SlideShare uma empresa Scribd logo
1 de 10
PERSAMAAN LINGKARAN DAN GARIS SINGGUNG LINGKARAN

Tujuan Pembelajaran
Kompetensi Dasar :
- Mengaplikasikan konsep lingkaran dan garis singgung dalam pemecahan masalah.
Standar Kompetensi :
Setelah mengikuti proses pembelajaran ini, anda diharapkan dapat :
- merumuskan persamaan lingkaran berpusat di O(0,0) dan (a,b).
- menentukan pusat dan jari-jari lingkatan yang persamaannya diketahui.
- menentukan persamaan lingkaran yang memenuhi kriteria tertentu.
- menentukan persamaan garis singgung yang melalui suatu titik pada lingkaran.
- menentukan persamaan garis singgung yang gradiennya diketahui.

Pengertian Irisan Kerucut
Menurut Appolonius lingkaran adalah salah satu bentuk irisan kerucut. Selain lingkaran, terdapat
tiga macam irisan kerucut lainnya, yaitu : Ellips, parabola, dan hiperbola. Ilmuwan lain yang
mempelajari irisan kerucut adalah Pierre de Fermat dan Rene Descartes.

Materi
A. Persamaan Lingkaran
1. Persamaan Lingkaran yang Berpusat di O (0,0) dan Berjari-jari r
Misalkan titik P(x,y) adalah sembarang titik yang terletak pada keliling lingkaran. Titik P’ adalah
proyeksi titik P pada sumbu x sehingga ΔOP’P adalah segitiga siku-siku di P’.

Dengan menggunakan teorema Phytagoras pada ΔOP’P, maka
OP =√OP’)2+(PP’)2
Substitusi OP = r, OP’= x dan PP’ = y
r = √x2+y2
r2 = x2 + y2
x2 + y2 = r2



Karena titik P(x,y) sembarang, maka persamaan x2+y2 = r2 berlaku untuk semua titik, sehingga :
Persamaan lingkaran dengan pusat 0 dan jari-jari r adalah :
x2+y2 = r2

2. Persamaan Lingkaran yang Berpusat di A (a,b) dan Berjari-jari r
Misalkan titik P(x,y) adalah sembarang titik yang terletak pada lingkaran. Buat garis g melalui pusat
A(a,b) dan sejajar dengan sumbu x. Proyeksi P pada garis g adalah P’, sehingga ΔAP’P adalah segitiga
siku-siku di dengan AP’ = x – a, PP’ = y – b dan AP = r (jari-jari lingkaran).

Dengan menggunakan Teorema Phytagoras pada ΔAP’P, diperoleh :
AP = √(AP’)2 + (PP’)2
r2 = √(x – a)2 + (y – b)2
r2 = (x – a)2 + (y – b)2
(x – a)2 + (y – b)2 = r2

Karena titk P(x,y) sembarang, maka persamaan (x – a)2 + (y – b)2 = r2 berlaku untuk semua titik,
sehingga :
Persamaan lingkaran dengan pusat A(a,b) dan jari-jari r adalah :
(x – a)2 + (y – b)2 = r2



B. Bentuk Umum Persamaan Lingkaran
1. Menyatakan Bentuk Umum Persamaan Lingkaran
Bentuk baku persamaan lingkaran :
● Lingkaran dengan pusat O(0,0) dan jari-jari r :
L ≡ x2+y2 = r2
● Lingkaran dengan pusat A(a,b) dan jari-jari r :
L ≡ (x – a)2 + (y – b)2 = r2

Yang dimaksud dengan bentuk umum persamaan lingkaran contohnya :
Lingkaran dengan pusat (1,2) dan jari-jari 4, persamaannya adalah
L ≡ (x – 1)2 + (y – 2)2 = 16

Jika persamaan tersebut dijabarkan kemudian disusun berdasarkan aturan abjad dan pangkat turun,
diperoleh :
L ≡ (x – 1)2 + (y – 2)2 = 16
L ≡ (x2 – 2x + 1) + (y2 – 4y + 4) = 16
L ≡ x2 + y2 – 2x – 4y –11 = 16

Persamaan yang terakhir inilah yang disebut bentuk umum persamaan lingkaran dengan pusat (1,2)
dan jari-jari r = 4.
Jadi, bentuk umum persamaan lingkaran dapat dinyatakan dengan persamaan :
x2 + y2 + Ax + By + C = 0 (A, B, C bilangan real)
atau
Ax2 + Ay2 + Bx + Cy + D = 0 (A, B, C, D bilangan bulat A ≠ 0



2. Menentukan Pusat dan Jari-jari Lingkaran
Cara menentukan pusat dan jari-jari lingkaran jika bentuk umum persamaan lingkaran diketahui
adalah
L ≡ x2 + y2 + Ax + By – C = 0
L ≡ (x2 + Ax + A2) – A2 + (y2 + By + B2) – B2 + C
4444
L ≡ (x + A)2 + (y + B)2 = A2 + B2 - C
4444



Berdasarkan persamaan di atas, dapat ditetapkan :
● Pusat lingkaran di (-A)
B
● Jari-jari lingkaran r = √A2 + B2 - C
44



