SlideShare uma empresa Scribd logo
1 de 12
Baixar para ler offline
On considère l’application f définie de 3
IR vers 3
IR par : ),,()),,(( zzxzyzyxf +−=
1) Montrer que l’application f est linéaire.
2) Calculer ff o et en déduire que f est un automorphisme.
3) Déterminer )( fKer et )Im( f .
Exercice 2
1) On considère l’application linéaire f définie de 3
IR vers 4
IR par :
),,,()),,((:),,( 3
zyxxzzyyxzyxfIRzyx +++++=∈∀
a) Calculer l’image de la base canonique de 3
IR par f .
b) En déduire une base de )Im( f et le rang de f ( ))( frg .
c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg .
2) Mêmes questions pour l’application linéaire g définie de 3
IR vers 4
IR par :
),,,()),,((:),,( 3
zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀
1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications
linéaires.
a) f définie de
3
IR vers
2
IR par : ),(),,( zyxzyxzyxf −−+−=
b) f définie de
3
IR vers
2
IR par : ),(),,( xzyzyxzyxf −+−−=
c) f définie de
2
IR vers
3
IR par : ),,(),( yxxyyxyxf −+−=
d) f définie de
3
IR vers
3
IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=
e) f définie de
3
IR vers
3
IR par : ),,(),,( zyxzyxzyxzyxf −++−++=
2) Déterminer
1−
f si elle existe.
Dans 3
IR , on considère le sous espace vectoriel V défini par { }0/),,( 3
=−∈= zxIRzyxV .
1) Donner une base B du sous espace vectoriel V .
2) On considère l’application linéaire g définie de V vers 2
IR par :
),()),,(( yxyxzyxg −+=
a) Calculer l’image de la base B par f et en déduire une base de )Im(g .
b) Montrer que g est un isomorphisme de V vers 2
IR et déterminer
1−
g .
Série 2: Applications linéaires
Exercice 1
Exercice 3
Exercice 4
E-mail:djeddi.kamel@gmail.com
2015
Correction de l’exercice 1
1) Montrons que l’application f est linéaire.
♦ Soit ( )23
),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy =
On vérifie que 2
),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+
♦ L’application f est alors linéaire.
2)
♦ Calcul de l’application ff o .
( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o
( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o
⇒ 3
IR
Idff =o
♦ f est un automorphisme :
L’application f est linéaire.
L’application f est bijective et ff =−1
: 3
IR
Idff =o
3) Déterminons )( fKer et )Im( f .
♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
)(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy
ssi





=
=+
=−
0
0
0
z
zx
zy
ssi





=
=−=
==
0
0
0
z
zx
zy
{ })0,0,0()( =fKer
♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3
IR
{ }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e





−==
==
==
)1,1,1()(
)0,0,1()(
)0,1,0()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf
Corrections
E-mail:djeddi.kamel@gmail.com
Correction de l’exercice 2
1) ),,,()),,(( zyxxzzyyxzyxf +++++=
a) Calculons l’image de la base canonique { }321 ,, eee de 3
IR par f .





=
=
=
⇒





=
=
=
)1,1,1,0()(
)1,0,1,1()(
)1,1,0,1()(
)1,0,0(
)0,1,0(
)0,0,1(
3
2
1
3
2
1
ef
ef
ef
e
e
e
b) Déduisons en une base de )Im( f et ( ))( frg
♦ Déterminons une base de )Im( f
>>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :





=
=
=
)1,1,1,0(
)1,0,1,1(
)1,1,0,1(
3
2
1
u
u
u
Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
0
00
0
0
0
)0,0,0,0(... 321
321
213
23
21
321
31
32
21
332211 ===⇒







=++
=−=
−=
−=
⇒







=++
=+
=+
=+
⇒=++ ααα
ααα
ααα
αα
αα
ααα
αα
αα
αα
ααα uuu
Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg
♦ { }321 ,, uuu est alors une base de fIm :
3
Im IRf =
♦ ⇒== 3)dim(Im)( ffrg 3)( =frg
c) Déterminons une base de )( fKer et ( ))( frg
♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg
o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
o )0,0,0(.. 332211 =++ uuu ααα
o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα
)(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx
ssi







=++
=+
=+
=+
0
0
0
0
zyx
zx
zy
yx
ssi







−−=
−=
=−=
−=
zxy
xz
xyz
yx
ssi 0=== zyx
♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer
♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3
fKerfrgIRfKerfrg 3)( =frg
2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+=
a) Calculons l’image de la base canonique { }321 ,, eee de 3
IR par g .





