SlideShare uma empresa Scribd logo
1 de 33
Brief flow of presentation
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Introduction
What are Optical Fibers?
Evolution of optical fiber
Structure of optical fiber
Workings principle of optical fiber
Classification of optical fiber
Optical fiber communication system
Advantages / Disadvantages of Optical fiber
Applications of Optical fiber
Conclusion
Evolution of optical fiber
•
•
•
•
•
•
•

1880 – Alexander Graham Bell
1930 – Patents on tubing
1950 – Patent for two-layer glass wave-guide
1960 – Laser first used as light source
1965 – High loss of light discovered
1970s – Refining of manufacturing process
1980s – OF technology becomes backbone of long
distance telephone networks in NA.
What is optical Fiber?
• An optical fiber is a hair thin cylindrical fiber of
glass or any transparent dielectric medium.
• The fiber which are used for optical
communication are wave guides made of
transparent dielectrics.
• Its function is to guide visible and infrared
light over long distances.
Structure of optical fiber
• Core – central tube of very thin size made up of
optically transparent dielectric medium and carries
the light form transmitter to receiver. The core
diameter can vary from about 5um to 100 um.
• Cladding – outer optical material surrounding the
core having reflecting index lower than core. It
helps to keep the light within the core throughout
the phenomena of total internal reflection.
• Buffer Coating – plastic coating that protects
the fiber made of silicon rubber. The typical
diameter of fiber after coating is 250-300 um.
Working principle
Total Internal Reflection
• When a ray of light travels from a denser to a
rarer medium such that the angle of incidence is
greater than the critical angle, the ray reflects
back into the same medium this phenomena is
called total internal reflection.
• In the optical fiber the rays undergo repeated
total number of reflections until it emerges out of
the other end of the fiber, even if the fiber is
bent.
The arrow and the bent pencil
Total internal reflection in
optical fiber
Classification of optical fiber
• Optical fiber is classified into two categories
based on :1) The number of modes, and
2) The refractive index
On the basis of number of modes:on the basis of number of modes of propagation the optical
fiber are classified into two types:
(i) Single mode fiber (SMF) and
(ii) Multi-mode fiber (MMF)
• Single-mode fibers – in single mode fiber only one mode
can propagate through the fiber. This type of fiber has
small core diameter(5um) and high cladding
diameter(70um) and the difference between the refractive
index of core and cladding is very small. There is no
dispersion i.e. no degradation of signal during travelling
through the fiber.
• The light is passed through the single mode fiber through
laser diode.
• Multi-mode fiber :• Multi mode fiber allows a large number of modes
for the light ray travelling through it.
• The core diameter is (40um) and that of cladding
is(70um)
• The relative refractive index difference is also larger
than single mode fiber.
• There is signal degradation due to multimode
dispersion.
• They are not suitable for long distance
communication due to large dispersion and
attenuation of the signal.
Refraction at a plane surface
Refraction
Refraction is the changing direction of light
when it goes into a material of different
density
On the basis of Refractive index
• There are two types of optical fiber:• (i) Step-index optical fiber
• (ii) Graded-index optical fiber
• Step
Step index fiber
• The refractive index of core is constant
• The refractive index of cladding is also constant
• The light rays propagate through it in the form of
meridiognal rays which cross the fiber axis during
every reflection at the core cladding boundary.
Graded Index fiber
• In this type of fiber core has a non uniform
refractive index that gradually decrease from the
centre towards the core cladding interface.
• The cladding has a uniform refractive index.
• The light rays propagate through it in the form of
skew rays or helical rays. They do not cross the fiber
axis at any time.
How Optical Fiber’s are made??
• Three Steps are Involved in the manufacturing
of the optical fiber which are given below:-Making a Preform Glass Cylinder
-Drawing the Fiber’s from the preform
-Testing the Fibre
Optical Fiber Communication
System

