SlideShare uma empresa Scribd logo
1 de 36
A SEMINAR ON
      THE COMPARATIVE STUDY OF
             APRIORI AND
      FP-GROWTH ALGORITHM FOR
       ASSOCIATION RULE MINING



Under the Guidance of:        By:
Mrs. Sankirti Shiravale
                          Deepti Pawar
Contents
Introduction

Literature Survey

Apriori Algorithm

FP-Growth Algorithm

Comparative Result

Conclusion

Reference
Introduction

 Data Mining: It is the process of discovering interesting patterns (or
 knowledge) from large amount of data.

• Which items are frequently purchased with milk?

• Fraud detection: Which types of transactions are likely to be fraudulent,
  given the demographics and transactional history of a particular customer?

• Customer relationship management: Which of my customers are likely to
  be the most loyal, and which are most likely to leave for a competitor?


  Data Mining helps extract such information
Introduction (contd.)
Why Data Mining?
Broadly, the data mining could be useful to answer the queries on :

• Forecasting

• Classification

• Association

• Clustering

• Making the sequence
Introduction (contd.)
Data Mining Applications
• Aid to marketing or retailing

• Market basket analysis (MBA)

• Medicare and health care

• Criminal investigation and homeland security

• Intrusion detection

• Phenomena of “beer and baby diapers”
  And many more…
Literature Survey
Association Rule Mining
• Proposed by R. Agrawal in 1993.

• It is an important data mining model studied extensively by the database and
  data mining community.

• Initially used for Market Basket Analysis to find how items purchased by
  customers are related.

• Given a set of transactions, find rules that will predict the occurrence of an
  item based on the occurrences of other items in the transaction
Literature Survey (contd.)
 Frequent Itemset
• Itemset                                       TID  Items
  ▫ A collection of one or more items
                                                1    Bread, Milk
       Example: {Milk, Bread, Diaper}
                                                2    Bread, Diaper, Beer, Eggs
  ▫ k-itemset
                                                3    Milk, Diaper, Beer, Coke
       An itemset that contains k items
                                                4    Bread, Milk, Diaper, Beer
• Support count (σ)
                                                5    Bread, Milk, Diaper, Coke
  ▫ Frequency of occurrence of an itemset
  ▫ E.g. σ({Milk, Bread, Diaper}) = 2
• Support
  ▫ Fraction of transactions that contain an itemset
  ▫ E.g. s( {Milk, Bread, Diaper} ) = 2/5
• Frequent Itemset
  ▫ An itemset whose support is greater than or equal
     to a minsup threshold
Literature Survey (contd.)
Association Rule
• Association Rule
  ▫ An implication expression of              TID    Items
    the form X → Y, where X and               1      Bread, Milk
    Y are itemsets.                           2      Bread, Diaper, Beer, Eggs
  ▫ Example:
                                              3      Milk, Diaper, Beer, Coke
      {Milk, Diaper} → {Beer}
                                              4      Bread, Milk, Diaper, Beer
• Rule Evaluation Metrics                     5      Bread, Milk, Diaper, Coke
  ▫ Support (s)
     Fraction of transactions that         Example:
       contain both X and Y                         {Milk, Diaper} ⇒ Beer
  ▫ Confidence (c)
     Measures how often items in           σ (Milk , Diaper, Beer) 2
       Y appear in transactions that   s=                          = = 0.4
       contain X.                                     |T|           5
                                            σ (Milk, Diaper, Beer) 2
                                       c=                         = = 0.67
                                               σ (Milk, Diaper )   3
Apriori Algorithm
• Apriori principle:
  ▫ If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support
  measure:
  ▫ Support of an itemset never exceeds the support of its subsets
  ▫ This is known as the anti-monotone property of support
Apriori Algorithm (contd.)
The basic steps to mine the frequent elements are as follows:

• Generate and test: In this first find the 1-itemset frequent elements L1 by
  scanning the database and removing all those elements from C which
  cannot satisfy the minimum support criteria.

• Join step: To attain the next level elements Ck join the previous frequent
  elements by self join i.e. Lk-1*Lk-1 known as Cartesian product of Lk-1 .
  i.e. This step generates new candidate k-itemsets based on joining Lk-1
  with itself which is found in the previous iteration. Let Ck denote
  candidate k-itemset and Lk be the frequent k-itemset.

