SlideShare uma empresa Scribd logo
1 de 22
Magnitudes Vectoriales
Marlis Torres Morales.
Bill Karl Ebrath Osorio.
Jessica Gutiérrez Cantillo.
Dayana Tafur García.
Oriana Torres Sierra.
Diego Flórez Hernández.
MAGNITUDES
 La magnitud es una medida asignada a cada uno de los objetos de un conjunto
medible, formados por objetos matemáticos. La noción de magnitud concebida
así puede abstraerse a objetos del mundo físico o propiedades físicas que son
susceptibles de ser medidos.
 Las medidas de propiedades físicas usualmente son representables mediante
números reales o n-tuplas de números reales, y usualmente para ser
interpretables requieren del uso de una unidad de medida pertinente. Una
propiedad importante de muchas magnitudes es admitan grados de comparación
"más que", "igual que" o "menos que".
 Una magnitud matemática usada para representar un proceso físico es el
resultado de una medición; en cambio las magnitudes matemáticas admiten
definiciones abstractas, mientras que las magnitudes físicas se miden con
instrumentos apropiados.
 Los griegos distinguían entre varios tipos de magnitudes, incluyendo:
• Fracciones positivas.
• Segmentos según su longitud.
• Polígonos según su superficie.
• Sólidos según su volumen.
• Ángulos según su magnitud angular.
 Probaron que los dos primeros tipos no podían ser iguales, o siquiera
sistemas isomorfos de magnitud. No consideraron que las magnitudes
negativas fueran significativas, y el concepto se utilizó principalmente en
contextos en los que cero era el valor más bajo.
MAGNITUDES ESCALARES
 Las magnitudes escalares son aquellas que quedan totalmente
determinadas dando un solo número real y una unidad de medida.
Ejemplos de este tipo de magnitud son la longitud de un hilo, la masa
de un cuerpo o el tiempo transcurrido entre dos sucesos. Se las
puede representar mediante segmentos tomados sobre una recta a
partir de un origen y de longitud igual al número real que indica su
medida. Otros ejemplos de magnitudes escalares son la densidad; el
volumen; el trabajo mecánico; la potencia; la temperatura.
Ejemplo:
MAGNITUDES VECTORIALES
 Magnitudes vectoriales no se las puede determinar completamente mediante
un número real y una unidad de medida. Por ejemplo, para dar la velocidad de un
móvil en un punto del espacio, además de su intensidad se debe indicar la
dirección del movimiento (dada por la recta tangente a la trayectoria en cada
punto) y el sentido de movimiento en esa dirección (dado por las dos posibles
orientaciones de la recta). Al igual que con la velocidad ocurre con las fuerzas: sus
efectos dependen no sólo de la intensidad sino también de las direcciones y
sentidos en que actúan. Otros ejemplos de magnitudes vectoriales son la
aceleración; el momentum o cantidad de movimiento; el momentum angular. Para
representarlas hay que tomar segmentos orientados, o sea, segmentos de recta
cada uno de ellos determinado entre dos puntos extremos dados en un cierto
orden.
 Definición 1: Se llama vector a todo segmento orientado. El
primero de los puntos que lo determinan se llama origen y el
segundo extremo del vector. La recta que contiene al vector
determina la dirección del mismo y la orientación sobre la recta,
definida por el origen y el extremo del vector, determina su sentido.
En la figura 1 se representa el vector a sobre la recta r, de origen O
y extremo P. En adelante los vectores serán designados con letras
mayúsculas o minúsculas en negrita.
CLASES DE VECTORES
 1)Fijos o ligados : Llamados también vectores de posición. Son aquellos que
tienen un origen fijo .Fijan la posición de un cuerpo o representan una fuerza en el
espacio.
 2)Vectores deslizantes : Son aquellos que pueden cambiar de posición a
lo largo de su directriz.
 3)Vectores libres: Son aquellos vectores que se pueden desplazar
libremente a lo largo de sus direcciones o hacia rectas paralelas sin sufrir
modificaciones.
 4)Vectores paralelos: Dos vectores son paralelos si las rectas que las
contienen son paralelas.
 5)Vectores coplanares: Cuando las rectas que lo contienen están en un
mismo plano.
 6)Vectores concurrentes: Cuando sus líneas de acción o directrices se
cortan en un punto.
 7)Vectores colineales: Cuando sus líneas de acción se encuentran sobre
una misma recta.
SUMA DE VECTORES
 Para sumar dos vectores de forma gráfica solo hay que poner uno detrás de
otro y unir el principio del primero con el final del segundo. Ejemplo:
 Vamos a sumar dos vectores, el a y el b. Fíjate que desde el final
del vector a trazamos una paralela de igual tamaño que el vector b. El
inicio de a y el final de la paralela trazada será el vector suma de los
dos iniciales. También podemos hacerlo desde el final de b trazando
una paralela del vector a. El resultado será el mismo de una u otra
forma. El vector rojo es la suma.

