SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
Âû÷èñëèòåëüíî òðóäíûå çàäà÷è è
       äåðàíäîìèçàöèÿ
   Ëåêöèÿ 10: Ýêñòðàêòîðû

        Äìèòðèé Èöûêñîí


           ÏÎÌÈ ÐÀÍ

           3 ìàÿ 2009




                                 1/9
Ïëàí




1 Ñëàáûå èñòî÷íèêè ñëó÷àéíûõ áèòîâ
2 Ýêñòðàêòîðû
3 Ñóùåñòâîâàíèå ýêñòðàêòîðîâ
4 Êîíñòðóêöèÿ ýêñòðàêòîðà, îñíîâàííàÿ íà ñëó÷àéíîì
  áëóæäàíèè ïî ýêñïàíäåðó




                                                     2/9
Ïîñòàíîâêà çàäà÷è



•   Ïóñòü àëãîðèòìó òðåáóåòñÿ   k   ñëó÷àéíûõ áèòîâ.

•   Äîñòàòî÷íî èìåòü ðàâíîìåðíîå ðàñïðåäåëåíèå íà       {0, 1}k .
•   Èëè ïî÷òè ðàâíîìåðíîå...

•   Ïóñòü D1 , D2  ðàñïðåäåëåíèÿ íà {0, 1}n . Ñòàòèñòè÷åñêîå
    ðàññòîÿíèå: δ(D1 , D2 ) = x∈{0,1}n |D1 (x) − D2 (x)|.
•                                                       1
    Äîñòàòî÷íî èìåòü ðàñïðåäåëåíèå íà ðàññòîÿíèè
                                                       10 îò
    ðàâíîìåðíîãî




                                                                    3/9
Ñëàáûå èñòî÷íèêè ñëó÷àéíûõ áèòîâ



•   Ïóñòü   D   ðàñïðåäåëåíèå íà   {0, 1}n .
•   Ìèíèìàëüíàÿ ýíòðîïèÿ
    H∞ (D) = max{k ∈ R | ∀z D(z) ≤ 2−k }.
• 0 ≤ H∞ (D) ≤ n;      åñëè   H∞ (D) = n,      òî   X    ðàâíîìåðíîå.

• H∞ (D)     ýòî ÷èñëî íàñòîÿùèõ ñëó÷àéíûõ áèòîâ,
    êîòîðûå ñîäåðæèò ðàñïðåäåëåíèå          D.
•               D
    Ðàñïðåäåëåíèå
                                 n
                        íà {0, 1}  ýòî        (n, k)-èñòî÷íèê,   åñëè,
    H∞ (D) ≥ k ⇐⇒       ∀z D(z) ≤ 2−k .




                                                                          4/9
Ïðèìåðû ðàñïðåäåëåíèé


1 (Çàôèêñèðîâàííûå áèòû)          S ⊆ [n], |S| = k . Ðàñïðåäåëåíèå
  ðàâíîìåðíîå íà áèòàõ èç         S è ôèêñèðîâàííàÿ ñòðî÷êà íà
  áèòàõ èç   [n]  S . H∞ = k .
2 (Ëèíåéíîå ïîäïðîñòðàíñòâî) Ðàâíîìåðíîå ðàñïðåäåëåíèå
  íà ëèíåéíîì ïîäïðîñòðàíñòâå            Zn
                                          2   ðàçìåðíîñòè   k . H∞ = k .
3 (Ðàâíîìåðíîå íà ìíîæåñòâå)            S⊆    {0, 1}n ,
                                                    |S| = 2k ,
  ðàñïðåäåëåíèå ðàâíîìåðíîå            íà S . H∞ = k .

