T∆S
  • 5. DERIVATION However, for gases, ∆H = ∆U + P∆V, where U is the internal energy of the system, making the previous equation ∆H =T∆S = ∆U + P∆V Given two states in the compression, the changes in entropy (∆S), internal energy (∆U) and volume (∆V) would become constant.
  • 6. DERIVATION Differentiating both sides with respect to temperature, we get dP ∆S = ∆V dT dP ∆S S2 – S1 = = dT ∆V V2 – V1
  • 7. DERIVATION However, the change in entropy ∆S is given by ∆S = L / T where L is the latent heat of vaporization Thus, we arrive at the Clausius – Clapeyron equation dP ∆S L = = dT ∆V T (V2 – V1)
  • 8. DERIVATION When the transition is to a gas phase, the final volume can be many times the size of the initial volume and thus ΔV can be approximated as V2. Furthermore, at low pressures, the gas phase may be approximated by the ideal gas law PV = nRT, changing the previous equation to: dP ∆S LP = = dT ∆V nRT2
  • 9. DERIVATION Since ∆Hvap = L / n, dP dT ∆Hvap = P T2 R Also since ∆Hvap is independent of pressure and temperature and R is a constant, integrating both sides, we get 1 ∆Hvap ln P = + C T R
  • 10. DERIVATION If the vapor pressure was measured at two separate temperatures, we have two points on the same line. 1 ∆Hvap ln P1 = + C T1 R 1 ∆Hvap ln P2 = + C T2 R Subtracting these two, we get ∆Hvap 1 1 ln P2 - ln P1 = R (T T1 ) 2
  • 11. DERIVATION Finally, we get P2 ∆Hvap 1 1 ln P1 = R (T T1 ) 2 the more commonly known form of the Clausius – Clapeyron equation