−−=
−−=
−−=
⇒





=
=
=
)1,1,1,1()(
)1,1,1,1()(
)1,1,1,1()(
)1,0,0(
)0,1,0(
)0,0,1(
3
2
1
3
2
1
eg
eg
eg
e
e
e
b) Déduisons en une base de )Im(g et ( ))(grg
♦ Déterminons une base de )Im(g
>>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :





−−=
−−=
−−=
)1,1,1,1(
)1,1,1,1(
)1,1,1,1(
3
2
1
u
u
u
Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg
♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug
♦ ⇒== 2)dim(Im)( ggrg 2)( =grg
c) Déterminons une base de )(gKer et ( ))(grg
♦ Déterminons une base de )(gKer :
{ })0,0,0,0(),,(/),,()( 3
=∈= zyxgIRzyxgKer
)(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx
ssi







=−+−
=+−−
=+−
=−+
0
0
0
0
)4(
)3(
)2(
)1(
zyx
zyx
zyx
zyx
ssi



+−
=−+
zyx
zyx 0
)2(
)1(
ssi



=
=
−
+
zy
x 0
)2()1(
)2()1(
ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈
♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer
♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3
gKergrgIRgKergrg 2)( =grg
Correction de l’exercice 3
1) Déterminons )( fKer et )Im( f .
a. ),(),,( zyxzyxzyxf −−+−=
Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx
o ssi



=−−
=+−
0
0
zyx
zyx
ssi



−=
=−
yxz
yx 0
ssi



=
=
0z
yx
o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−−==
==
)1,1()(
)1,1()(
)1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg
o { }32,uu et { }31,uu sont deux base de fIm
o >>=<=< 3132 ,,Im uuuuf ,
2
Im IRf =
b. ),(),,( xzyzyxzyxf −+−−=
Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx
o ssi



=++−
=−−
0
0
zyx
zyx
ssi 0=−− zyx ssi zyx += , ( )IRzy ∈,
o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈,
o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−==
−==
)1,1()(
)1,1()(
)1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu est lié car 12 uu −=
Le système { }31,uu est lié car 13 uu −=
Le système { }32,uu est lié car 23 uu =
• 2)( <⇒ Srg
o Le système { }1u est libre 1)( =⇒ Srg
o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf
c. ),,(),( yxxyyxyxf −+−=
Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2
=∈= yxfIRyxfKer
o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx
o ssi



=+
=−
0
0
yx
yx
ssi



−=
=
yx
yx
ssi 0== yx
o Donc : { })0,0()( =fKer
Déterminons une base de )Im( f : >=< )(),(Im 21 efeff
o { }21,ee la base canonique de 2
IR : )0,1(1 =e , )1,0(2 =e
o On pose { }21,uuS = , avec



−−==
==
)1,1,1()(
)1,1,1()(
22
11
efu
efu
: >=< 21,Im uuf
o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg
• Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul)
o 2)( <⇒ Srg
o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf
d. ),22,2(),,( zyxzyxzyxzyxf −+−++++=
Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx
o ssi





=−+−
=++
=++
0
022
02
)3(
)2(
)1(
zyx
zyx
zyx
ssi





=+
−=+
=+
yzx
yzx
y
)(2
0
)3(
)2(
)3()1(
ssi





∈
−=
=
IRx
xz
y 0
o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈
o Donc : >−=< )1,0,1()( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
==
−==
)1,2,1()(
)1,1,2()(
)1,2,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg
o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf
e. ),,(),,( zyxzyxzyxzyxf −++−++=
Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx
o ssi