 Para sumar 3 vectores (o la cantidad que sea) solo hay que poner uno
detrás del otro y unir el principio del primero con el final del último. Veamos
un ejemplo:
SUMA DE VECTORES DE
FORMA ANALÍTICA
 El primer caso es que nos den los puntos de las coordenadas de los dos
vectores. En este caso es muy fácil, solo hay que sumar las coordenadas en X de
los dos vectores y las coordenadas en Y. El resultado es el vector suma. Veamos
un ejercicio:
 Tenemos las coordenadas del vector A que son ( – 3, 4) y la del vector B que
son (4,2). ¿Cual será el vector suma de los dos?
 El vector AB = (-3 + 2) (4 + 2) = (1, 6) Hemos obtenido las coordenadas del
vector suma de los dos anteriores el A y el B. AB = (1, 6)
SUMA DE VECTORES POR
DESCOMPOSICIÓN
 El segundo caso, es que nos den el valor del módulo del vector y un ángulo.
Para sumar dos vectores hay que sumar los componentes X de cada vector y los
Y, pero no las conocemos directamente. Lo primero que tenemos que saber es el
teorema de Pitágoras para descomponer el vector. El teorema de Pitágoras es
para resolver triángulos, date cuenta que si descomponemos un vector es sus dos
componentes X e Y lo que tenemos es un triángulo, por eso aplicamos el teorema
de Pitágoras.
 El vector A se descompone de la siguiente forma A = Ax + Ay; a veces lo verás
expresado de esta otra forma A = Axi + Ayj , pero es lo mismo, la componente i
es la X y la j la Y. la i y la j son vectores que se llaman vectores unitarios, son
vectores que valen 1, en la dirección X (el i) y en la dirección Y (el j) No te líes
que es muy fácil.
M I R A E L T E O R E M A D E P I T Á G O R A S Y F Í JA T E
P O R Q U É A X = A P O R E L C O S E N O Θ Y A Y =
A P O R E L S E N O Θ .
 Según el teorema tenemos que : Fx = F x cos θ y la Fy = F x cos θ.
 Ya estamos preparados para hacer algún ejercicio. Solo tienes que
descomponer las componentes X (o Y) de todos los vectores y sumarlas,
luego haz lo mismo con las componentes Y (o j). El resultado será el vector
suma.
Exposición de Física

Mais conteúdo relacionado

Mais procurados (17)

Marlis
MarlisMarlis
Marlis
 
problemas
problemasproblemas
problemas
 
Vectores
VectoresVectores
Vectores
 
Clase 1
Clase 1Clase 1
Clase 1
 
Fisicavectores
FisicavectoresFisicavectores
Fisicavectores
 
Algebra vectorial power point
Algebra vectorial power pointAlgebra vectorial power point
Algebra vectorial power point
 
Vectores
VectoresVectores
Vectores
 
Semana 1 vectores
Semana 1 vectoresSemana 1 vectores
Semana 1 vectores
 
Magnitudes vectoriales
Magnitudes vectorialesMagnitudes vectoriales
Magnitudes vectoriales
 
Vectores
VectoresVectores
Vectores
 
Vectores en la fisica
Vectores en la fisicaVectores en la fisica
Vectores en la fisica
 