C. Persamaan Garis Singgung Lingkaran
1. Persamaan Garis Singgung Lingkaran yang Melalui Suatu Titik pada Lingkaran
● Lingkaran dengan pusat di O (0,0) dan jari-jari r
Garis singgung dapat ditentukan sebagai berikut :
1. Gradien garis singgung OP adalah Mop = y1
x1
2. Karena garis singgung g tegak lurus OP, maka gradiennya
mg = -1 = -1 = -x1
Mop y1 y1
3. Persamaan garis singgung g :
y – y1 = mg (x – x1)

y – y1 = x1 (x – x1)
y1
y1y – y12 = - x1x + x12
x1x + y1y = x12 + y12
x1x + y1y = r2

Jadi, persamaan garis singgung lingkaran L ≡ x2+y2 = r2 yang melalui titik P(x1, y1) pada lingkaran
ditentukan dengan rumus :
x1x + y1y = r2

• Lingkaran dengan pusat di A (0,0) dan jari-jari r
Garis singgung g dapat dinyatakan sebagai berikut
1. Gradien garis AP adalah Map = - y1 - b
x1 - a
2. Garis singgung g tegak lurus garis AP, sehingga gradien garis singgung g adalah
mg = -1 = - x1 - a
Map - y1 - b
3. Persamaan garis singgung g adalah :
y – y1 = mg (x – x1)
y – y1 = - x1 - a
- y1 - a
(y – y1) (y1 – b) = – (x1 – a) (x – x1)
y1y – y12 – by + b y1 = – (x1x – ax – x12 + ax1)
x1x – ax – x12 + ax1 + y1y – y12 – by + b y1 = 0
x1x – ax + ax1 + y1y – by + b y1 = x12 + y12 ......(*)
Karena P(x1, y1) terletak pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2, maka berlaku :
(x1 – a)2 + (y1 – b)2 = r2
x12 – 2ax1 + a2 + y12 – 2by1 + b2 = r2
x12 + y12 = 2ax1 – a2 + 2by1 – b2 + r2
substitusi x12 + y12 = 2ax1 – a2 + 2by1 – b2 + r2 ke (*), diperoleh :
x1x – ax + ax1 + y1y – by + b y1 = 2ax1 – a2 + 2by1 – b2 + r2
(x1x – ax + ax1 – 2ax1 + a2) + (y1y – by + b y1 – 2by1 – b2) = r2
(x1x – ax – ax1 + a2) + (y1y – by – b y1 + b2) = r2
(x1 – a) (x – a) + (y1 – b) (y – b) = r2

Rumus persamaan garis singgung pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2 yang melalui titik
singgung P(x1, y1) adalah (x1 – a) (x – a) + (y1 – b) (y – b) = r2

2. Persamaan Garis Singgung Lingkaran dengan Gradien Diketahui
● Lingkaran dengan pusat di O (0,0) dan jari-jari r
1. Persamaan garis dengan gradien m adalah y = mx + n
2. Substitusi y = mx + n ke persamaan lingkaran L ≡ x2+y2 = r2, diperoleh :
x2 + (mx + n)2 = r2
x2 + m2x2 + 2mnx + n2 = r2
(1+ m2)x2 + 2mnx + (n2 – r2) = 0

Nilai diskriminan persamaan kuadrat (1+ m2)x2 + 2mnx + (n2 – r2) = 0 adalah
D = (2mn)2 – 4(1+ m2) (n2 – r2)
D = 4 m2n2 – 4(m2n2 – m2r2 + n2 – r2)
D = 4 m2n2 – 4 m2n2 + 4m2r2 – 4n2 + 4r2
D = 4 (m2r2 – n2 + r2)

3. Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0.
4 (m2r2 – n2 + r2) = 0
m2r2 – n2 + r2 = 0
n2 = r2 (1 + m2)
n = ± r √1 + m2

Substitusi n = ± r √1 + m2 ke persamaan garis y = mx + n, diperoleh y = mx ± r √1 + m2

Jadi, rumus Persamaan garis singgung pada lingkaran L ≡ x2+y2 = r2 dengan gradien m adalah
y = mx ± r √1 + m2

● Lingkaran dengan pusat di A (0,0) dan jari-jari r
1. Persamaan garis dengan gradien m adalah y = mx + n
2. Substitusi y = mx + n ke persamaan lingkaran L ≡ (x – a)2 + (y – b)2 = r2, diperoleh :
(x – a)2 + (mx + n – b)2 = r2
x2 – 2ax + a2 + m2x2 + n2 + b2 + 2mnx – 2bmx – 2bn – r2 = 0
(1 + m2)x2 – 2(a – mn + bm)x + (a2 + n2 + b2 – 2bn – r2)= 0

Nilai diskriminan persamaan kuadrat di atas adalah
D = {– 2(a – mn + bm)}2 – 4 (1 + m2)(a2 + n2 + b2 – 2bn – r2)
D = 4(a – mn + bm) 2 – 4(1 + m2)(a2 + n2 + b2 – 2bn – r2)
3. Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0
4(a – mn + bm) 2 – 4(1 + m2)(a2 + n2 + b2 – 2bn – r2) = 0
(a – mn + bm) 2 – (1 + m2)(a2 + n2 + b2 – 2bn – r2) = 0
a2 + m2n2 + b2m2 – 2amn + 2abm – 2bm2n – a2 – n2 – b2 + 2bn + r2 – a2m2 – m2n2 – b2m2 +
2bm2n + m2r2 = 0
– 2amn + 2abm – n2 – b2 + 2bn + r2 – a2m2 + m2r2 = 0
2amn – 2abm + n2 + b2 – 2bn – r2 + a2m2 – m2r2 = 0
(n2 + a2m2 + b2 + 2amn –2bn – 2abm) – r2 (1+ m2) = 0
(n + am – b)2 = r2 (1+ m2)
(n + am – b) = r √1 + m2
n = (–am + b) ± r√1 + m2
4. Substitusi n = (–am + b) ± ke persamaan garis y = mx + n, diperoleh
y = mx + (–am + b) ± r √1 + m2
(y – b) = m(x – a) ± r √1 + m2