=−+
=+−
=++
0
0
0
)3(
)2(
)1(
zyx
zyx
zyx
ssi





=
=
=
+
−
−
0
0
0
)3()2(
)2()1(
)3()1(
x
y
z
o Donc : { })0,0,0()( =fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−==
==
)1,1,1()(
)1,1,1()(
)1,1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
On vérifie que { }321 ,, uuuS = est libre (calcul).
• 3=⇒ S
o { }321 ,, uuu est alors une base de fIm :
3
Im IRf =
Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que :
o f est injective car : { })0,0,0()( =fKer
o f est alors un endomorphisme injectif de 3
IR , donc f est bijective.
o Donc f est surjective et alors
3
Im IRf =
2) Déterminons
1−
f , lorsqu’elle existe.
a. f définie de
3
IR vers
2
IR par : ),(),,( zyxzyxzyxf −−+−=
23
dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :
o
2
Im IRf = donc f est surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
b. f définie de
3
IR vers
2
IR par : ),(),,( xzyzyxzyxf −+−−=
23
dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :
o 1)dim(Im =f , donc
2
Im IRf ≠ donc f n’est pas surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
c. f définie de
2
IR vers
3
IR par : ),,(),( yxxyyxyxf −+−=
23
dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être
bijective :
o 2)dim(Im =f , donc
3
Im IRf ≠ donc f n’est pas surjective.
o { })0,0()( =fKer donc f est injective.
o f définie de
3
IR vers
3
IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=
33
dimdim IRIR = , donc f peut être bijective :
f est bijective ssi f est injective ssi f est surjective
o 2)dim(Im =f donc
3
Im IRf ≠ et f n’est pas surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
o f n’est alors pas un automorphisme de 3
IR .
d. f définie de
3
IR vers
3
IR par : ),,(),,( zyxzyxzyxzyxf −++−++=
33
dimdim IRIR = , donc f peut être bijective :
f est bijective ssi f est injective ssi f est surjective
o 3
Im IRf = donc f est surjective.
o { })0,0,0()( =fKer donc f est injective.
o f est alors un automorphisme de 3
IR .
♦ Déterminons alors
1−
f .
1−
f définie de
3
IR vers
3
IR par : ),,(),,(1
zyxZYXf =−
ssi ),,(),,( ZYXzyxf =
),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++
ssi





=−+
=+−
=++
Zzyx
Yzyx
Xzyx
)3(
)2(
)1(
ssi





+=
−=
−=
+
−
−
ZYx
YXy
ZXz
2
2
2
)3()2(
)2()1(
)3()1(
ssi








+=
−=
−=
ZYx
YXy
ZXz
2
1
2
1
2
1
2
1
2
1
2
1
♦ La bijection réciproque
1−
f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de
3
IR vers
3
IR par : 





−−+=−
ZXYXZYZYXf
2
1
2
1
,
2
1
2
1
,
2
1
2
1
),,(1
Correction de l’exercice 2
1) Déterminons une base de { }0/),,( 3
=−∈= zxIRzyxV :
♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈,
♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V
2) l’application linéaire g définie de V vers 2
IR par : ),()),,(( yxyxzyxg −+=
a) Calculons l’image de la base B de V par g .
{ }



=
−=
⇒



=
=
=
)1,1()(
)1,1()(
)1,0,1(
)0,1,0(
:,
2
1
2
1
21
ug
ug
u
u
uuB
b) Montrons que g est un isomorphisme de V vers 2
IR et déterminons
1−
g .
♦ Montrons que g est un isomorphisme de V vers 2
IR :
g est une application linéaire de V vers 2
IR et 2)dim(dim 2
== IRV
Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective
ou g est surjective.
Montrons que g est injective : { })0,0,0()(
?
=gKer
o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer
o )(),,( gKerzyx ∈ ssi





=−
=+
=−
0
0
0
yx
yx
zx
ssi 0=== zyx
o Donc : { })0,0,0()( =gKer
g est alors injective donc bijective.
Ou bien :
Montrons que g est surjective :
2
?
)Im( IRg =
o >>=<=< 2121 ,))(),(Im vvugugg avec :