Information
source

Electrical
source

Optical
source

Optical fiber
cable

Optical
detector

Electrical
receive

Destination
• Information source- it provides an electrical
signal to a transmitter comprising an electrical
stage.
• Electrical transmitter- It drives an optical
source to give an modulation of the light wave
carrier.
• Optical source- It provides the electrical-optical
conversion .It may be a semiconductor laser or
an LED.
• Optical cable: It serves as transmission medium.
• Optical detector: It is responsible for optical to
electrical conversion of data and hence
responsible for demodulation of the optical
carrier. It may be a
photodiodes, phototransistor, and
photoconductors.
• Electrical receiver: It is used for electrical
interfacing at the receiver end of the optical link
and to perform the signal processing electrically.
• Destination: It is the final point at which we
receive the information in the form of electrical
signal.
Attenuation
• Attenuation is the loss of the optical power.
• Attenuation in optical fiber take place due to
elements like coupler, splices, connector and
fiber itself.
• A fiber lower attenuation will allow more
power to reach a receiver than with a higher
attenuation.
• Attenuation may be categorised as –
(i) Intrinsic
(ii) Extrinsic
Factor causing attenuation in Fiber
• Fig. shows the factor affecting the attenuation
in fiberAttenuation

Extrinsic

Intrinsic

Absorption

Scattering

Macrobending

Microbending
Variation of specific attenuation with
wavelength
Attenuation & Wavelength
• The specific attenuation ( power loss in dB per
unit length ) actually depends on the
wavelength of the radiation travelling along
the optic fibre
• The graph shows minima at 1310nm and
1550nm, which implies that these are
desirable wavelengths for optimal
transmission
• These are infra red wavelengths
Advantage of optical fiber
communication
1) The life of fiber is longer than copper wire
2) Handling and installation costs of optical fiber is very
nominal
3) It is unaffected with electromagnetic interference
4) Attenuation in optical fiber is lower than coaxial cable
or twisted pair.
5) There is no necessity of additional equipment for
protecting against grounding and voltage problems.
6) As it does not radiates energy any antenna or detector
cannot detects it hence provides signal security
Disadvantage
1) Highly skilled staff would be required for
maintenance
2) Only point to point working is possible on
optical fiber
3) Precise and costly instruments would be required

4) Costly if under utilized.
5) Accept unipolar codes only.
6) Jointing of fiber and splicing is also time
consuming.
Applications
• Optical fiber have wider range of application in
almost all field, some are been specified below

•
•
•
•
•
•
•

In telecommunication field
In space applications
Broadband applications
Computer applications industrial applications
Mining applications
In medical applications
In military applications etc.
•

Optical fiber have wider range of application in almost all field, i.e. in medical,
electronics, military etc .some are been specified below

• Medical

• Military

• Electronics

IBM microprocessors
The Endoscope

There are two optical fibres
One for light, to illuminate the
inside of the patient

One for a camera to send the
images back to the doctor.

Key hole surgery
Conclusion
This concludes our study of optical fiber
communications have looked at how they work
and how they are made. We have examined the
properties of fibers, and how fibers are joined
together. Although this presentation does not
cover all the aspects of optical fiber work it will
have equipped you knowledge and skills essential
to the fiber optic industry.
THANK YOU

Mais conteúdo relacionado

Mais procurados

physics b.tech. 1st sem fibre optics,u 4
physics b.tech. 1st sem fibre optics,u 4physics b.tech. 1st sem fibre optics,u 4
physics b.tech. 1st sem fibre optics,u 4
Kumar
 
6796.optical fibres
6796.optical fibres6796.optical fibres
6796.optical fibres
Ankush Saini
 
How Fiber Optics Work
How Fiber Optics WorkHow Fiber Optics Work
How Fiber Optics Work
s1170045
 

Mais procurados (19)

Fibre Optics
Fibre OpticsFibre Optics
Fibre Optics
 
Introduction of Optical Fiber Communication System
Introduction of Optical Fiber Communication SystemIntroduction of Optical Fiber Communication System
Introduction of Optical Fiber Communication System
 
Characteristics of optical fiber cable
Characteristics of optical fiber cableCharacteristics of optical fiber cable
Characteristics of optical fiber cable
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
 
Optical fiber (Fiber Optics)
Optical fiber (Fiber Optics)Optical fiber (Fiber Optics)
Optical fiber (Fiber Optics)
 