4 (Íåñèììåòðè÷íàÿ ìîíåòà)          n   ðàç íåçàâèñèìî áðîñàåòñÿ
                                                            1
  ìîíåòà, êîòîðàÿ âûäàåò     1 ñ âåðîÿòíîñòüþ δ            2 è   0   ñ
                                    1
  âåðîÿòíîñòüþ    1 − δ . H∞ = log 1−δ n




                                                                           5/9
Îïðåäåëåíèå ýêñòðàêòîðà

Îïðåäåëåíèå. Ôóíêöèÿ          Ext : {0, 1}n × {0, 1}d → {0, 1}m
íàçûâàåòñÿ  (k, )-ýêñòðàêòîðîì, åñëè äëÿ ëþáîãî
(n, k)-èñòî÷íèêà D , ðàñïðåäåëåíèå Ext(D, Ud ) íàõîäèòñÿ          íà
ðàññòîÿíèè ≤    îò Um .

  •   Çà÷åì äîïîëíèòåëüíûå íàñòîÿùèå ñëó÷àéíûå áèòû?

  • Ext : {0, 1}n → {0, 1}m
  •   Ïóñòü   | Ext−1 (1∗)| ≥ 2n−1 , D  ðàâíîìåðíîå ðàñïðåäåëåíèå
      íà íà   Ext−1 (1∗), H∞ (D) = n − 1. Ext(D) íàõîäèòñÿ íà
                               1
      ðàññòîÿíèè õîòÿ áû
                               2 îò ðàâíîìåðíîãî.
  •   Åñëè    d = O(log n),   òî âñå ñòðîêè äëèíû   d   ìîæíî
      ïåðåáðàòü.




                                                                       6/9
Ñóùåñòâîâàíèå ýêñòðàêòîðà
Òåîðåìà.   ∀k, n, ñóùåñòâóåò (k, )-ýêñòðàêòîð
Ext : {0, 1}n × {0, 1}d → {0, 1}k , ãäå
d = log n + 2 log(1/ ) + O(1).
Äîêàçàòåëüñòâî.

  • (n, k)-èñòî÷íèê D   ïëîñêèé, åñëè   D    ýòî ðàâíîìåðíîå
      ðàñïðåäåëåíèå íà ìíîæåñòâå ðàçìåðà      2k .
  •   Ëþáîé   (n, k)-èñòî÷íèê    ýòî âûïóêëàÿ êîìáèíàöèÿ
      ïëîñêèõ. Äîñòàòî÷íî äîêàçûâàòü òîëüêî äëÿ ïëîñêèõ
    (n, k)-èñòî÷íèêîâ.
  • Âûáåðåì Ext : {0, 1}n × {0, 1}d → {0, 1}k        ñëó÷àéíûì
      îáðàçîì.

  •   Ïóñòü D  ýòî ïëîñêèé (n, k)-èñòî÷íèê ñ íîñèòåëåì S ,
    |S| = 2k .
  • f : {0, 1}k → {0, 1}  íåêîòîðàÿ ôóíêöèÿ.
                            1
  • E[f (Ext(D, Ud ))] = 2k ×2d x∈S,y ∈{0,1}d f (Ext(x, y )).
                                                                 7/9
Ñóùåñòâîâàíèå ýêñòðàêòîðà
•   Ïóñòü  D         ýòî ïëîñêèé      (n, k)-èñòî÷íèê        ñ íîñèòåëåì     S,
    |S| = 2k .
• f : {0, 1}k → {0, 1}         íåêîòîðàÿ ôóíêöèÿ.

• E[f (Ext(D, Ud ))] =           1
                              2k ×2d      x∈S,y ∈{0,1}d   f (Ext(x, y )).
•   Âû÷èñëèòü    E[f (Ext(D, Ud ))]  ýòî òîæå ñàìîå, ÷òî 2k × 2d
    ðàç
                                                    k
          çàïóñòèòü f íà ñëó÷àéíîé ñòðîêå èç {0, 1} .