Jadi, rumus Persamaan Garis Singgung pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2 dengan gradien m
adalah
(y – b) = m(x – a) ± r√1 + m2

3. Persamaan Garis Singgung Lingkaran yang Melalui sebuah Titik di Luar Lingkaran
Cara untuk menentukan persamaan-persamaan garis singgung yang terletak di luar lingkaran dapat
dilakukan melalui langkah-langkah sebagai berikut.
Langkah 1.
Persamaan garis melalui P(x1,y1), dimisalkan gradiennya m. Persamaannya adalah y – y1 = m(x – x1)
atau y = mx – mx1 + y1

Langkah 2.
Substitusikan y = mx – mx1 + y1 ke persamaan lingkaran, sehingga diperoleh persamaan kuadrat
gabungan. Kemudian nilai diskriminan D dari persamaan kuadrat gabuangan itu dihitung.

Langkah 3.
Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0. Dari syarat D = 0 diperoleh nilai-
nilai m.
Nilai-nilai m itu selanjutnya disubstitusikan ke persamaan y = mx – mx1 + y1, sehingga diperoleh
persamaan-persamaan garis singgung yang diminta.
Contoh :
Persamaan Lingkaran

1. Tentukan persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A (-3,5)
Penyelesaian :
Lingkaran berpusat di O(0,0) dan melalui titik A(-3,5), maka jari-jari r adalah
r = √(-3)2 + 52 = √34
r2 = 34
Persamaan lingkarannya x2 + y2 = r2
x2 + y2 = 34
Jadi, persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A(-3,5) adalah
L ≡ x2 + y2 = 34

2. Tentukan persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A (-3,5)
Penyelesaian :
Pusat di (2,-4) dan r = 5 jadi r2 = 25
Persamaan lingkarannya :
(x – 2)2 + (y – 4)2 = 25

Bentuk Umum Persamaan Lingkaran
3. Tentukan pusat dan jari-jari lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0
Penyelesaian :
L ≡ x2 + y2 + 4x – 10y + 13 = 0
L ≡ (x + 4x)2 + (y2 – 10y) = - 13
L ≡ (x2 + 4x + 4) – 4 + (y2 + 4x – 10y + 25) – 25 = - 13
L ≡ (x + 2)2 + (y – 5)2 = 16
Dari persamaan yang terakhir ini, dapat diketahui bahwa lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0
mempunyai pusat (-2,5) dan jari-jari r = 4

Persamaan Garis Singgung Lingkaran
4. Tentukan persamaan garis singgung lingkaran L ≡ x2 + y2 = 13 yang melalui titik (-3,2)
Penyelesaian :
Titik (-3,2); x1 = -3 dan y1 = 2, terletak pada L ≡ x2 + y2 = 13
Persamaan garis singgungnya : (-3)x + (2)y = 13
-3x + 2y = 13

5. Tentukan persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2)
Penyelesaian :
Titik (7,2); x1 = 7 dan y1 = 2, terletak pada L ≡ (x – 3)2 + (y + 1)2 = 25
Persamaan garis singgungnya : (7 – 3)(x – 3) + (2 + 1)(y +1) = 25
4x – 12 + 3y – 34 = 25
4x + 3y – 34 = 0
Jadi, persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2) adalah 4x
+ 3y – 34 = 0

6. Tentukan persamaan garis singgung pada lingkaran L ≡ x 2 + y2 = 16, jika diketahui mempunyai
gradien 3.
Penyelesaian :
Lingkaran L ≡ x 2 + y2 = 16, pusat di O(0,0) dan jari-jari r = 4, mempunyai gradien m = 3.
Persamaan garis singgungnya : y = 3x ± 4√1 + (3)2
y = 3x ± 4√10
y = 3x + 4√10 atau 3x – 4√10
Jadi, persamaan garis singgung pada lingkaran L ≡ x 2 + y2 = 16 dengan gradien m = 3 adalah
y = 3x + 4√10 dan 3x – 4√10

7. Tentukan persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien
m = 5/12
Penyelesaian :
Persamaan garis singgungnya : (y + 2) =5/12(x – 1) ± 3√(1 + (5/12)2
(y + 2) = 5/12(x – 1) ± 39/12
12y + 24 = 5x – 5 ± 39
5x – 12y – 29 ± 39 = 0
5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0
Jadi, persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien m = 5/12
adalah
5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0

Mais conteúdo relacionado

Mais procurados

Matriks & Operasinya Matriks invers
Matriks  & Operasinya Matriks inversMatriks  & Operasinya Matriks invers
Matriks & Operasinya Matriks invers
Muhammad Martayuda
 
C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
SMKN 9 Bandung
 
contoh soal latihan matematika relasi dan fungsi kelas 8 smp
contoh soal latihan matematika relasi dan fungsi kelas 8 smpcontoh soal latihan matematika relasi dan fungsi kelas 8 smp
contoh soal latihan matematika relasi dan fungsi kelas 8 smp
Herizal Arman
 
Latihan soal relasi dan fungsi
Latihan soal relasi dan fungsiLatihan soal relasi dan fungsi
Latihan soal relasi dan fungsi
Tris Yubrom
 

Mais procurados (20)