• Prune step: This step eliminates some of the candidate k-itemsets using the
  Apriori property. A scan of the database to determine the count of each
  candidate in Ck would result in the determination of Lk (i.e., all candidates
  having a count no less than the minimum support count are frequent by
  definition, and therefore belong to Lk). Step 2 and 3 is repeated until no
  new candidate set is generated.
Database           C^1                               L1
                   TID    Set-of- itemsets
TID        Items                                   Itemset           Support
                   100    { {1},{3},{4} }
100        134                                       {1}               2
                   200    { {2},{3},{5} }
200        235                                       {2}               3
                   300    { {1},{2},{3},{5} }
300        1235                                      {3}               3
                   400    { {2},{5} }
400        25                                        {5}               3
      C2
                         C^2                                    L2
itemset            TID     Set-of- itemsets        Itemset           Support
{1 2}              100     { {1 3} }                 {1 3}              2
{1 3}              200     { {2 3},{2 5} {3 5} }     {2 3}              3
{1 5}              300     { {1 2},{1 3},{1 5},      {2 5}              3
{2 3}                      {2 3}, {2 5}, {3 5} }     {3 5}              2
{2 5}              400     { {2 5} }
{3 5}
                         C^3                               L3
      C3
                   TID    Set-of- itemsets
                                                   Itemset           Support
itemset            200    { {2 3 5} }
                                                    {2 3 5}             2
{2 3 5}            300    { {2 3 5} }
Apriori Algorithm (contd.)
Bottlenecks of Apriori
• It is no doubt that Apriori algorithm successfully finds the frequent
  elements from the database. But as the dimensionality of the database
  increase with the number of items then:

• More search space is needed and I/O cost will increase.

• Number of database scan is increased thus candidate generation will
  increase results in increase in computational cost.
FP-Growth Algorithm
 FP-Growth: allows frequent itemset discovery without candidate itemset
  generation. Two step approach:

  ▫ Step 1: Build a compact data structure called the FP-tree
     Built using 2 passes over the data-set.

  ▫ Step 2: Extracts frequent itemsets directly from the FP-tree
FP-Growth Algorithm (contd.)
Step 1: FP-Tree Construction
 FP-Tree is constructed using 2 passes
  over the data-set:
Pass 1:
  ▫ Scan data and find support for each
     item.
  ▫ Discard infrequent items.
  ▫ Sort frequent items in decreasing
     order based on their support.
•   Minimum support count = 2
•   Scan database to find frequent 1-itemsets
•   s(A) = 8, s(B) = 7, s(C) = 5, s(D) = 5, s(E) = 3
•    􀁺 Item order (decreasing support): A, B, C, D, E


    Use this order when building the FP-
    Tree, so common prefixes can be shared.
FP-Growth Algorithm (contd.)
Step 1: FP-Tree Construction
Pass 2:
Nodes correspond to items and have a counter
1.    FP-Growth reads 1 transaction at a time and maps it to a path

2.     Fixed order is used, so paths can overlap when transactions share items
       (when they have the same prefix ).
     ▫     In this case, counters are incremented

3.      Pointers are maintained between nodes containing the same item,
       creating singly linked lists (dotted lines)
     ▫     The more paths that overlap, the higher the compression. FP-tree
           may fit in memory.

4.    Frequent itemsets extracted from the FP-Tree.
FP-Growth Algorithm (contd.)
Step 1: FP-Tree Construction (contd.)
FP-Growth Algorithm (contd.)
Complete FP-Tree for Sample Transactions
FP-Growth Algorithm (contd.)
Step 2: Frequent Itemset Generation
 FP-Growth extracts frequent itemsets from the FP-tree.

 Bottom-up algorithm - from the leaves towards the root

 Divide and conquer: first look for frequent itemsets ending in e, then de,
  etc. . . then d, then cd, etc. . .

 First, extract prefix path sub-trees ending in an item(set). (using the linked
  lists)
FP-Growth Algorithm (contd.)
Prefix path sub-trees (Example)
FP-Growth Algorithm (contd.)
Example
 Let minSup = 2 and extract all frequent itemsets containing E.
  Obtain the prefix path sub-tree for E:

  Check if E is a frequent item by adding the counts along the linked list
   (dotted line). If so, extract it.
   ▫ Yes, count =3 so {E} is extracted as a frequent itemset.