Vectores
VectoresVectores
Vectores
 
VECTORES
VECTORESVECTORES
VECTORES
 
Semana1 vectores
Semana1 vectoresSemana1 vectores
Semana1 vectores
 
Diapositiva de vectores
Diapositiva de vectoresDiapositiva de vectores
Diapositiva de vectores
 
Presentacion estatica erick_lomeli_1_b
Presentacion estatica erick_lomeli_1_bPresentacion estatica erick_lomeli_1_b
Presentacion estatica erick_lomeli_1_b
 
Apuntes de fisica 1
Apuntes de fisica 1Apuntes de fisica 1
Apuntes de fisica 1
 

Semelhante a Exposición de Física

Andreina Pérez ecuaciones parametricas matematica
Andreina Pérez ecuaciones parametricas  matematicaAndreina Pérez ecuaciones parametricas  matematica
Andreina Pérez ecuaciones parametricas matematicaAndrePrez4
 
Los vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bLos vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bwilandrekilljoy
 
Los vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bLos vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bwilandrekilljoy
 
1º de bachillerato física
1º de bachillerato física1º de bachillerato física
1º de bachillerato físicaarroudj
 
Vectores y estatica de solidos --- Chara H.
Vectores y estatica de solidos  --- Chara H.Vectores y estatica de solidos  --- Chara H.
Vectores y estatica de solidos --- Chara H.chara314
 
Universidad nacional vectores
Universidad    nacional  vectoresUniversidad    nacional  vectores
Universidad nacional vectoresHuaraz Ancash
 
Ecuaciones Paramétricas - Cartesianas
Ecuaciones Paramétricas - Cartesianas Ecuaciones Paramétricas - Cartesianas
Ecuaciones Paramétricas - Cartesianas joseAngelRemacheCast
 
Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-leonelgranado
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas claudiabolivar3
 
Universidad israel
Universidad israelUniversidad israel
Universidad israelchrysstyan
 
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptxedddysurco
 
FISICA I.pdf Brayan ramirez , guía de física 1
FISICA I.pdf Brayan ramirez , guía de física 1FISICA I.pdf Brayan ramirez , guía de física 1
FISICA I.pdf Brayan ramirez , guía de física 1BrayanRamirez840127
 
vectores en el espacio
vectores en el espacio vectores en el espacio
vectores en el espacio joselingomez5
 
PPT-Física-II-medio-S4.pptx
PPT-Física-II-medio-S4.pptxPPT-Física-II-medio-S4.pptx
PPT-Física-II-medio-S4.pptxNildaRecalde
 

Semelhante a Exposición de Física (20)

Vectores.pptx
Vectores.pptxVectores.pptx
Vectores.pptx
 
Andreina Pérez ecuaciones parametricas matematica
Andreina Pérez ecuaciones parametricas  matematicaAndreina Pérez ecuaciones parametricas  matematica
Andreina Pérez ecuaciones parametricas matematica
 
Cinematica1
Cinematica1Cinematica1
Cinematica1
 
Los vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bLos vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to b
 
Los vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to bLos vectores wilson ochoa 4to b
Los vectores wilson ochoa 4to b
 
Cinematica4
Cinematica4Cinematica4
Cinematica4
 
Pamela blasco teoria electromagnetica
Pamela blasco  teoria electromagneticaPamela blasco  teoria electromagnetica
Pamela blasco teoria electromagnetica
 
Pamela blasco teoria electromagnetica
Pamela blasco  teoria electromagneticaPamela blasco  teoria electromagnetica
Pamela blasco teoria electromagnetica
 
Pamela blasco teoria electromagnetica
Pamela blasco  teoria electromagneticaPamela blasco  teoria electromagnetica
Pamela blasco teoria electromagnetica
 
1º de bachillerato física
1º de bachillerato física1º de bachillerato física
1º de bachillerato física
 
Vectores y estatica de solidos --- Chara H.
Vectores y estatica de solidos  --- Chara H.Vectores y estatica de solidos  --- Chara H.
Vectores y estatica de solidos --- Chara H.
 