Barisan aritmatika
Barisan aritmatikaBarisan aritmatika
Barisan aritmatika
 
Geometri analitik ruang
Geometri analitik ruangGeometri analitik ruang
Geometri analitik ruang
 
Modul kd.3.21. Persamaan Lingkaran SMA/SMK Kelas XI
Modul kd.3.21. Persamaan Lingkaran SMA/SMK Kelas XIModul kd.3.21. Persamaan Lingkaran SMA/SMK Kelas XI
Modul kd.3.21. Persamaan Lingkaran SMA/SMK Kelas XI
 
Matriks & Operasinya Matriks invers
Matriks  & Operasinya Matriks inversMatriks  & Operasinya Matriks invers
Matriks & Operasinya Matriks invers
 
Lks elips lengkap new1
Lks elips lengkap new1Lks elips lengkap new1
Lks elips lengkap new1
 
PPT MATEMATIKA KELAS X BAB FUNGSI KUADRAT
PPT MATEMATIKA KELAS X BAB FUNGSI KUADRATPPT MATEMATIKA KELAS X BAB FUNGSI KUADRAT
PPT MATEMATIKA KELAS X BAB FUNGSI KUADRAT
 
C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
 
Polar Coordinates & Polar Curves
Polar Coordinates & Polar CurvesPolar Coordinates & Polar Curves
Polar Coordinates & Polar Curves
 
Power point - Barisan dan deret aritmatika
Power point - Barisan dan deret aritmatikaPower point - Barisan dan deret aritmatika
Power point - Barisan dan deret aritmatika
 
Rpp kd 3.3 konsep matriks dan operasi aljabar
Rpp kd 3.3 konsep matriks dan operasi aljabarRpp kd 3.3 konsep matriks dan operasi aljabar
Rpp kd 3.3 konsep matriks dan operasi aljabar
 
Soal Matematika Kelas X Sma
Soal Matematika Kelas X SmaSoal Matematika Kelas X Sma
Soal Matematika Kelas X Sma
 
Titik Potong 2 Garis
Titik Potong 2 GarisTitik Potong 2 Garis
Titik Potong 2 Garis
 
teorema limit
teorema limitteorema limit
teorema limit
 
Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )
 
PowerPoint Statistika
PowerPoint StatistikaPowerPoint Statistika
PowerPoint Statistika
 
Nama kelompok
Nama kelompokNama kelompok
Nama kelompok
 
contoh soal latihan matematika relasi dan fungsi kelas 8 smp
contoh soal latihan matematika relasi dan fungsi kelas 8 smpcontoh soal latihan matematika relasi dan fungsi kelas 8 smp
contoh soal latihan matematika relasi dan fungsi kelas 8 smp
 
Ulangan aljabar kelas 8 tahun 2016 cahyono
Ulangan aljabar kelas 8 tahun 2016 cahyonoUlangan aljabar kelas 8 tahun 2016 cahyono
Ulangan aljabar kelas 8 tahun 2016 cahyono
 
Latihan soal relasi dan fungsi
Latihan soal relasi dan fungsiLatihan soal relasi dan fungsi
Latihan soal relasi dan fungsi
 
BAB 1 Transformasi
BAB 1 Transformasi BAB 1 Transformasi
BAB 1 Transformasi
 

Destaque

Persamaan garis singgung lingkaran
Persamaan garis singgung lingkaranPersamaan garis singgung lingkaran
Persamaan garis singgung lingkaran
Nadia Hasan
 
persamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgungpersamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgung
mfebri26
 
Lingkaran(garis singgung-lingkaran)
Lingkaran(garis singgung-lingkaran)Lingkaran(garis singgung-lingkaran)
Lingkaran(garis singgung-lingkaran)
Farida Hwa
 
Persamaan lingkaran
Persamaan lingkaranPersamaan lingkaran
Persamaan lingkaran
cienda
 
Ppt (lingkaran)
Ppt (lingkaran)Ppt (lingkaran)
Ppt (lingkaran)
Rindi Sari
 
Garis singgung lingkaran
Garis singgung lingkaranGaris singgung lingkaran
Garis singgung lingkaran
Diar Rahma
 
Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]
Diyah Sri Hariyanti
 
Media PPT Materi Diferensial
Media PPT Materi DiferensialMedia PPT Materi Diferensial
Media PPT Materi Diferensial
Muhamad Tholib
 

Destaque (20)

PPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaranPPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaran
 
Persamaan garis singgung lingkaran
Persamaan garis singgung lingkaranPersamaan garis singgung lingkaran
Persamaan garis singgung lingkaran
 
persamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgungpersamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgung
 
Lingkaran(garis singgung-lingkaran)
Lingkaran(garis singgung-lingkaran)Lingkaran(garis singgung-lingkaran)
Lingkaran(garis singgung-lingkaran)
 
Persamaan lingkaran
Persamaan lingkaranPersamaan lingkaran
Persamaan lingkaran
 
Presentasi matematika-kelas-xi-lingkaran
Presentasi matematika-kelas-xi-lingkaranPresentasi matematika-kelas-xi-lingkaran
Presentasi matematika-kelas-xi-lingkaran
 
Ppt (lingkaran)
Ppt (lingkaran)Ppt (lingkaran)
Ppt (lingkaran)
 
SOAL UNTUK LATIHAN
SOAL UNTUK LATIHANSOAL UNTUK LATIHAN
SOAL UNTUK LATIHAN
 
Garis singgung lingkaran
Garis singgung lingkaranGaris singgung lingkaran
Garis singgung lingkaran
 
tugas pkn
tugas pkntugas pkn
tugas pkn
 
Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]
 