  As E is frequent, find frequent itemsets ending in e. i.e. DE, CE, BE and
   AE.
  E nodes can now be removed
FP-Growth Algorithm (contd.)
Conditional FP-Tree
 The FP-Tree that would be built if we only consider transactions containing
  a particular itemset (and then removing that itemset from all transactions).

 I Example: FP-Tree conditional on e.
FP-Growth Algorithm (contd.)
Current Position in Processing
FP-Growth Algorithm (contd.)
Obtain T(DE) from T(E)
 4. Use the conditional FP-tree for e to find frequent itemsets ending in DE, CE
  and AE
  ▫ Note that BE is not considered as B is not in the conditional FP-tree for E.
• Support count of DE = 2 (sum of counts of all D’s)
• DE is frequent, need to solve: CDE, BDE, ADE if they exist
FP-Growth Algorithm (contd.)
Current Position of Processing
FP-Growth Algorithm (contd.)
Solving CDE, BDE, ADE
 • Sub-trees for both CDE and BDE are empty
 • no prefix paths ending with C or B
 • Working on ADE




ADE (support count = 2) is frequent
solving next sub problem CE
FP-Growth Algorithm (contd.)
Current Position in Processing
FP-Growth Algorithm (contd.)
Solving for Suffix CE




  CE is frequent (support count = 2)
• Work on next sub problems: BE (no support), AE
FP-Growth Algorithm (contd.)
Current Position in Processing
FP-Growth Algorithm (contd.)
Solving for Suffix AE




  AE is frequent (support count = 2)
  Done with AE
  Work on next sub problem: suffix D
FP-Growth Algorithm (contd.)
Found Frequent Itemsets with Suffix E
 • E, DE, ADE, CE, AE discovered in this order
FP-Growth Algorithm (contd.)
Example (contd.)
Frequent itemsets found (ordered by suffix and order in which the are
  found):
Comparative Result
Conclusion

  It is found that:

• FP-tree: a novel data structure storing compressed, crucial information
  about frequent patterns, compact yet complete for frequent pattern mining.

• FP-growth: an efficient mining method of frequent patterns in large
  Database: using a highly compact FP-tree, divide-and-conquer method in
  nature.

• Both Apriori and FP-Growth are aiming to find out complete set of patterns
  but, FP-Growth is more efficient than Apriori in respect to long patterns.
References
1.   Liwu, ZOU, Guangwei, REN, “The data mining algorithm analysis for
     personalized service,” Fourth International Conference on Multimedia
     Information Networking and Security, 2012.

2.   Jun TAN, Yingyong BU and Bo YANG, “An Efficient Frequent Pattern
     Mining Algorithm”, Sixth International Conference on Fuzzy Systems and
     Knowledge Discovery, 2009.

3.   Wei Zhang, Hongzhi Liao, Na Zhao, “Research on the FP Growth Algorithm
     about Association Rule Mining”, International Seminar on Business and
     Information Management, 2008.

4.   S.P Latha, DR. N.Ramaraj. “Algorithm for Efficient Data Mining”. In Proc.
     Int’ Conf. on IEEE International Computational Intelligence and Multimedia
     Applications, 2007.
References (contd.)
5.   Dongme Sun, Shaohua Teng, Wei Zhang, Haibin Zhu. “An Algorithm to
     Improve the Effectiveness of Apriori”. In Proc. Int’l Conf. on 6th IEEE
     International Conf. on Cognitive Informatics (ICCI'07), 2007.

6.   Daniel Hunyadi, “Performance comparison of Apriori and FP-Growth
     algorithms in generating association rules”, Proceedings of the European
     Computing Conference, 2006.

7.   By Jiawei Han, Micheline Kamber, “Data mining Concepts and
     Techniques” Morgan Kaufmann Publishers, 2006.

8.   Tan P.-N., Steinbach M., and Kumar V. “Introduction to data mining”
     Addison Wesley Publishers, 2006.
References (contd.)


9.    Han.J, Pei.J, and Yin. Y. “Mining frequent patterns without candidate
     generation”. In Proc. ACM-SIGMOD International Conf. Management
     of Data (SIGMOD), 2000.

10. R. Agrawal, Imielinski.t, Swami.A. “Mining Association Rules between
    Sets of Items in Large Databases”. In Proc. International Conf. of the
    ACM SIGMOD Conference Washington DC, USA, 1993.