Optical fiber cables
Optical fiber cablesOptical fiber cables
Optical fiber cables
 
Introduction to optical fiber
Introduction to optical fiberIntroduction to optical fiber
Introduction to optical fiber
 
physics b.tech. 1st sem fibre optics,u 4
physics b.tech. 1st sem fibre optics,u 4physics b.tech. 1st sem fibre optics,u 4
physics b.tech. 1st sem fibre optics,u 4
 
vikash kumar- Optical fibre
vikash kumar- Optical fibrevikash kumar- Optical fibre
vikash kumar- Optical fibre
 
Optical fiber communication
Optical fiber          communicationOptical fiber          communication
Optical fiber communication
 
6796.optical fibres
6796.optical fibres6796.optical fibres
6796.optical fibres
 
Optical fibre
Optical fibreOptical fibre
Optical fibre
 
Optical fiber communication presentation
Optical fiber communication presentationOptical fiber communication presentation
Optical fiber communication presentation
 
optical fiber communication system
optical fiber communication systemoptical fiber communication system
optical fiber communication system
 
How Fiber Optics Work
How Fiber Optics WorkHow Fiber Optics Work
How Fiber Optics Work
 
Fibre optics
Fibre opticsFibre optics
Fibre optics
 
Fibre optics
Fibre opticsFibre optics
Fibre optics
 
Ep notes
Ep notesEp notes
Ep notes
 
Optical network pdf
Optical network pdfOptical network pdf
Optical network pdf
 

Destaque

Gprs 110901034127-phpapp02
Gprs 110901034127-phpapp02Gprs 110901034127-phpapp02
Gprs 110901034127-phpapp02
Dawood Aqlan
 
GPRS telecommunication
GPRS telecommunicationGPRS telecommunication
GPRS telecommunication
Dawood Aqlan
 
شبكات سيسكو
شبكات سيسكو شبكات سيسكو
شبكات سيسكو
Dawood Aqlan
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
Dawood Aqlan
 
Wireless router-setup-manual
Wireless router-setup-manual Wireless router-setup-manual
Wireless router-setup-manual
Dawood Aqlan
 
introduction-to-gprs-egprs-
introduction-to-gprs-egprs-introduction-to-gprs-egprs-
introduction-to-gprs-egprs-
Dawood Aqlan
 
Satellite communication
Satellite communication Satellite communication
Satellite communication
Dawood Aqlan
 
Simulation of OFDM modulation
Simulation of OFDM modulationSimulation of OFDM modulation
Simulation of OFDM modulation
Dawood Aqlan
 
Digital fundamentals 8th edition by Thomas Floyd
Digital fundamentals 8th edition by Thomas Floyd Digital fundamentals 8th edition by Thomas Floyd
Digital fundamentals 8th edition by Thomas Floyd
Dawood Aqlan
 
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
Dawood Aqlan
 
Digital Cellular Network Technology
Digital Cellular Network TechnologyDigital Cellular Network Technology
Digital Cellular Network Technology
Dawood Aqlan
 
إدارة المشاريع
إدارة المشاريع إدارة المشاريع
إدارة المشاريع
Dawood Aqlan
 

Destaque (17)

Gprs 110901034127-phpapp02
Gprs 110901034127-phpapp02Gprs 110901034127-phpapp02
Gprs 110901034127-phpapp02
 
GPRS telecommunication
GPRS telecommunicationGPRS telecommunication
GPRS telecommunication
 
Gprs4549
Gprs4549Gprs4549
Gprs4549
 
شبكات سيسكو
شبكات سيسكو شبكات سيسكو
شبكات سيسكو
 
Wimaxtechnology
WimaxtechnologyWimaxtechnology
Wimaxtechnology
 
Gsm fundamentals
Gsm fundamentalsGsm fundamentals
Gsm fundamentals
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
 
Wireless router-setup-manual
Wireless router-setup-manual Wireless router-setup-manual
Wireless router-setup-manual
 
introduction-to-gprs-egprs-
introduction-to-gprs-egprs-introduction-to-gprs-egprs-
introduction-to-gprs-egprs-
 
CCNA
CCNACCNA
CCNA
 
Satellite communication
Satellite communication Satellite communication
Satellite communication
 