=
−=
)1,1(
)1,1(
2
1
v
v
o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg
o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg
o { }21,uu est alors une base de gIm :
2
)Im( IRg =
g est alors surjective donc bijective.
♦ g est alors un isomorphisme de V vers 2
IR .
♦ Déterminons
1−
g : ),,(),(1
zyxYXg =−
ssi ),(),,( YXzyxg = , avec Vzyx ∈),,(
( )VzyxYXzyxg ∈= ),,(),,(),,( ssi





=−
=+
=−
Yyx
Xyx
zx 0
)3(
)2(
)1(
ssi





−=
+=
=
−
+
YXy
YXx
xz
2
2
)3()2(
)3()2(
)1(
ssi








−=
+=
+=
YXy
YXx
YXz
2
1
2
1
2
1
2
1
2
1
2
1
♦ L’isomorphisme réciproque
1−
g de ),()),,(( yxyxzyxg −+= est alors définie de 2
IR vers
par : 





+−+=−
YXYXYXYXg
2
1
2
1
,
2
1
2
1
,
2
1
2
1
),(1

Mais conteúdo relacionado

Mais procurados

Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.comExercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
cours fsjes
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires
sarah Benmerzouk
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexe
Kamel Djeddi
 
Merise+ +exercices+mcd+-+corrigés
Merise+ +exercices+mcd+-+corrigésMerise+ +exercices+mcd+-+corrigés
Merise+ +exercices+mcd+-+corrigés
Majid CHADAD
 
Correction Examen 2016-2017 POO .pdf
Correction Examen 2016-2017 POO .pdfCorrection Examen 2016-2017 POO .pdf
Correction Examen 2016-2017 POO .pdf
slimyaich3
 
Cour traitement du signal.pdf
Cour traitement du signal.pdfCour traitement du signal.pdf
Cour traitement du signal.pdf
stock8602
 
Vdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdfVdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdf
Blerivinci Vinci
 
Correction de td poo n2
Correction de td poo n2Correction de td poo n2
Correction de td poo n2
yassine kchiri
 
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafaAlgèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Kamel Djeddi
 

Mais procurados (20)

Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexes
 
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.comExercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires
 
Chap nombres complexes
Chap nombres complexesChap nombres complexes
Chap nombres complexes
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTITD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
 
Analyse matricielle appliquée aux structures méthode des éléments finis
Analyse matricielle appliquée aux structures méthode des éléments finisAnalyse matricielle appliquée aux structures méthode des éléments finis
Analyse matricielle appliquée aux structures méthode des éléments finis
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexe
 
Merise+ +exercices+mcd+-+corrigés
Merise+ +exercices+mcd+-+corrigésMerise+ +exercices+mcd+-+corrigés
Merise+ +exercices+mcd+-+corrigés
 
Correction Examen 2016-2017 POO .pdf
Correction Examen 2016-2017 POO .pdfCorrection Examen 2016-2017 POO .pdf
Correction Examen 2016-2017 POO .pdf
 
Dynamique des structures cours
Dynamique des structures coursDynamique des structures cours
Dynamique des structures cours
 
Cour traitement du signal.pdf
Cour traitement du signal.pdfCour traitement du signal.pdf
Cour traitement du signal.pdf
 
Complexité_ENSI_2011.ppt
Complexité_ENSI_2011.pptComplexité_ENSI_2011.ppt
Complexité_ENSI_2011.ppt
 
Vdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdfVdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdf
 
récursivité algorithmique et complexité algorithmique et Les algorithmes de tri
récursivité algorithmique et complexité algorithmique et Les algorithmes de trirécursivité algorithmique et complexité algorithmique et Les algorithmes de tri
récursivité algorithmique et complexité algorithmique et Les algorithmes de tri
 
Correction de td poo n2
Correction de td poo n2Correction de td poo n2
Correction de td poo n2
 