SOAL TSM EDITING
SOAL TSM  EDITINGSOAL TSM  EDITING
SOAL TSM EDITING
 
Bahan pemberian materi ik
Bahan pemberian materi ikBahan pemberian materi ik
Bahan pemberian materi ik
 
Fungsi turunan-aljabar matematika
Fungsi turunan-aljabar matematikaFungsi turunan-aljabar matematika
Fungsi turunan-aljabar matematika
 
Rpp fungsi eksponen dan logaritma
Rpp fungsi eksponen dan logaritmaRpp fungsi eksponen dan logaritma
Rpp fungsi eksponen dan logaritma
 
Soal dan pembahasan_transformasi_geometr
Soal dan pembahasan_transformasi_geometrSoal dan pembahasan_transformasi_geometr
Soal dan pembahasan_transformasi_geometr
 
Smart solution un matematika sma 2013 (skl 2.5 persamaan lingkaran dan garis ...
Smart solution un matematika sma 2013 (skl 2.5 persamaan lingkaran dan garis ...Smart solution un matematika sma 2013 (skl 2.5 persamaan lingkaran dan garis ...
Smart solution un matematika sma 2013 (skl 2.5 persamaan lingkaran dan garis ...
 
SOAL TEKNIK SEPEDAMOTOR
SOAL TEKNIK SEPEDAMOTOR SOAL TEKNIK SEPEDAMOTOR
SOAL TEKNIK SEPEDAMOTOR
 
Definisi Turunan (PPT)
Definisi Turunan (PPT)Definisi Turunan (PPT)
Definisi Turunan (PPT)
 
Media PPT Materi Diferensial
Media PPT Materi DiferensialMedia PPT Materi Diferensial
Media PPT Materi Diferensial
 

Semelhante a Persamaan lingkaran dan garis singgung lingkaran

Persamaan Lingkaran Kls XI.pptx
Persamaan Lingkaran Kls XI.pptxPersamaan Lingkaran Kls XI.pptx
Persamaan Lingkaran Kls XI.pptx
satori14
 
Persamaan lingkaran
Persamaan lingkaranPersamaan lingkaran
Persamaan lingkaran
linda2508
 
Irisan kerucut bakal soal uas ganjil
Irisan kerucut bakal soal uas ganjilIrisan kerucut bakal soal uas ganjil
Irisan kerucut bakal soal uas ganjil
Toyibah Al-jabbar
 
persamaan garis singgung melalui sebuah titik pada lingkaran.ppt
persamaan garis singgung melalui sebuah titik pada lingkaran.pptpersamaan garis singgung melalui sebuah titik pada lingkaran.ppt
persamaan garis singgung melalui sebuah titik pada lingkaran.ppt
UmiLestari24
 
Persamaan lingkaran dan sifat sifatnya
Persamaan lingkaran dan sifat sifatnyaPersamaan lingkaran dan sifat sifatnya
Persamaan lingkaran dan sifat sifatnya
1724143052
 
Transformasi (translasi rotasi)
Transformasi (translasi rotasi)Transformasi (translasi rotasi)
Transformasi (translasi rotasi)
C Lis Ec
 

Semelhante a Persamaan lingkaran dan garis singgung lingkaran (20)

Persamaan Lingkaran Kls XI.pptx
Persamaan Lingkaran Kls XI.pptxPersamaan Lingkaran Kls XI.pptx
Persamaan Lingkaran Kls XI.pptx
 
Presentation2.ppt
Presentation2.pptPresentation2.ppt
Presentation2.ppt
 
Persamaan lingkaran (sri ayu wahyuni)
Persamaan lingkaran (sri ayu wahyuni)Persamaan lingkaran (sri ayu wahyuni)
Persamaan lingkaran (sri ayu wahyuni)
 
Bab 4
Bab 4Bab 4
Bab 4
 
Lingkaran fienn
Lingkaran fiennLingkaran fienn
Lingkaran fienn
 
Lingkaran fienn
Lingkaran fiennLingkaran fienn
Lingkaran fienn
 
Persamaan lingkaran
Persamaan lingkaranPersamaan lingkaran
Persamaan lingkaran
 
Irisan kerucut bakal soal uas ganjil
Irisan kerucut bakal soal uas ganjilIrisan kerucut bakal soal uas ganjil
Irisan kerucut bakal soal uas ganjil
 
Makalah irisan kerucut
Makalah irisan kerucutMakalah irisan kerucut
Makalah irisan kerucut
 
Bab 4
Bab 4Bab 4
Bab 4
 
persamaan garis singgung melalui sebuah titik pada lingkaran.ppt
persamaan garis singgung melalui sebuah titik pada lingkaran.pptpersamaan garis singgung melalui sebuah titik pada lingkaran.ppt
persamaan garis singgung melalui sebuah titik pada lingkaran.ppt
 
Irisan kerucut
Irisan kerucutIrisan kerucut
Irisan kerucut
 
Perasamaan garis singgung lingkaran
Perasamaan garis singgung  lingkaranPerasamaan garis singgung  lingkaran
Perasamaan garis singgung lingkaran
 
Persamaan lingkaran dan sifat sifatnya
Persamaan lingkaran dan sifat sifatnyaPersamaan lingkaran dan sifat sifatnya
Persamaan lingkaran dan sifat sifatnya
 