Simulation of OFDM modulation
Simulation of OFDM modulationSimulation of OFDM modulation
Simulation of OFDM modulation
 
Digital fundamentals 8th edition by Thomas Floyd
Digital fundamentals 8th edition by Thomas Floyd Digital fundamentals 8th edition by Thomas Floyd
Digital fundamentals 8th edition by Thomas Floyd
 
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
 
Digital Cellular Network Technology
Digital Cellular Network TechnologyDigital Cellular Network Technology
Digital Cellular Network Technology
 
شرح مبسط جدا لمنهج سيسكو CCNA
شرح مبسط جدا لمنهج سيسكو CCNAشرح مبسط جدا لمنهج سيسكو CCNA
شرح مبسط جدا لمنهج سيسكو CCNA
 
إدارة المشاريع
إدارة المشاريع إدارة المشاريع
إدارة المشاريع
 

Semelhante a Optical fiber communication system Important paper

Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
Dawood Aqlan
 
Opticalfiber 13015411-151122111147-lva1-app6891-converted
Opticalfiber 13015411-151122111147-lva1-app6891-convertedOpticalfiber 13015411-151122111147-lva1-app6891-converted
Opticalfiber 13015411-151122111147-lva1-app6891-converted
Jayaraman Lakshmanasamy
 
Gandhinagar institute of technology optical fiber
Gandhinagar institute of technology optical fiberGandhinagar institute of technology optical fiber
Gandhinagar institute of technology optical fiber
nilnildarji
 
Optical fiber communiction
Optical fiber communictionOptical fiber communiction
Optical fiber communiction
Aravind Shaji
 

Semelhante a Optical fiber communication system Important paper (20)

Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
 
Opticalfibercommunictionsystem 130916042513-phpapp02
Opticalfibercommunictionsystem 130916042513-phpapp02Opticalfibercommunictionsystem 130916042513-phpapp02
Opticalfibercommunictionsystem 130916042513-phpapp02
 
Fibre-optical Data Transmission
Fibre-optical Data TransmissionFibre-optical Data Transmission
Fibre-optical Data Transmission
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
 
suneel setty
suneel settysuneel setty
suneel setty
 
UNIT-III-OPTICAL COMMUNICATION
UNIT-III-OPTICAL COMMUNICATIONUNIT-III-OPTICAL COMMUNICATION
UNIT-III-OPTICAL COMMUNICATION
 
Optical fiber by debraj maji
Optical fiber by debraj majiOptical fiber by debraj maji
Optical fiber by debraj maji
 
Optica lfiber communiction system ( BSNL EETP)
Optica lfiber communiction system ( BSNL EETP)Optica lfiber communiction system ( BSNL EETP)
Optica lfiber communiction system ( BSNL EETP)
 
Opticalfiber 13015411-151122111147-lva1-app6891-converted
Opticalfiber 13015411-151122111147-lva1-app6891-convertedOpticalfiber 13015411-151122111147-lva1-app6891-converted
Opticalfiber 13015411-151122111147-lva1-app6891-converted
 
Gandhinagar institute of technology optical fiber
Gandhinagar institute of technology optical fiberGandhinagar institute of technology optical fiber
Gandhinagar institute of technology optical fiber
 
Fiber optics
Fiber opticsFiber optics
Fiber optics
 
pptonsummertraining-161231124242.pdf
pptonsummertraining-161231124242.pdfpptonsummertraining-161231124242.pdf
pptonsummertraining-161231124242.pdf
 
Ppt on optical fiber
Ppt on optical fiberPpt on optical fiber
Ppt on optical fiber
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
 
Optical fiber communiction
Optical fiber communictionOptical fiber communiction
Optical fiber communiction
 
Assignment1 network media
Assignment1 network mediaAssignment1 network media
Assignment1 network media
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
 
Fiber-optics-part-I.pdf
Fiber-optics-part-I.pdfFiber-optics-part-I.pdf
Fiber-optics-part-I.pdf
 
Presentation on optical communication.pdf
Presentation on optical communication.pdfPresentation on optical communication.pdf
Presentation on optical communication.pdf
 