•   Èç îöåíîê ×åðíîâà          E[f (Ext(D, Ud ))]    îòëè÷àåòñÿ îò
                                                                       k+d 2 /4
    E[f (Uk )]   íà
                      2   ñ âåðîÿòíîñòüþ ìåíüøå, ÷åì             2−2
•   Ïðè   d  log n + 2 log(1/ ) + 3         ýòà âåðîÿòíîñòü ìåíüøå, ÷åì
           k                                                                           k
    2−(2n)2 . ×èñëî ïëîñêèõ èñòî÷íèêîâ íå áîëüøå, ÷åì                         (2n )2       ,
                        k
    ÷èëî ôóíêöèé {0, 1} → {0, 1} ðîâíî 2 .
                                          2k

•   Íàéäåòñÿ òàêîé Ext, ÷òî äëÿ âñåõ f              è     D
    | E[f (Ext(D, Ud ))] − E[f (Uk )]|  2

                                                                                               8/9
Ýêñòðàêòîð èç ñëó÷àéíîãî áëóæäàíèÿ ïî
                                    ýêñïàíäåðó
Ëåììà. ∀  0, n ≥ k ìîæíî ïîñòðîèòü (k, )-ýêñòðàêòîð
Ext : {0, 1}n × {0, 1}t → {0, 1}n , ãäå t = O(n − k + log 1 ).
Äîêàçàòåëüñòâî.

  •   Ïóñòü    A  íîðìèðîâàííàÿ ìàòðèöà ñìåæíîñòè
      (2n , d, 1 )-àëãåáðàè÷åñêîãî ðàñøèðèòåëÿ. D  ýòî
               2
      (n, k)-èñòî÷íèê.
  • t   áèòîâ îïèñûâàþò ñëó÷àéíîå áëóæäàíèå.

  •   Am D  ðàñïðåäåëåíèå ïîñëå    m   øàãîâ áëóæäàíèÿ.

  •     Am D− 2n 1 1 ≤ 2n/2 Am (D − 2n 1) 2 ≤ 2n/2 21 D − 2n 1 2
               1                    1
                                                    m
                                                          1

            1                     1                   1
  •    D − 2n 1 2 = x (D(x) − 2n )2 = x (D(x))2 + 2n −
      2 x D(x) 2n ≤ x (D(x))2 ≤ 2k · 2−2k = 2−k
                 1

                        (n−k)/2
  •    Ak D − 2n 1 1 ≤ 2 2m
               1

                                1
  •   Âûáåðåì   m = n − k + log
                                                                   9/9

Mais conteúdo relacionado

Mais de Computer Science Club

20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugsComputer Science Club
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12Computer Science Club
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11Computer Science Club
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10Computer Science Club
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09Computer Science Club
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02Computer Science Club
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01Computer Science Club
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04Computer Science Club
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01Computer Science Club
 

Mais de Computer Science Club (20)

20141223 kuznetsov distributed
20141223 kuznetsov distributed20141223 kuznetsov distributed
20141223 kuznetsov distributed
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04
 
20140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-0320140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-03
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01
 