Universidad nacional vectores
Universidad    nacional  vectoresUniversidad    nacional  vectores
Universidad nacional vectores
 
Ecuaciones Paramétricas - Cartesianas
Ecuaciones Paramétricas - Cartesianas Ecuaciones Paramétricas - Cartesianas
Ecuaciones Paramétricas - Cartesianas
 
Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas
 
Universidad israel
Universidad israelUniversidad israel
Universidad israel
 
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx
2. FÍSICA - ANALISIS VECTORIALES para estudiantes.pptx
 
FISICA I.pdf Brayan ramirez , guía de física 1
FISICA I.pdf Brayan ramirez , guía de física 1FISICA I.pdf Brayan ramirez , guía de física 1
FISICA I.pdf Brayan ramirez , guía de física 1
 
vectores en el espacio
vectores en el espacio vectores en el espacio
vectores en el espacio
 
PPT-Física-II-medio-S4.pptx
PPT-Física-II-medio-S4.pptxPPT-Física-II-medio-S4.pptx
PPT-Física-II-medio-S4.pptx
 

Último

ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoJosDanielEstradaHern
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIIsauraImbrondone
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 

Último (20)

ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 

Exposición de Física

  • 1. Magnitudes Vectoriales Marlis Torres Morales. Bill Karl Ebrath Osorio. Jessica Gutiérrez Cantillo. Dayana Tafur García. Oriana Torres Sierra. Diego Flórez Hernández.
  • 2. MAGNITUDES  La magnitud es una medida asignada a cada uno de los objetos de un conjunto medible, formados por objetos matemáticos. La noción de magnitud concebida así puede abstraerse a objetos del mundo físico o propiedades físicas que son susceptibles de ser medidos.  Las medidas de propiedades físicas usualmente son representables mediante números reales o n-tuplas de números reales, y usualmente para ser interpretables requieren del uso de una unidad de medida pertinente. Una propiedad importante de muchas magnitudes es admitan grados de comparación "más que", "igual que" o "menos que".  Una magnitud matemática usada para representar un proceso físico es el resultado de una medición; en cambio las magnitudes matemáticas admiten definiciones abstractas, mientras que las magnitudes físicas se miden con instrumentos apropiados.
  • 3.  Los griegos distinguían entre varios tipos de magnitudes, incluyendo: • Fracciones positivas. • Segmentos según su longitud. • Polígonos según su superficie. • Sólidos según su volumen. • Ángulos según su magnitud angular.  Probaron que los dos primeros tipos no podían ser iguales, o siquiera sistemas isomorfos de magnitud. No consideraron que las magnitudes negativas fueran significativas, y el concepto se utilizó principalmente en contextos en los que cero era el valor más bajo.
  • 4.
  • 5. MAGNITUDES ESCALARES  Las magnitudes escalares son aquellas que quedan totalmente determinadas dando un solo número real y una unidad de medida. Ejemplos de este tipo de magnitud son la longitud de un hilo, la masa de un cuerpo o el tiempo transcurrido entre dos sucesos. Se las puede representar mediante segmentos tomados sobre una recta a partir de un origen y de longitud igual al número real que indica su medida. Otros ejemplos de magnitudes escalares son la densidad; el volumen; el trabajo mecánico; la potencia; la temperatura.
  • 7. MAGNITUDES VECTORIALES  Magnitudes vectoriales no se las puede determinar completamente mediante un número real y una unidad de medida. Por ejemplo, para dar la velocidad de un móvil en un punto del espacio, además de su intensidad se debe indicar la dirección del movimiento (dada por la recta tangente a la trayectoria en cada punto) y el sentido de movimiento en esa dirección (dado por las dos posibles orientaciones de la recta). Al igual que con la velocidad ocurre con las fuerzas: sus efectos dependen no sólo de la intensidad sino también de las direcciones y sentidos en que actúan. Otros ejemplos de magnitudes vectoriales son la aceleración; el momentum o cantidad de movimiento; el momentum angular. Para representarlas hay que tomar segmentos orientados, o sea, segmentos de recta cada uno de ellos determinado entre dos puntos extremos dados en un cierto orden.