Mais conteúdo relacionado

Mais procurados

Apriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule MiningApriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule Mining
Wan Aezwani Wab
 

Mais procurados (20)

Textmining Introduction
Textmining IntroductionTextmining Introduction
Textmining Introduction
 
Apriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule MiningApriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule Mining
 
APRIORI ALGORITHM -PPT.pptx
APRIORI ALGORITHM -PPT.pptxAPRIORI ALGORITHM -PPT.pptx
APRIORI ALGORITHM -PPT.pptx
 
Assosiate rule mining
Assosiate rule miningAssosiate rule mining
Assosiate rule mining
 
Introduction to Information Retrieval
Introduction to Information RetrievalIntroduction to Information Retrieval
Introduction to Information Retrieval
 
Tree pruning
 Tree pruning Tree pruning
Tree pruning
 
Decision trees in Machine Learning
Decision trees in Machine Learning Decision trees in Machine Learning
Decision trees in Machine Learning
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
 
Data mining fp growth
Data mining fp growthData mining fp growth
Data mining fp growth
 
Introduction To Multilevel Association Rule And Its Methods
Introduction To Multilevel Association Rule And Its MethodsIntroduction To Multilevel Association Rule And Its Methods
Introduction To Multilevel Association Rule And Its Methods
 
Data mining techniques unit III
Data mining techniques unit IIIData mining techniques unit III
Data mining techniques unit III
 
Association Rule Learning Part 1: Frequent Itemset Generation
Association Rule Learning Part 1: Frequent Itemset GenerationAssociation Rule Learning Part 1: Frequent Itemset Generation
Association Rule Learning Part 1: Frequent Itemset Generation
 
Decision tree
Decision treeDecision tree
Decision tree
 
Introduction to data mining technique
Introduction to data mining techniqueIntroduction to data mining technique
Introduction to data mining technique
 
Text MIning
Text MIningText MIning
Text MIning
 
Introduction to Data Mining
Introduction to Data MiningIntroduction to Data Mining
Introduction to Data Mining
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
 
What is Apriori Algorithm | Edureka
What is Apriori Algorithm | EdurekaWhat is Apriori Algorithm | Edureka
What is Apriori Algorithm | Edureka
 
Fp growth algorithm
Fp growth algorithmFp growth algorithm
Fp growth algorithm
 
Chapter 12 outlier
Chapter 12 outlierChapter 12 outlier
Chapter 12 outlier
 

Semelhante a The comparative study of apriori and FP-growth algorithm

Data Mining Concepts 15061
Data Mining Concepts 15061Data Mining Concepts 15061
Data Mining Concepts 15061
badirh
 
Data Mining Association Analysis Basic Concepts a
Data Mining Association Analysis Basic Concepts aData Mining Association Analysis Basic Concepts a
Data Mining Association Analysis Basic Concepts a
OllieShoresna
 

Semelhante a The comparative study of apriori and FP-growth algorithm (20)

Rules of data mining
Rules of data miningRules of data mining
Rules of data mining
 
Association Analysis in Data Mining
Association Analysis in Data MiningAssociation Analysis in Data Mining
Association Analysis in Data Mining
 
Rules of data mining
Rules of data miningRules of data mining
Rules of data mining
 
Data Mining Lecture_3.pptx
Data Mining Lecture_3.pptxData Mining Lecture_3.pptx
Data Mining Lecture_3.pptx
 
AssociationRule.pdf
AssociationRule.pdfAssociationRule.pdf
AssociationRule.pdf
 
Data Mining Lecture_4.pptx
Data Mining Lecture_4.pptxData Mining Lecture_4.pptx
Data Mining Lecture_4.pptx
 
Apriori algorithm
Apriori algorithm Apriori algorithm
Apriori algorithm
 
DM -Unit 2-PPT.ppt
DM -Unit 2-PPT.pptDM -Unit 2-PPT.ppt
DM -Unit 2-PPT.ppt
 
apriori.pptx
apriori.pptxapriori.pptx
apriori.pptx
 
Data Mining Concepts 15061
Data Mining Concepts 15061Data Mining Concepts 15061
Data Mining Concepts 15061
 
Data Mining Concepts
Data Mining ConceptsData Mining Concepts
Data Mining Concepts
 
Data Mining Concepts
Data Mining ConceptsData Mining Concepts
Data Mining Concepts
 
Data Mining Association Analysis Basic Concepts a
Data Mining Association Analysis Basic Concepts aData Mining Association Analysis Basic Concepts a
Data Mining Association Analysis Basic Concepts a
 