Optical communication unit 1
Optical communication unit 1Optical communication unit 1
Optical communication unit 1
 

Mais de Dawood Aqlan

Mais de Dawood Aqlan (7)

Differential equations
Differential equationsDifferential equations
Differential equations
 
CDMA
CDMACDMA
CDMA
 
5g mobile new technology
5g mobile new technology5g mobile new technology
5g mobile new technology
 
Base station-subsystem-introduction-to-gprs-egprs-130915133623-phpapp01
Base station-subsystem-introduction-to-gprs-egprs-130915133623-phpapp01Base station-subsystem-introduction-to-gprs-egprs-130915133623-phpapp01
Base station-subsystem-introduction-to-gprs-egprs-130915133623-phpapp01
 
5gtechnology 121103044412-phpapp02 (2)
5gtechnology 121103044412-phpapp02 (2)5gtechnology 121103044412-phpapp02 (2)
5gtechnology 121103044412-phpapp02 (2)
 
Gsmadvanced 111128215358-phpapp02
Gsmadvanced 111128215358-phpapp02Gsmadvanced 111128215358-phpapp02
Gsmadvanced 111128215358-phpapp02
 
21final3g 111205220957-phpapp02
21final3g 111205220957-phpapp0221final3g 111205220957-phpapp02
21final3g 111205220957-phpapp02
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Último (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Optical fiber communication system Important paper