Maths Annexes
Maths AnnexesMaths Annexes
Maths Annexes
 
Statistiques
StatistiquesStatistiques
Statistiques
 
5.Mini cas & Exercices _ Cours gestion de l'entreprise
5.Mini cas & Exercices  _ Cours gestion de l'entreprise5.Mini cas & Exercices  _ Cours gestion de l'entreprise
5.Mini cas & Exercices _ Cours gestion de l'entreprise
 
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafaAlgèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
 

Destaque

Exercices complexes corriges
Exercices complexes corrigesExercices complexes corriges
Exercices complexes corriges
Karim Amane
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
Yessin Abdelhedi
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_cours
ahmed jafour
 
Généralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et applicationGénéralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et application
Kamel Djeddi
 
Diaporama logique raisonnement
Diaporama logique raisonnementDiaporama logique raisonnement
Diaporama logique raisonnement
AHMED ENNAJI
 
كفايات التدريس بالبرمجيات التعليمية
كفايات التدريس بالبرمجيات التعليميةكفايات التدريس بالبرمجيات التعليمية
كفايات التدريس بالبرمجيات التعليمية
AHMED ENNAJI
 
Serie 6 2bac sm biof nombres complexes
Serie 6  2bac sm biof  nombres complexesSerie 6  2bac sm biof  nombres complexes
Serie 6 2bac sm biof nombres complexes
AHMED ENNAJI
 

Destaque (20)

Nombre complexe
Nombre complexeNombre complexe
Nombre complexe
 
Résolution de l'équations linéaires
Résolution de l'équations linéairesRésolution de l'équations linéaires
Résolution de l'équations linéaires
 
Exercices complexes corriges
Exercices complexes corrigesExercices complexes corriges
Exercices complexes corriges
 
Fiche complexes
Fiche complexesFiche complexes
Fiche complexes
 
Serie 3(derive)
Serie 3(derive)Serie 3(derive)
Serie 3(derive)
 
Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1
 
exercices d'analyse complexe
exercices d'analyse complexeexercices d'analyse complexe
exercices d'analyse complexe
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
 
Examen d'analyse complexe
Examen d'analyse complexeExamen d'analyse complexe
Examen d'analyse complexe
 
0 c2 2013
0 c2 20130 c2 2013
0 c2 2013
 
Série 7
Série 7Série 7
Série 7
 
Cahier exercises maths
Cahier exercises mathsCahier exercises maths
Cahier exercises maths
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_cours
 
Chapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocainChapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocain
 
Cours et exercices logique mr djeddi kamel
Cours et exercices  logique mr djeddi kamelCours et exercices  logique mr djeddi kamel
Cours et exercices logique mr djeddi kamel
 
Généralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et applicationGénéralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et application
 
Diaporama logique raisonnement
Diaporama logique raisonnementDiaporama logique raisonnement
Diaporama logique raisonnement
 
كفايات التدريس بالبرمجيات التعليمية
كفايات التدريس بالبرمجيات التعليميةكفايات التدريس بالبرمجيات التعليمية
كفايات التدريس بالبرمجيات التعليمية
 
Serie 6 2bac sm biof nombres complexes
Serie 6  2bac sm biof  nombres complexesSerie 6  2bac sm biof  nombres complexes
Serie 6 2bac sm biof nombres complexes
 
Serie 4 tc6
Serie 4 tc6Serie 4 tc6
Serie 4 tc6
 

Semelhante a Exercices corrigés applications linéaires-djeddi kamel

Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
Mehdi Maroun
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Yessin Abdelhedi
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
Yessin Abdelhedi
 
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
Samir Crypticus
 

Semelhante a Exercices corrigés applications linéaires-djeddi kamel (20)

Algebre 1 (annales)
Algebre 1 (annales)Algebre 1 (annales)
Algebre 1 (annales)
 
Exercice intégrales
Exercice intégralesExercice intégrales
Exercice intégrales
 
Exercice primitives
Exercice primitivesExercice primitives
Exercice primitives
 
Ensa t09 m
Ensa t09 mEnsa t09 m
Ensa t09 m
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Exercice dérivabilité
Exercice dérivabilitéExercice dérivabilité
Exercice dérivabilité
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
 