Associative Learning
Associative LearningAssociative Learning
Associative Learning
 
Association Rule Mining
Association Rule MiningAssociation Rule Mining
Association Rule Mining
 
Apriori algorithm
Apriori algorithmApriori algorithm
Apriori algorithm
 
MODULE 5 _ Mining frequent patterns and associations.pptx
MODULE 5 _ Mining frequent patterns and associations.pptxMODULE 5 _ Mining frequent patterns and associations.pptx
MODULE 5 _ Mining frequent patterns and associations.pptx
 
Rmining
RminingRmining
Rmining
 
My6asso
My6assoMy6asso
My6asso
 
Association Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptxAssociation Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptx
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Último (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 

The comparative study of apriori and FP-growth algorithm

  • 1. A SEMINAR ON THE COMPARATIVE STUDY OF APRIORI AND FP-GROWTH ALGORITHM FOR ASSOCIATION RULE MINING Under the Guidance of: By: Mrs. Sankirti Shiravale Deepti Pawar
  • 2. Contents Introduction Literature Survey Apriori Algorithm FP-Growth Algorithm Comparative Result Conclusion Reference
  • 3. Introduction Data Mining: It is the process of discovering interesting patterns (or knowledge) from large amount of data. • Which items are frequently purchased with milk? • Fraud detection: Which types of transactions are likely to be fraudulent, given the demographics and transactional history of a particular customer? • Customer relationship management: Which of my customers are likely to be the most loyal, and which are most likely to leave for a competitor? Data Mining helps extract such information
  • 4. Introduction (contd.) Why Data Mining? Broadly, the data mining could be useful to answer the queries on : • Forecasting • Classification • Association • Clustering • Making the sequence
  • 5. Introduction (contd.) Data Mining Applications • Aid to marketing or retailing • Market basket analysis (MBA) • Medicare and health care • Criminal investigation and homeland security • Intrusion detection • Phenomena of “beer and baby diapers” And many more…
  • 6. Literature Survey Association Rule Mining • Proposed by R. Agrawal in 1993. • It is an important data mining model studied extensively by the database and data mining community. • Initially used for Market Basket Analysis to find how items purchased by customers are related. • Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction
  • 7. Literature Survey (contd.) Frequent Itemset • Itemset TID Items ▫ A collection of one or more items 1 Bread, Milk  Example: {Milk, Bread, Diaper} 2 Bread, Diaper, Beer, Eggs ▫ k-itemset 3 Milk, Diaper, Beer, Coke  An itemset that contains k items 4 Bread, Milk, Diaper, Beer • Support count (σ) 5 Bread, Milk, Diaper, Coke ▫ Frequency of occurrence of an itemset ▫ E.g. σ({Milk, Bread, Diaper}) = 2 • Support ▫ Fraction of transactions that contain an itemset ▫ E.g. s( {Milk, Bread, Diaper} ) = 2/5 • Frequent Itemset ▫ An itemset whose support is greater than or equal to a minsup threshold
  • 8. Literature Survey (contd.) Association Rule • Association Rule ▫ An implication expression of TID Items the form X → Y, where X and 1 Bread, Milk Y are itemsets. 2 Bread, Diaper, Beer, Eggs ▫ Example: 3 Milk, Diaper, Beer, Coke {Milk, Diaper} → {Beer} 4 Bread, Milk, Diaper, Beer • Rule Evaluation Metrics 5 Bread, Milk, Diaper, Coke ▫ Support (s)  Fraction of transactions that Example: contain both X and Y {Milk, Diaper} ⇒ Beer ▫ Confidence (c)  Measures how often items in σ (Milk , Diaper, Beer) 2 Y appear in transactions that s= = = 0.4 contain X. |T| 5 σ (Milk, Diaper, Beer) 2 c= = = 0.67 σ (Milk, Diaper ) 3
  • 9. Apriori Algorithm • Apriori principle: ▫ If an itemset is frequent, then all of its subsets must also be frequent • Apriori principle holds due to the following property of the support measure: ▫ Support of an itemset never exceeds the support of its subsets ▫ This is known as the anti-monotone property of support