Lingkaran- Menentukan persamaan garis singgung lingkaran dengan gardien tertentu
Lingkaran- Menentukan persamaan garis singgung lingkaran dengan gardien tertentuLingkaran- Menentukan persamaan garis singgung lingkaran dengan gardien tertentu
Lingkaran- Menentukan persamaan garis singgung lingkaran dengan gardien tertentu
 
Transformasi (translasi rotasi)
Transformasi (translasi rotasi)Transformasi (translasi rotasi)
Transformasi (translasi rotasi)
 
KEL 2 LINGKARAN 2.pptx
KEL 2 LINGKARAN 2.pptxKEL 2 LINGKARAN 2.pptx
KEL 2 LINGKARAN 2.pptx
 
3 lingkaran
3 lingkaran3 lingkaran
3 lingkaran
 
Persamaan garis singgung lingkaran
Persamaan garis singgung lingkaranPersamaan garis singgung lingkaran
Persamaan garis singgung lingkaran
 
Bab 4
Bab 4Bab 4
Bab 4
 

Persamaan lingkaran dan garis singgung lingkaran

  • 1. PERSAMAAN LINGKARAN DAN GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Kompetensi Dasar : - Mengaplikasikan konsep lingkaran dan garis singgung dalam pemecahan masalah. Standar Kompetensi : Setelah mengikuti proses pembelajaran ini, anda diharapkan dapat : - merumuskan persamaan lingkaran berpusat di O(0,0) dan (a,b). - menentukan pusat dan jari-jari lingkatan yang persamaannya diketahui. - menentukan persamaan lingkaran yang memenuhi kriteria tertentu. - menentukan persamaan garis singgung yang melalui suatu titik pada lingkaran. - menentukan persamaan garis singgung yang gradiennya diketahui. Pengertian Irisan Kerucut Menurut Appolonius lingkaran adalah salah satu bentuk irisan kerucut. Selain lingkaran, terdapat tiga macam irisan kerucut lainnya, yaitu : Ellips, parabola, dan hiperbola. Ilmuwan lain yang mempelajari irisan kerucut adalah Pierre de Fermat dan Rene Descartes. Materi A. Persamaan Lingkaran 1. Persamaan Lingkaran yang Berpusat di O (0,0) dan Berjari-jari r
  • 2. Misalkan titik P(x,y) adalah sembarang titik yang terletak pada keliling lingkaran. Titik P’ adalah proyeksi titik P pada sumbu x sehingga ΔOP’P adalah segitiga siku-siku di P’. Dengan menggunakan teorema Phytagoras pada ΔOP’P, maka OP =√OP’)2+(PP’)2 Substitusi OP = r, OP’= x dan PP’ = y r = √x2+y2 r2 = x2 + y2 x2 + y2 = r2 Karena titik P(x,y) sembarang, maka persamaan x2+y2 = r2 berlaku untuk semua titik, sehingga : Persamaan lingkaran dengan pusat 0 dan jari-jari r adalah : x2+y2 = r2 2. Persamaan Lingkaran yang Berpusat di A (a,b) dan Berjari-jari r
  • 3. Misalkan titik P(x,y) adalah sembarang titik yang terletak pada lingkaran. Buat garis g melalui pusat A(a,b) dan sejajar dengan sumbu x. Proyeksi P pada garis g adalah P’, sehingga ΔAP’P adalah segitiga siku-siku di dengan AP’ = x – a, PP’ = y – b dan AP = r (jari-jari lingkaran). Dengan menggunakan Teorema Phytagoras pada ΔAP’P, diperoleh : AP = √(AP’)2 + (PP’)2 r2 = √(x – a)2 + (y – b)2 r2 = (x – a)2 + (y – b)2 (x – a)2 + (y – b)2 = r2 Karena titk P(x,y) sembarang, maka persamaan (x – a)2 + (y – b)2 = r2 berlaku untuk semua titik, sehingga : Persamaan lingkaran dengan pusat A(a,b) dan jari-jari r adalah : (x – a)2 + (y – b)2 = r2 B. Bentuk Umum Persamaan Lingkaran 1. Menyatakan Bentuk Umum Persamaan Lingkaran Bentuk baku persamaan lingkaran : ● Lingkaran dengan pusat O(0,0) dan jari-jari r : L ≡ x2+y2 = r2 ● Lingkaran dengan pusat A(a,b) dan jari-jari r : L ≡ (x – a)2 + (y – b)2 = r2 Yang dimaksud dengan bentuk umum persamaan lingkaran contohnya : Lingkaran dengan pusat (1,2) dan jari-jari 4, persamaannya adalah L ≡ (x – 1)2 + (y – 2)2 = 16 Jika persamaan tersebut dijabarkan kemudian disusun berdasarkan aturan abjad dan pangkat turun, diperoleh : L ≡ (x – 1)2 + (y – 2)2 = 16 L ≡ (x2 – 2x + 1) + (y2 – 4y + 4) = 16 L ≡ x2 + y2 – 2x – 4y –11 = 16 Persamaan yang terakhir inilah yang disebut bentuk umum persamaan lingkaran dengan pusat (1,2) dan jari-jari r = 4.