Corriges td algebre
Corriges td algebreCorriges td algebre
Corriges td algebre
 
Math Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principaleMath Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principale
 
05 exos fonction_exponentielle
05 exos fonction_exponentielle05 exos fonction_exponentielle
05 exos fonction_exponentielle
 
ALF 11 - WebAssembly
ALF 11 - WebAssemblyALF 11 - WebAssembly
ALF 11 - WebAssembly
 
Cnc mp-2017-maths-2-corrige
Cnc mp-2017-maths-2-corrigeCnc mp-2017-maths-2-corrige
Cnc mp-2017-maths-2-corrige
 
Cours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdfCours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdf
 
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
Un algorithme de chiffrement a flot base sur le probleme des 3 corps.
 
UML OCL : Cheat Sheet - 10
UML OCL : Cheat Sheet - 10UML OCL : Cheat Sheet - 10
UML OCL : Cheat Sheet - 10
 
SYStèmes d'équations linéaires
SYStèmes d'équations linéairesSYStèmes d'équations linéaires
SYStèmes d'équations linéaires
 
S2h 2019 janvier
S2h 2019 janvierS2h 2019 janvier
S2h 2019 janvier
 
formulario.pdf
formulario.pdfformulario.pdf
formulario.pdf
 
Formulario de integrales de calculo integral
Formulario de integrales de calculo integralFormulario de integrales de calculo integral
Formulario de integrales de calculo integral
 

Último

Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
AmgdoulHatim
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
ikospam0
 

Último (19)

Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
python-Cours Officiel POO Python-m103.pdf
python-Cours Officiel POO Python-m103.pdfpython-Cours Officiel POO Python-m103.pdf
python-Cours Officiel POO Python-m103.pdf
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLE
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
 
Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptx
 
Cours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiquesCours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiques
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 
Télécommunication et transport .pdfcours
Télécommunication et transport .pdfcoursTélécommunication et transport .pdfcours
Télécommunication et transport .pdfcours
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhk
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
 
Les roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxLes roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptx
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
 
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean EudesNeuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
 