  • 10. Apriori Algorithm (contd.) The basic steps to mine the frequent elements are as follows: • Generate and test: In this first find the 1-itemset frequent elements L1 by scanning the database and removing all those elements from C which cannot satisfy the minimum support criteria. • Join step: To attain the next level elements Ck join the previous frequent elements by self join i.e. Lk-1*Lk-1 known as Cartesian product of Lk-1 . i.e. This step generates new candidate k-itemsets based on joining Lk-1 with itself which is found in the previous iteration. Let Ck denote candidate k-itemset and Lk be the frequent k-itemset. • Prune step: This step eliminates some of the candidate k-itemsets using the Apriori property. A scan of the database to determine the count of each candidate in Ck would result in the determination of Lk (i.e., all candidates having a count no less than the minimum support count are frequent by definition, and therefore belong to Lk). Step 2 and 3 is repeated until no new candidate set is generated.
  • 11. Database C^1 L1 TID Set-of- itemsets TID Items Itemset Support 100 { {1},{3},{4} } 100 134 {1} 2 200 { {2},{3},{5} } 200 235 {2} 3 300 { {1},{2},{3},{5} } 300 1235 {3} 3 400 { {2},{5} } 400 25 {5} 3 C2 C^2 L2 itemset TID Set-of- itemsets Itemset Support {1 2} 100 { {1 3} } {1 3} 2 {1 3} 200 { {2 3},{2 5} {3 5} } {2 3} 3 {1 5} 300 { {1 2},{1 3},{1 5}, {2 5} 3 {2 3} {2 3}, {2 5}, {3 5} } {3 5} 2 {2 5} 400 { {2 5} } {3 5} C^3 L3 C3 TID Set-of- itemsets Itemset Support itemset 200 { {2 3 5} } {2 3 5} 2 {2 3 5} 300 { {2 3 5} }
  • 12. Apriori Algorithm (contd.) Bottlenecks of Apriori • It is no doubt that Apriori algorithm successfully finds the frequent elements from the database. But as the dimensionality of the database increase with the number of items then: • More search space is needed and I/O cost will increase. • Number of database scan is increased thus candidate generation will increase results in increase in computational cost.
  • 13. FP-Growth Algorithm  FP-Growth: allows frequent itemset discovery without candidate itemset generation. Two step approach: ▫ Step 1: Build a compact data structure called the FP-tree  Built using 2 passes over the data-set. ▫ Step 2: Extracts frequent itemsets directly from the FP-tree
  • 14. FP-Growth Algorithm (contd.) Step 1: FP-Tree Construction  FP-Tree is constructed using 2 passes over the data-set: Pass 1: ▫ Scan data and find support for each item. ▫ Discard infrequent items. ▫ Sort frequent items in decreasing order based on their support. • Minimum support count = 2 • Scan database to find frequent 1-itemsets • s(A) = 8, s(B) = 7, s(C) = 5, s(D) = 5, s(E) = 3 • 􀁺 Item order (decreasing support): A, B, C, D, E Use this order when building the FP- Tree, so common prefixes can be shared.
  • 15. FP-Growth Algorithm (contd.) Step 1: FP-Tree Construction Pass 2: Nodes correspond to items and have a counter 1. FP-Growth reads 1 transaction at a time and maps it to a path 2. Fixed order is used, so paths can overlap when transactions share items (when they have the same prefix ). ▫ In this case, counters are incremented 3. Pointers are maintained between nodes containing the same item, creating singly linked lists (dotted lines) ▫ The more paths that overlap, the higher the compression. FP-tree may fit in memory. 4. Frequent itemsets extracted from the FP-Tree.
  • 16. FP-Growth Algorithm (contd.) Step 1: FP-Tree Construction (contd.)
  • 17. FP-Growth Algorithm (contd.) Complete FP-Tree for Sample Transactions
  • 18. FP-Growth Algorithm (contd.) Step 2: Frequent Itemset Generation  FP-Growth extracts frequent itemsets from the FP-tree.  Bottom-up algorithm - from the leaves towards the root  Divide and conquer: first look for frequent itemsets ending in e, then de, etc. . . then d, then cd, etc. . .  First, extract prefix path sub-trees ending in an item(set). (using the linked lists)
  • 19. FP-Growth Algorithm (contd.) Prefix path sub-trees (Example)