20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 

20090503 hardnessvsrandomness itsykson_lecture10

  • 1. Âû÷èñëèòåëüíî òðóäíûå çàäà÷è è äåðàíäîìèçàöèÿ Ëåêöèÿ 10: Ýêñòðàêòîðû Äìèòðèé Èöûêñîí ÏÎÌÈ ÐÀÍ 3 ìàÿ 2009 1/9
  • 2. Ïëàí 1 Ñëàáûå èñòî÷íèêè ñëó÷àéíûõ áèòîâ 2 Ýêñòðàêòîðû 3 Ñóùåñòâîâàíèå ýêñòðàêòîðîâ 4 Êîíñòðóêöèÿ ýêñòðàêòîðà, îñíîâàííàÿ íà ñëó÷àéíîì áëóæäàíèè ïî ýêñïàíäåðó 2/9
  • 3. Ïîñòàíîâêà çàäà÷è • Ïóñòü àëãîðèòìó òðåáóåòñÿ k ñëó÷àéíûõ áèòîâ. • Äîñòàòî÷íî èìåòü ðàâíîìåðíîå ðàñïðåäåëåíèå íà {0, 1}k . • Èëè ïî÷òè ðàâíîìåðíîå... • Ïóñòü D1 , D2 ðàñïðåäåëåíèÿ íà {0, 1}n . Ñòàòèñòè÷åñêîå ðàññòîÿíèå: δ(D1 , D2 ) = x∈{0,1}n |D1 (x) − D2 (x)|. • 1 Äîñòàòî÷íî èìåòü ðàñïðåäåëåíèå íà ðàññòîÿíèè 10 îò ðàâíîìåðíîãî 3/9
  • 4. Ñëàáûå èñòî÷íèêè ñëó÷àéíûõ áèòîâ • Ïóñòü D ðàñïðåäåëåíèå íà {0, 1}n . • Ìèíèìàëüíàÿ ýíòðîïèÿ H∞ (D) = max{k ∈ R | ∀z D(z) ≤ 2−k }. • 0 ≤ H∞ (D) ≤ n; åñëè H∞ (D) = n, òî X ðàâíîìåðíîå. • H∞ (D) ýòî ÷èñëî íàñòîÿùèõ ñëó÷àéíûõ áèòîâ, êîòîðûå ñîäåðæèò ðàñïðåäåëåíèå D. • D Ðàñïðåäåëåíèå n íà {0, 1} ýòî (n, k)-èñòî÷íèê, åñëè, H∞ (D) ≥ k ⇐⇒ ∀z D(z) ≤ 2−k . 4/9
  • 5. Ïðèìåðû ðàñïðåäåëåíèé 1 (Çàôèêñèðîâàííûå áèòû) S ⊆ [n], |S| = k . Ðàñïðåäåëåíèå ðàâíîìåðíîå íà áèòàõ èç S è ôèêñèðîâàííàÿ ñòðî÷êà íà áèòàõ èç [n] S . H∞ = k . 2 (Ëèíåéíîå ïîäïðîñòðàíñòâî) Ðàâíîìåðíîå ðàñïðåäåëåíèå íà ëèíåéíîì ïîäïðîñòðàíñòâå Zn 2 ðàçìåðíîñòè k . H∞ = k . 3 (Ðàâíîìåðíîå íà ìíîæåñòâå) S⊆ {0, 1}n , |S| = 2k , ðàñïðåäåëåíèå ðàâíîìåðíîå íà S . H∞ = k . 4 (Íåñèììåòðè÷íàÿ ìîíåòà) n ðàç íåçàâèñèìî áðîñàåòñÿ 1 ìîíåòà, êîòîðàÿ âûäàåò 1 ñ âåðîÿòíîñòüþ δ 2 è 0 ñ 1 âåðîÿòíîñòüþ 1 − δ . H∞ = log 1−δ n 5/9
  • 6. Îïðåäåëåíèå ýêñòðàêòîðà Îïðåäåëåíèå. Ôóíêöèÿ Ext : {0, 1}n × {0, 1}d → {0, 1}m íàçûâàåòñÿ (k, )-ýêñòðàêòîðîì, åñëè äëÿ ëþáîãî (n, k)-èñòî÷íèêà D , ðàñïðåäåëåíèå Ext(D, Ud ) íàõîäèòñÿ íà ðàññòîÿíèè ≤ îò Um . • Çà÷åì äîïîëíèòåëüíûå íàñòîÿùèå ñëó÷àéíûå áèòû? • Ext : {0, 1}n → {0, 1}m • Ïóñòü | Ext−1 (1∗)| ≥ 2n−1 , D ðàâíîìåðíîå ðàñïðåäåëåíèå íà íà Ext−1 (1∗), H∞ (D) = n − 1. Ext(D) íàõîäèòñÿ íà 1 ðàññòîÿíèè õîòÿ áû 2 îò ðàâíîìåðíîãî. • Åñëè d = O(log n), òî âñå ñòðîêè äëèíû d ìîæíî ïåðåáðàòü. 6/9