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptx
 

Exercices corrigés applications linéaires-djeddi kamel

  • 1. On considère l’application f définie de 3 IR vers 3 IR par : ),,()),,(( zzxzyzyxf +−= 1) Montrer que l’application f est linéaire. 2) Calculer ff o et en déduire que f est un automorphisme. 3) Déterminer )( fKer et )Im( f . Exercice 2 1) On considère l’application linéaire f définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxxzzyyxzyxfIRzyx +++++=∈∀ a) Calculer l’image de la base canonique de 3 IR par f . b) En déduire une base de )Im( f et le rang de f ( ))( frg . c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg . 2) Mêmes questions pour l’application linéaire g définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀ 1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications linéaires. a) f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= b) f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= c) f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= d) f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= e) f définie de 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 2) Déterminer 1− f si elle existe. Dans 3 IR , on considère le sous espace vectoriel V défini par { }0/),,( 3 =−∈= zxIRzyxV . 1) Donner une base B du sous espace vectoriel V . 2) On considère l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+= a) Calculer l’image de la base B par f et en déduire une base de )Im(g . b) Montrer que g est un isomorphisme de V vers 2 IR et déterminer 1− g . Série 2: Applications linéaires Exercice 1 Exercice 3 Exercice 4 E-mail:djeddi.kamel@gmail.com 2015
  • 2. Correction de l’exercice 1 1) Montrons que l’application f est linéaire. ♦ Soit ( )23 ),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy = On vérifie que 2 ),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+ ♦ L’application f est alors linéaire. 2) ♦ Calcul de l’application ff o . ( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o ( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o ⇒ 3 IR Idff =o ♦ f est un automorphisme : L’application f est linéaire. L’application f est bijective et ff =−1 : 3 IR Idff =o 3) Déterminons )( fKer et )Im( f . ♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer )(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy ssi      = =+ =− 0 0 0 z zx zy ssi      = =−= == 0 0 0 z zx zy { })0,0,0()( =fKer ♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3 IR { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e      −== == == )1,1,1()( )0,0,1()( )0,1,0()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf Corrections E-mail:djeddi.kamel@gmail.com
  • 3. Correction de l’exercice 2 1) ),,,()),,(( zyxxzzyyxzyxf +++++= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par f .      = = = ⇒      = = = )1,1,1,0()( )1,0,1,1()( )1,1,0,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 ef ef ef e e e b) Déduisons en une base de )Im( f et ( ))( frg ♦ Déterminons une base de )Im( f >>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :      = = = )1,1,1,0( )1,0,1,1( )1,1,0,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? 0 00 0 0 0 )0,0,0,0(... 321 321 213 23 21 321 31 32 21 332211 ===⇒        =++ =−= −= −= ⇒        =++ =+ =+ =+ ⇒=++ ααα ααα ααα αα αα ααα αα αα αα ααα uuu Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg ♦ { }321 ,, uuu est alors une base de fIm : 3 Im IRf = ♦ ⇒== 3)dim(Im)( ffrg 3)( =frg c) Déterminons une base de )( fKer et ( ))( frg ♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? o )0,0,0(.. 332211 =++ uuu ααα o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα
  • 4. )(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =++ =+ =+ =+ 0 0 0 0 zyx zx zy yx ssi        −−= −= =−= −= zxy xz xyz yx ssi 0=== zyx ♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 fKerfrgIRfKerfrg 3)( =frg 2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par g .      −−= −−= −−= ⇒      = = = )1,1,1,1()( )1,1,1,1()( )1,1,1,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 eg eg eg e e e b) Déduisons en une base de )Im(g et ( ))(grg ♦ Déterminons une base de )Im(g >>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :      −−= −−= −−= )1,1,1,1( )1,1,1,1( )1,1,1,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg ♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug ♦ ⇒== 2)dim(Im)( ggrg 2)( =grg
  • 5. c) Déterminons une base de )(gKer et ( ))(grg ♦ Déterminons une base de )(gKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxgIRzyxgKer )(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =−+− =+−− =+− =−+ 0 0 0 0 )4( )3( )2( )1( zyx zyx zyx zyx ssi    +− =−+ zyx zyx 0 )2( )1( ssi    = = − + zy x 0 )2()1( )2()1( ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈ ♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 gKergrgIRgKergrg 2)( =grg Correction de l’exercice 3 1) Déterminons )( fKer et )Im( f . a. ),(),,( zyxzyxzyxf −−+−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx o ssi    =−− =+− 0 0 zyx zyx ssi    −= =− yxz yx 0 ssi    = = 0z yx o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −−== == )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf
  • 6. o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg o { }32,uu et { }31,uu sont deux base de fIm o >>=<=< 3132 ,,Im uuuuf , 2 Im IRf = b. ),(),,( xzyzyxzyxf −+−−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx o ssi    =++− =−− 0 0 zyx zyx ssi 0=−− zyx ssi zyx += , ( )IRzy ∈, o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈, o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== −== )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu est lié car 12 uu −= Le système { }31,uu est lié car 13 uu −= Le système { }32,uu est lié car 23 uu = • 2)( <⇒ Srg
  • 7. o Le système { }1u est libre 1)( =⇒ Srg o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf c. ),,(),( yxxyyxyxf −+−= Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2 =∈= yxfIRyxfKer o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx o ssi    =+ =− 0 0 yx yx ssi    −= = yx yx ssi 0== yx o Donc : { })0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(Im 21 efeff o { }21,ee la base canonique de 2 IR : )0,1(1 =e , )1,0(2 =e o On pose { }21,uuS = , avec    −−== == )1,1,1()( )1,1,1()( 22 11 efu efu : >=< 21,Im uuf o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg • Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul) o 2)( <⇒ Srg o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf d. ),22,2(),,( zyxzyxzyxzyxf −+−++++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx o ssi      =−+− =++ =++ 0 022 02 )3( )2( )1( zyx zyx zyx ssi      =+ −=+ =+ yzx yzx y )(2 0 )3( )2( )3()1( ssi      ∈ −= = IRx xz y 0 o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈ o Donc : >−=< )1,0,1()( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
  • 8. o On pose { }321 ,, uuuS = avec      −== == −== )1,2,1()( )1,1,2()( )1,2,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf e. ),,(),,( zyxzyxzyxzyxf −++−++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx o ssi      =−+ =+− =++ 0 0 0 )3( )2( )1( zyx zyx zyx ssi      = = = + − − 0 0 0 )3()2( )2()1( )3()1( x y z o Donc : { })0,0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== == )1,1,1()( )1,1,1()( )1,1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? On vérifie que { }321 ,, uuuS = est libre (calcul). • 3=⇒ S
  • 9. o { }321 ,, uuu est alors une base de fIm : 3 Im IRf = Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que : o f est injective car : { })0,0,0()( =fKer o f est alors un endomorphisme injectif de 3 IR , donc f est bijective. o Donc f est surjective et alors 3 Im IRf = 2) Déterminons 1− f , lorsqu’elle existe. a. f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 2 Im IRf = donc f est surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. b. f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 1)dim(Im =f , donc 2 Im IRf ≠ donc f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. c. f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= 23 dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être bijective : o 2)dim(Im =f , donc 3 Im IRf ≠ donc f n’est pas surjective. o { })0,0()( =fKer donc f est injective. o f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 2)dim(Im =f donc 3 Im IRf ≠ et f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. o f n’est alors pas un automorphisme de 3 IR .
  • 10. d. f définie de 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 3 Im IRf = donc f est surjective. o { })0,0,0()( =fKer donc f est injective. o f est alors un automorphisme de 3 IR . ♦ Déterminons alors 1− f . 1− f définie de 3 IR vers 3 IR par : ),,(),,(1 zyxZYXf =− ssi ),,(),,( ZYXzyxf = ),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++ ssi      =−+ =+− =++ Zzyx Yzyx Xzyx )3( )2( )1( ssi      += −= −= + − − ZYx YXy ZXz 2 2 2 )3()2( )2()1( )3()1( ssi         += −= −= ZYx YXy ZXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ La bijection réciproque 1− f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de 3 IR vers 3 IR par :       −−+=− ZXYXZYZYXf 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),,(1 Correction de l’exercice 2 1) Déterminons une base de { }0/),,( 3 =−∈= zxIRzyxV : ♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈, ♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V 2) l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+=
  • 11. a) Calculons l’image de la base B de V par g . { }    = −= ⇒    = = = )1,1()( )1,1()( )1,0,1( )0,1,0( :, 2 1 2 1 21 ug ug u u uuB b) Montrons que g est un isomorphisme de V vers 2 IR et déterminons 1− g . ♦ Montrons que g est un isomorphisme de V vers 2 IR : g est une application linéaire de V vers 2 IR et 2)dim(dim 2 == IRV Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective ou g est surjective. Montrons que g est injective : { })0,0,0()( ? =gKer o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer o )(),,( gKerzyx ∈ ssi      =− =+ =− 0 0 0 yx yx zx ssi 0=== zyx o Donc : { })0,0,0()( =gKer g est alors injective donc bijective. Ou bien : Montrons que g est surjective : 2 ? )Im( IRg = o >>=<=< 2121 ,))(),(Im vvugugg avec :    = −= )1,1( )1,1( 2 1 v v o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg o { }21,uu est alors une base de gIm : 2 )Im( IRg = g est alors surjective donc bijective. ♦ g est alors un isomorphisme de V vers 2 IR .
  • 12. ♦ Déterminons 1− g : ),,(),(1 zyxYXg =− ssi ),(),,( YXzyxg = , avec Vzyx ∈),,( ( )VzyxYXzyxg ∈= ),,(),,(),,( ssi      =− =+ =− Yyx Xyx zx 0 )3( )2( )1( ssi      −= += = − + YXy YXx xz 2 2 )3()2( )3()2( )1( ssi         −= += += YXy YXx YXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ L’isomorphisme réciproque 1− g de ),()),,(( yxyxzyxg −+= est alors définie de 2 IR vers par :       +−+=− YXYXYXYXg 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),(1