  • 20. FP-Growth Algorithm (contd.) Example Let minSup = 2 and extract all frequent itemsets containing E.  Obtain the prefix path sub-tree for E:  Check if E is a frequent item by adding the counts along the linked list (dotted line). If so, extract it. ▫ Yes, count =3 so {E} is extracted as a frequent itemset.  As E is frequent, find frequent itemsets ending in e. i.e. DE, CE, BE and AE.  E nodes can now be removed
  • 21. FP-Growth Algorithm (contd.) Conditional FP-Tree  The FP-Tree that would be built if we only consider transactions containing a particular itemset (and then removing that itemset from all transactions).  I Example: FP-Tree conditional on e.
  • 22. FP-Growth Algorithm (contd.) Current Position in Processing
  • 23. FP-Growth Algorithm (contd.) Obtain T(DE) from T(E)  4. Use the conditional FP-tree for e to find frequent itemsets ending in DE, CE and AE ▫ Note that BE is not considered as B is not in the conditional FP-tree for E. • Support count of DE = 2 (sum of counts of all D’s) • DE is frequent, need to solve: CDE, BDE, ADE if they exist
  • 24. FP-Growth Algorithm (contd.) Current Position of Processing
  • 25. FP-Growth Algorithm (contd.) Solving CDE, BDE, ADE • Sub-trees for both CDE and BDE are empty • no prefix paths ending with C or B • Working on ADE ADE (support count = 2) is frequent solving next sub problem CE
  • 26. FP-Growth Algorithm (contd.) Current Position in Processing
  • 27. FP-Growth Algorithm (contd.) Solving for Suffix CE CE is frequent (support count = 2) • Work on next sub problems: BE (no support), AE
  • 28. FP-Growth Algorithm (contd.) Current Position in Processing
  • 29. FP-Growth Algorithm (contd.) Solving for Suffix AE AE is frequent (support count = 2) Done with AE Work on next sub problem: suffix D
  • 30. FP-Growth Algorithm (contd.) Found Frequent Itemsets with Suffix E • E, DE, ADE, CE, AE discovered in this order
  • 31. FP-Growth Algorithm (contd.) Example (contd.) Frequent itemsets found (ordered by suffix and order in which the are found):
  • 33. Conclusion It is found that: • FP-tree: a novel data structure storing compressed, crucial information about frequent patterns, compact yet complete for frequent pattern mining. • FP-growth: an efficient mining method of frequent patterns in large Database: using a highly compact FP-tree, divide-and-conquer method in nature. • Both Apriori and FP-Growth are aiming to find out complete set of patterns but, FP-Growth is more efficient than Apriori in respect to long patterns.
  • 34. References 1. Liwu, ZOU, Guangwei, REN, “The data mining algorithm analysis for personalized service,” Fourth International Conference on Multimedia Information Networking and Security, 2012. 2. Jun TAN, Yingyong BU and Bo YANG, “An Efficient Frequent Pattern Mining Algorithm”, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009. 3. Wei Zhang, Hongzhi Liao, Na Zhao, “Research on the FP Growth Algorithm about Association Rule Mining”, International Seminar on Business and Information Management, 2008. 4. S.P Latha, DR. N.Ramaraj. “Algorithm for Efficient Data Mining”. In Proc. Int’ Conf. on IEEE International Computational Intelligence and Multimedia Applications, 2007.
  • 35. References (contd.) 5. Dongme Sun, Shaohua Teng, Wei Zhang, Haibin Zhu. “An Algorithm to Improve the Effectiveness of Apriori”. In Proc. Int’l Conf. on 6th IEEE International Conf. on Cognitive Informatics (ICCI'07), 2007. 6. Daniel Hunyadi, “Performance comparison of Apriori and FP-Growth algorithms in generating association rules”, Proceedings of the European Computing Conference, 2006. 7. By Jiawei Han, Micheline Kamber, “Data mining Concepts and Techniques” Morgan Kaufmann Publishers, 2006. 8. Tan P.-N., Steinbach M., and Kumar V. “Introduction to data mining” Addison Wesley Publishers, 2006.
  • 36. References (contd.) 9. Han.J, Pei.J, and Yin. Y. “Mining frequent patterns without candidate generation”. In Proc. ACM-SIGMOD International Conf. Management of Data (SIGMOD), 2000. 10. R. Agrawal, Imielinski.t, Swami.A. “Mining Association Rules between Sets of Items in Large Databases”. In Proc. International Conf. of the ACM SIGMOD Conference Washington DC, USA, 1993.

Notas do Editor

  1. Minimum support = 2 C^2 גדול יותר אבל בשלב הבא נהיה קטן .