  • 7. Ñóùåñòâîâàíèå ýêñòðàêòîðà Òåîðåìà. ∀k, n, ñóùåñòâóåò (k, )-ýêñòðàêòîð Ext : {0, 1}n × {0, 1}d → {0, 1}k , ãäå d = log n + 2 log(1/ ) + O(1). Äîêàçàòåëüñòâî. • (n, k)-èñòî÷íèê D ïëîñêèé, åñëè D ýòî ðàâíîìåðíîå ðàñïðåäåëåíèå íà ìíîæåñòâå ðàçìåðà 2k . • Ëþáîé (n, k)-èñòî÷íèê ýòî âûïóêëàÿ êîìáèíàöèÿ ïëîñêèõ. Äîñòàòî÷íî äîêàçûâàòü òîëüêî äëÿ ïëîñêèõ (n, k)-èñòî÷íèêîâ. • Âûáåðåì Ext : {0, 1}n × {0, 1}d → {0, 1}k ñëó÷àéíûì îáðàçîì. • Ïóñòü D ýòî ïëîñêèé (n, k)-èñòî÷íèê ñ íîñèòåëåì S , |S| = 2k . • f : {0, 1}k → {0, 1} íåêîòîðàÿ ôóíêöèÿ. 1 • E[f (Ext(D, Ud ))] = 2k ×2d x∈S,y ∈{0,1}d f (Ext(x, y )). 7/9
  • 8. Ñóùåñòâîâàíèå ýêñòðàêòîðà • Ïóñòü D ýòî ïëîñêèé (n, k)-èñòî÷íèê ñ íîñèòåëåì S, |S| = 2k . • f : {0, 1}k → {0, 1} íåêîòîðàÿ ôóíêöèÿ. • E[f (Ext(D, Ud ))] = 1 2k ×2d x∈S,y ∈{0,1}d f (Ext(x, y )). • Âû÷èñëèòü E[f (Ext(D, Ud ))] ýòî òîæå ñàìîå, ÷òî 2k × 2d ðàç k çàïóñòèòü f íà ñëó÷àéíîé ñòðîêå èç {0, 1} . • Èç îöåíîê ×åðíîâà E[f (Ext(D, Ud ))] îòëè÷àåòñÿ îò k+d 2 /4 E[f (Uk )] íà 2 ñ âåðîÿòíîñòüþ ìåíüøå, ÷åì 2−2 • Ïðè d log n + 2 log(1/ ) + 3 ýòà âåðîÿòíîñòü ìåíüøå, ÷åì k k 2−(2n)2 . ×èñëî ïëîñêèõ èñòî÷íèêîâ íå áîëüøå, ÷åì (2n )2 , k ÷èëî ôóíêöèé {0, 1} → {0, 1} ðîâíî 2 . 2k • Íàéäåòñÿ òàêîé Ext, ÷òî äëÿ âñåõ f è D | E[f (Ext(D, Ud ))] − E[f (Uk )]| 2 8/9
  • 9. Ýêñòðàêòîð èç ñëó÷àéíîãî áëóæäàíèÿ ïî ýêñïàíäåðó Ëåììà. ∀ 0, n ≥ k ìîæíî ïîñòðîèòü (k, )-ýêñòðàêòîð Ext : {0, 1}n × {0, 1}t → {0, 1}n , ãäå t = O(n − k + log 1 ). Äîêàçàòåëüñòâî. • Ïóñòü A íîðìèðîâàííàÿ ìàòðèöà ñìåæíîñòè (2n , d, 1 )-àëãåáðàè÷åñêîãî ðàñøèðèòåëÿ. D ýòî 2 (n, k)-èñòî÷íèê. • t áèòîâ îïèñûâàþò ñëó÷àéíîå áëóæäàíèå. • Am D ðàñïðåäåëåíèå ïîñëå m øàãîâ áëóæäàíèÿ. • Am D− 2n 1 1 ≤ 2n/2 Am (D − 2n 1) 2 ≤ 2n/2 21 D − 2n 1 2 1 1 m 1 1 1 1 • D − 2n 1 2 = x (D(x) − 2n )2 = x (D(x))2 + 2n − 2 x D(x) 2n ≤ x (D(x))2 ≤ 2k · 2−2k = 2−k 1 (n−k)/2 • Ak D − 2n 1 1 ≤ 2 2m 1 1 • Âûáåðåì m = n − k + log 9/9