  • 1.
  • 2. Brief flow of presentation 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction What are Optical Fibers? Evolution of optical fiber Structure of optical fiber Workings principle of optical fiber Classification of optical fiber Optical fiber communication system Advantages / Disadvantages of Optical fiber Applications of Optical fiber Conclusion
  • 3. Evolution of optical fiber • • • • • • • 1880 – Alexander Graham Bell 1930 – Patents on tubing 1950 – Patent for two-layer glass wave-guide 1960 – Laser first used as light source 1965 – High loss of light discovered 1970s – Refining of manufacturing process 1980s – OF technology becomes backbone of long distance telephone networks in NA.
  • 4. What is optical Fiber? • An optical fiber is a hair thin cylindrical fiber of glass or any transparent dielectric medium. • The fiber which are used for optical communication are wave guides made of transparent dielectrics. • Its function is to guide visible and infrared light over long distances.
  • 6. • Core – central tube of very thin size made up of optically transparent dielectric medium and carries the light form transmitter to receiver. The core diameter can vary from about 5um to 100 um. • Cladding – outer optical material surrounding the core having reflecting index lower than core. It helps to keep the light within the core throughout the phenomena of total internal reflection. • Buffer Coating – plastic coating that protects the fiber made of silicon rubber. The typical diameter of fiber after coating is 250-300 um.
  • 7. Working principle Total Internal Reflection • When a ray of light travels from a denser to a rarer medium such that the angle of incidence is greater than the critical angle, the ray reflects back into the same medium this phenomena is called total internal reflection. • In the optical fiber the rays undergo repeated total number of reflections until it emerges out of the other end of the fiber, even if the fiber is bent.
  • 8. The arrow and the bent pencil
  • 9. Total internal reflection in optical fiber
  • 10. Classification of optical fiber • Optical fiber is classified into two categories based on :1) The number of modes, and 2) The refractive index
  • 11. On the basis of number of modes:on the basis of number of modes of propagation the optical fiber are classified into two types: (i) Single mode fiber (SMF) and (ii) Multi-mode fiber (MMF) • Single-mode fibers – in single mode fiber only one mode can propagate through the fiber. This type of fiber has small core diameter(5um) and high cladding diameter(70um) and the difference between the refractive index of core and cladding is very small. There is no dispersion i.e. no degradation of signal during travelling through the fiber. • The light is passed through the single mode fiber through laser diode.
  • 12. • Multi-mode fiber :• Multi mode fiber allows a large number of modes for the light ray travelling through it. • The core diameter is (40um) and that of cladding is(70um) • The relative refractive index difference is also larger than single mode fiber. • There is signal degradation due to multimode dispersion. • They are not suitable for long distance communication due to large dispersion and attenuation of the signal.
  • 13. Refraction at a plane surface
  • 14. Refraction Refraction is the changing direction of light when it goes into a material of different density
  • 15. On the basis of Refractive index • There are two types of optical fiber:• (i) Step-index optical fiber • (ii) Graded-index optical fiber • Step
  • 16. Step index fiber • The refractive index of core is constant • The refractive index of cladding is also constant • The light rays propagate through it in the form of meridiognal rays which cross the fiber axis during every reflection at the core cladding boundary.
  • 17. Graded Index fiber • In this type of fiber core has a non uniform refractive index that gradually decrease from the centre towards the core cladding interface. • The cladding has a uniform refractive index. • The light rays propagate through it in the form of skew rays or helical rays. They do not cross the fiber axis at any time.
  • 18.
  • 19. How Optical Fiber’s are made?? • Three Steps are Involved in the manufacturing of the optical fiber which are given below:-Making a Preform Glass Cylinder -Drawing the Fiber’s from the preform -Testing the Fibre
  • 20. Optical Fiber Communication System Information source Electrical source Optical source Optical fiber cable Optical detector Electrical receive Destination
  • 21. • Information source- it provides an electrical signal to a transmitter comprising an electrical stage. • Electrical transmitter- It drives an optical source to give an modulation of the light wave carrier. • Optical source- It provides the electrical-optical conversion .It may be a semiconductor laser or an LED.
  • 22. • Optical cable: It serves as transmission medium. • Optical detector: It is responsible for optical to electrical conversion of data and hence responsible for demodulation of the optical carrier. It may be a photodiodes, phototransistor, and photoconductors. • Electrical receiver: It is used for electrical interfacing at the receiver end of the optical link and to perform the signal processing electrically. • Destination: It is the final point at which we receive the information in the form of electrical signal.
  • 23. Attenuation • Attenuation is the loss of the optical power. • Attenuation in optical fiber take place due to elements like coupler, splices, connector and fiber itself. • A fiber lower attenuation will allow more power to reach a receiver than with a higher attenuation. • Attenuation may be categorised as – (i) Intrinsic (ii) Extrinsic
  • 24. Factor causing attenuation in Fiber • Fig. shows the factor affecting the attenuation in fiberAttenuation Extrinsic Intrinsic Absorption Scattering Macrobending Microbending
  • 25. Variation of specific attenuation with wavelength
  • 26. Attenuation & Wavelength • The specific attenuation ( power loss in dB per unit length ) actually depends on the wavelength of the radiation travelling along the optic fibre • The graph shows minima at 1310nm and 1550nm, which implies that these are desirable wavelengths for optimal transmission • These are infra red wavelengths
  • 27. Advantage of optical fiber communication 1) The life of fiber is longer than copper wire 2) Handling and installation costs of optical fiber is very nominal 3) It is unaffected with electromagnetic interference 4) Attenuation in optical fiber is lower than coaxial cable or twisted pair. 5) There is no necessity of additional equipment for protecting against grounding and voltage problems. 6) As it does not radiates energy any antenna or detector cannot detects it hence provides signal security
  • 28. Disadvantage 1) Highly skilled staff would be required for maintenance 2) Only point to point working is possible on optical fiber 3) Precise and costly instruments would be required 4) Costly if under utilized. 5) Accept unipolar codes only. 6) Jointing of fiber and splicing is also time consuming.
  • 29. Applications • Optical fiber have wider range of application in almost all field, some are been specified below • • • • • • • In telecommunication field In space applications Broadband applications Computer applications industrial applications Mining applications In medical applications In military applications etc.
  • 30. • Optical fiber have wider range of application in almost all field, i.e. in medical, electronics, military etc .some are been specified below • Medical • Military • Electronics IBM microprocessors
  • 31. The Endoscope There are two optical fibres One for light, to illuminate the inside of the patient One for a camera to send the images back to the doctor. Key hole surgery
  • 32. Conclusion This concludes our study of optical fiber communications have looked at how they work and how they are made. We have examined the properties of fibers, and how fibers are joined together. Although this presentation does not cover all the aspects of optical fiber work it will have equipped you knowledge and skills essential to the fiber optic industry.