  • 8.  Definición 1: Se llama vector a todo segmento orientado. El primero de los puntos que lo determinan se llama origen y el segundo extremo del vector. La recta que contiene al vector determina la dirección del mismo y la orientación sobre la recta, definida por el origen y el extremo del vector, determina su sentido. En la figura 1 se representa el vector a sobre la recta r, de origen O y extremo P. En adelante los vectores serán designados con letras mayúsculas o minúsculas en negrita.
  • 9. CLASES DE VECTORES  1)Fijos o ligados : Llamados también vectores de posición. Son aquellos que tienen un origen fijo .Fijan la posición de un cuerpo o representan una fuerza en el espacio.
  • 10.  2)Vectores deslizantes : Son aquellos que pueden cambiar de posición a lo largo de su directriz.  3)Vectores libres: Son aquellos vectores que se pueden desplazar libremente a lo largo de sus direcciones o hacia rectas paralelas sin sufrir modificaciones.
  • 11.  4)Vectores paralelos: Dos vectores son paralelos si las rectas que las contienen son paralelas.  5)Vectores coplanares: Cuando las rectas que lo contienen están en un mismo plano.
  • 12.  6)Vectores concurrentes: Cuando sus líneas de acción o directrices se cortan en un punto.  7)Vectores colineales: Cuando sus líneas de acción se encuentran sobre una misma recta.
  • 13. SUMA DE VECTORES  Para sumar dos vectores de forma gráfica solo hay que poner uno detrás de otro y unir el principio del primero con el final del segundo. Ejemplo:
  • 14.  Vamos a sumar dos vectores, el a y el b. Fíjate que desde el final del vector a trazamos una paralela de igual tamaño que el vector b. El inicio de a y el final de la paralela trazada será el vector suma de los dos iniciales. También podemos hacerlo desde el final de b trazando una paralela del vector a. El resultado será el mismo de una u otra forma. El vector rojo es la suma.
  • 15.
  • 16.  Para sumar 3 vectores (o la cantidad que sea) solo hay que poner uno detrás del otro y unir el principio del primero con el final del último. Veamos un ejemplo:
  • 17. SUMA DE VECTORES DE FORMA ANALÍTICA  El primer caso es que nos den los puntos de las coordenadas de los dos vectores. En este caso es muy fácil, solo hay que sumar las coordenadas en X de los dos vectores y las coordenadas en Y. El resultado es el vector suma. Veamos un ejercicio:  Tenemos las coordenadas del vector A que son ( – 3, 4) y la del vector B que son (4,2). ¿Cual será el vector suma de los dos?  El vector AB = (-3 + 2) (4 + 2) = (1, 6) Hemos obtenido las coordenadas del vector suma de los dos anteriores el A y el B. AB = (1, 6)
  • 18. SUMA DE VECTORES POR DESCOMPOSICIÓN  El segundo caso, es que nos den el valor del módulo del vector y un ángulo. Para sumar dos vectores hay que sumar los componentes X de cada vector y los Y, pero no las conocemos directamente. Lo primero que tenemos que saber es el teorema de Pitágoras para descomponer el vector. El teorema de Pitágoras es para resolver triángulos, date cuenta que si descomponemos un vector es sus dos componentes X e Y lo que tenemos es un triángulo, por eso aplicamos el teorema de Pitágoras.
  • 19.  El vector A se descompone de la siguiente forma A = Ax + Ay; a veces lo verás expresado de esta otra forma A = Axi + Ayj , pero es lo mismo, la componente i es la X y la j la Y. la i y la j son vectores que se llaman vectores unitarios, son vectores que valen 1, en la dirección X (el i) y en la dirección Y (el j) No te líes que es muy fácil.
  • 20. M I R A E L T E O R E M A D E P I T Á G O R A S Y F Í JA T E P O R Q U É A X = A P O R E L C O S E N O Θ Y A Y = A P O R E L S E N O Θ .
  • 21.  Según el teorema tenemos que : Fx = F x cos θ y la Fy = F x cos θ.  Ya estamos preparados para hacer algún ejercicio. Solo tienes que descomponer las componentes X (o Y) de todos los vectores y sumarlas, luego haz lo mismo con las componentes Y (o j). El resultado será el vector suma.