  • 4. Jadi, bentuk umum persamaan lingkaran dapat dinyatakan dengan persamaan : x2 + y2 + Ax + By + C = 0 (A, B, C bilangan real) atau Ax2 + Ay2 + Bx + Cy + D = 0 (A, B, C, D bilangan bulat A ≠ 0 2. Menentukan Pusat dan Jari-jari Lingkaran Cara menentukan pusat dan jari-jari lingkaran jika bentuk umum persamaan lingkaran diketahui adalah L ≡ x2 + y2 + Ax + By – C = 0 L ≡ (x2 + Ax + A2) – A2 + (y2 + By + B2) – B2 + C 4444 L ≡ (x + A)2 + (y + B)2 = A2 + B2 - C 4444 Berdasarkan persamaan di atas, dapat ditetapkan : ● Pusat lingkaran di (-A) B ● Jari-jari lingkaran r = √A2 + B2 - C 44 C. Persamaan Garis Singgung Lingkaran 1. Persamaan Garis Singgung Lingkaran yang Melalui Suatu Titik pada Lingkaran
  • 5. ● Lingkaran dengan pusat di O (0,0) dan jari-jari r Garis singgung dapat ditentukan sebagai berikut : 1. Gradien garis singgung OP adalah Mop = y1 x1 2. Karena garis singgung g tegak lurus OP, maka gradiennya mg = -1 = -1 = -x1 Mop y1 y1 3. Persamaan garis singgung g : y – y1 = mg (x – x1) y – y1 = x1 (x – x1) y1 y1y – y12 = - x1x + x12 x1x + y1y = x12 + y12 x1x + y1y = r2 Jadi, persamaan garis singgung lingkaran L ≡ x2+y2 = r2 yang melalui titik P(x1, y1) pada lingkaran ditentukan dengan rumus : x1x + y1y = r2 • Lingkaran dengan pusat di A (0,0) dan jari-jari r
  • 6. Garis singgung g dapat dinyatakan sebagai berikut 1. Gradien garis AP adalah Map = - y1 - b x1 - a 2. Garis singgung g tegak lurus garis AP, sehingga gradien garis singgung g adalah mg = -1 = - x1 - a Map - y1 - b 3. Persamaan garis singgung g adalah : y – y1 = mg (x – x1) y – y1 = - x1 - a - y1 - a (y – y1) (y1 – b) = – (x1 – a) (x – x1) y1y – y12 – by + b y1 = – (x1x – ax – x12 + ax1) x1x – ax – x12 + ax1 + y1y – y12 – by + b y1 = 0 x1x – ax + ax1 + y1y – by + b y1 = x12 + y12 ......(*) Karena P(x1, y1) terletak pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2, maka berlaku : (x1 – a)2 + (y1 – b)2 = r2 x12 – 2ax1 + a2 + y12 – 2by1 + b2 = r2 x12 + y12 = 2ax1 – a2 + 2by1 – b2 + r2 substitusi x12 + y12 = 2ax1 – a2 + 2by1 – b2 + r2 ke (*), diperoleh : x1x – ax + ax1 + y1y – by + b y1 = 2ax1 – a2 + 2by1 – b2 + r2 (x1x – ax + ax1 – 2ax1 + a2) + (y1y – by + b y1 – 2by1 – b2) = r2 (x1x – ax – ax1 + a2) + (y1y – by – b y1 + b2) = r2 (x1 – a) (x – a) + (y1 – b) (y – b) = r2 Rumus persamaan garis singgung pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2 yang melalui titik singgung P(x1, y1) adalah (x1 – a) (x – a) + (y1 – b) (y – b) = r2 2. Persamaan Garis Singgung Lingkaran dengan Gradien Diketahui ● Lingkaran dengan pusat di O (0,0) dan jari-jari r 1. Persamaan garis dengan gradien m adalah y = mx + n
  • 7. 2. Substitusi y = mx + n ke persamaan lingkaran L ≡ x2+y2 = r2, diperoleh : x2 + (mx + n)2 = r2 x2 + m2x2 + 2mnx + n2 = r2 (1+ m2)x2 + 2mnx + (n2 – r2) = 0 Nilai diskriminan persamaan kuadrat (1+ m2)x2 + 2mnx + (n2 – r2) = 0 adalah D = (2mn)2 – 4(1+ m2) (n2 – r2) D = 4 m2n2 – 4(m2n2 – m2r2 + n2 – r2) D = 4 m2n2 – 4 m2n2 + 4m2r2 – 4n2 + 4r2 D = 4 (m2r2 – n2 + r2) 3. Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0. 4 (m2r2 – n2 + r2) = 0 m2r2 – n2 + r2 = 0 n2 = r2 (1 + m2) n = ± r √1 + m2 Substitusi n = ± r √1 + m2 ke persamaan garis y = mx + n, diperoleh y = mx ± r √1 + m2 Jadi, rumus Persamaan garis singgung pada lingkaran L ≡ x2+y2 = r2 dengan gradien m adalah y = mx ± r √1 + m2 ● Lingkaran dengan pusat di A (0,0) dan jari-jari r 1. Persamaan garis dengan gradien m adalah y = mx + n 2. Substitusi y = mx + n ke persamaan lingkaran L ≡ (x – a)2 + (y – b)2 = r2, diperoleh : (x – a)2 + (mx + n – b)2 = r2 x2 – 2ax + a2 + m2x2 + n2 + b2 + 2mnx – 2bmx – 2bn – r2 = 0 (1 + m2)x2 – 2(a – mn + bm)x + (a2 + n2 + b2 – 2bn – r2)= 0 Nilai diskriminan persamaan kuadrat di atas adalah D = {– 2(a – mn + bm)}2 – 4 (1 + m2)(a2 + n2 + b2 – 2bn – r2) D = 4(a – mn + bm) 2 – 4(1 + m2)(a2 + n2 + b2 – 2bn – r2) 3. Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0 4(a – mn + bm) 2 – 4(1 + m2)(a2 + n2 + b2 – 2bn – r2) = 0 (a – mn + bm) 2 – (1 + m2)(a2 + n2 + b2 – 2bn – r2) = 0 a2 + m2n2 + b2m2 – 2amn + 2abm – 2bm2n – a2 – n2 – b2 + 2bn + r2 – a2m2 – m2n2 – b2m2 + 2bm2n + m2r2 = 0 – 2amn + 2abm – n2 – b2 + 2bn + r2 – a2m2 + m2r2 = 0 2amn – 2abm + n2 + b2 – 2bn – r2 + a2m2 – m2r2 = 0 (n2 + a2m2 + b2 + 2amn –2bn – 2abm) – r2 (1+ m2) = 0 (n + am – b)2 = r2 (1+ m2) (n + am – b) = r √1 + m2 n = (–am + b) ± r√1 + m2 4. Substitusi n = (–am + b) ± ke persamaan garis y = mx + n, diperoleh y = mx + (–am + b) ± r √1 + m2
  • 8. (y – b) = m(x – a) ± r √1 + m2 Jadi, rumus Persamaan Garis Singgung pada lingkaran L ≡ (x – a)2 + (y – b)2 = r2 dengan gradien m adalah (y – b) = m(x – a) ± r√1 + m2 3. Persamaan Garis Singgung Lingkaran yang Melalui sebuah Titik di Luar Lingkaran Cara untuk menentukan persamaan-persamaan garis singgung yang terletak di luar lingkaran dapat dilakukan melalui langkah-langkah sebagai berikut. Langkah 1. Persamaan garis melalui P(x1,y1), dimisalkan gradiennya m. Persamaannya adalah y – y1 = m(x – x1) atau y = mx – mx1 + y1 Langkah 2. Substitusikan y = mx – mx1 + y1 ke persamaan lingkaran, sehingga diperoleh persamaan kuadrat gabungan. Kemudian nilai diskriminan D dari persamaan kuadrat gabuangan itu dihitung. Langkah 3. Karena garis menyinggung lingkaran, maka nilai diskriminan D = 0. Dari syarat D = 0 diperoleh nilai- nilai m. Nilai-nilai m itu selanjutnya disubstitusikan ke persamaan y = mx – mx1 + y1, sehingga diperoleh persamaan-persamaan garis singgung yang diminta.
  • 9. Contoh : Persamaan Lingkaran 1. Tentukan persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A (-3,5) Penyelesaian : Lingkaran berpusat di O(0,0) dan melalui titik A(-3,5), maka jari-jari r adalah r = √(-3)2 + 52 = √34 r2 = 34 Persamaan lingkarannya x2 + y2 = r2 x2 + y2 = 34 Jadi, persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A(-3,5) adalah L ≡ x2 + y2 = 34 2. Tentukan persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A (-3,5) Penyelesaian : Pusat di (2,-4) dan r = 5 jadi r2 = 25 Persamaan lingkarannya : (x – 2)2 + (y – 4)2 = 25 Bentuk Umum Persamaan Lingkaran 3. Tentukan pusat dan jari-jari lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0 Penyelesaian : L ≡ x2 + y2 + 4x – 10y + 13 = 0 L ≡ (x + 4x)2 + (y2 – 10y) = - 13 L ≡ (x2 + 4x + 4) – 4 + (y2 + 4x – 10y + 25) – 25 = - 13 L ≡ (x + 2)2 + (y – 5)2 = 16 Dari persamaan yang terakhir ini, dapat diketahui bahwa lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0 mempunyai pusat (-2,5) dan jari-jari r = 4 Persamaan Garis Singgung Lingkaran 4. Tentukan persamaan garis singgung lingkaran L ≡ x2 + y2 = 13 yang melalui titik (-3,2) Penyelesaian : Titik (-3,2); x1 = -3 dan y1 = 2, terletak pada L ≡ x2 + y2 = 13 Persamaan garis singgungnya : (-3)x + (2)y = 13 -3x + 2y = 13 5. Tentukan persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2) Penyelesaian : Titik (7,2); x1 = 7 dan y1 = 2, terletak pada L ≡ (x – 3)2 + (y + 1)2 = 25
  • 10. Persamaan garis singgungnya : (7 – 3)(x – 3) + (2 + 1)(y +1) = 25 4x – 12 + 3y – 34 = 25 4x + 3y – 34 = 0 Jadi, persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2) adalah 4x + 3y – 34 = 0 6. Tentukan persamaan garis singgung pada lingkaran L ≡ x 2 + y2 = 16, jika diketahui mempunyai gradien 3. Penyelesaian : Lingkaran L ≡ x 2 + y2 = 16, pusat di O(0,0) dan jari-jari r = 4, mempunyai gradien m = 3. Persamaan garis singgungnya : y = 3x ± 4√1 + (3)2 y = 3x ± 4√10 y = 3x + 4√10 atau 3x – 4√10 Jadi, persamaan garis singgung pada lingkaran L ≡ x 2 + y2 = 16 dengan gradien m = 3 adalah y = 3x + 4√10 dan 3x – 4√10 7. Tentukan persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien m = 5/12 Penyelesaian : Persamaan garis singgungnya : (y + 2) =5/12(x – 1) ± 3√(1 + (5/12)2 (y + 2) = 5/12(x – 1) ± 39/12 12y + 24 = 5x – 5 ± 39 5x – 12y – 29 ± 39 = 0 5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0 Jadi, persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien m = 5/12 adalah 5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0