SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
Sundarapandian et al. (Eds) : ACITY, AIAA, CNSA, DPPR, NeCoM, WeST, DMS, P2PTM, VLSI - 2013
pp. 219–226, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3423
A PROPOSED MODEL FOR TRAFFIC SIGNAL
PREEMPTION USING GLOBAL POSITIONING
SYSTEM (GPS)
Nikhil Mascarenhas1
, Pradeep G1
, Manish Agrawal1
, Subash P1
, Ajina A2
1
Final year B.E.(Information Science and Engineering, Sir M. Visvesvaraya
Institute of Technology, Bangalore.
2
Faculty, Dept. Of Computer Science and Engineering, Sir M. Visvesvaraya
Institute of Technology, Bangalore.
ABSTRACT
A Traffic Signal Preemption system is an automated system that allows normal operation of
traffic lights at automated signalized intersections to be preempted. Preemption of signals is
generally done to assist emergency vehicles, such as ambulances, so that response times are
reduced and right-of-way is provided in a smooth and controlled manner. This paper proposes
an innovative and cost-effective server-centric model to facilitate preemption using a simple
mobile phone app which uses Global Positioning System (GPS) and a microcontroller which
controls traffic signals.
KEYWORDS
Traffic Signal Preemption, GPS, Mobile Application, Arduino Microcontroller, Emergency
Vehicle, Road Traffic, Traffic Management.
1. INTRODUCTION
Human Life is a valuable asset for a country. Accidents and Medical emergencies such as fire,
road accidents, heart attacks etc. occur every day. It is critical for emergency teams to reach the
accident spot so as to save human lives. Thus, hospitals and fire stations are spread evenly across
the city to reduce response time. However rapid population growth in cities has resulted in high
traffic densities on city roads. This is an additional hindrance to fire, ambulance and other
emergency vehicles [1].
Conventionally, commuters give way to emergency vehicles, on hearing the vehicle’s siren.
However since most traffic signals today are automated, an emergency vehicle passing an
intersection poses danger to traffic approaching the signal from other roads. Thus an emergency
vehicle has to wait for the entire traffic signal cycle to complete in order to pass the intersection.
This imposes considerable delay in response time. Other means of transport such as air
ambulances are expensive and not feasible for small cities [1].
Thus, Traffic Signal Preemption is the need of the hour, in large cities where traffic densities are
ever increasing. Traffic signal Preemption helps in reducing delay and increasing response time
and road safety with minimum cost. Several existing technologies use stand-alone hardware to
220 Computer Science & Information Technology (CS & IT)
achieve this goal. In this paper, we present an innovative and economic solution that uses the
accuracy of GPS and the advantages of a server-centric networked system.
The paper is organized as follows. In Section II we discuss existing implementation, the
technologies used and their disadvantages. . We discuss the design of the proposed system in
Section III. In Section IV the advantages of the proposed system are discussed and in Section V
we discuss the future scope and possible enhancements.
2. SURVEY OF EXISTING IMPLEMENTATIONS
Traffic preemption devices are implemented in a variety of ways such as acoustic devices, line of
sight, and localized radio signals.
Acoustic Systems use audio sensors to detect the pattern of waves from the siren of an emergency
vehicle. . An example of an audio sensor is shown in Fig 1. Such a system can either be used
independently or it can also be used together with another system. Disadvantage of this system is
that traffic preemption can be easily triggered in the wrong direction or at the wrong intersection
as sound waves are reflected and traverse in all directions. Another disadvantage is the non-
uniformity of waves emitted from different sirens. A malicious illegal preemption can easily be
triggered by simulating the audio of a siren. The hardware for sensors and extra circuitry at each
intersection is an additional burden [2].
Figure 1. Acoustic Sensors installed at a Traffic Intersection.
Line-of-Sight traffic signal preemption systems emit a fine beam of infrared towards traffic lights
in front of the vehicle. Sensors at the intersection (depicted in Fig. 2) detect the beam and change
traffic lights accordingly to provide right-of-way to the emergency vehicle. A visible range strobe
light may also be used in some cases. Obstructions to the line-of-sight, pollutants and other
atmospheric conditions contribute to poor preemption. As with acoustic systems, the cost of
additional hardware in both the ambulance and the intersection is high. The system is insecure
and hardware to trigger preemption illegally can be easily forged [2].
Figure 2. Light-based emitters installed on an Ambulance.
Computer Science & Information Technology (CS & IT) 221
Radio-based traffic-preemption systems use radio signals to trigger preemption. This overcomes
most of the disadvantages of Line-of-sight and Acoustic systems. Radio-signals are not blocked
by visual obstructions, lighting or weather conditions. However additional hardware is still a
major expense [2]. The model proposed in this paper will make use of GPS technology to
overcome all the above limitations. The advantages of using such a system are listed in section
IV.
3. PROPOSED MODEL
The proposed model will use GPS hardware, already existing in most smart phones, to receive
and transmit GPS signals. These signals are transmitted to a central server which can
communicate to traffic signal controllers via Internet. The model consists of 3 main components
as depicted in Fig. 3.
• An Arduino Microcontroller at each traffic intersection with an Ethernet Shield to enable
it to connect to the Internet.
• An Android Application for an Android Smartphone will have to be carried by the staff
of each ambulance. This app will receive GPS coordinates and transmit the same to a web
server.
• A Web Server which receives GPS coordinates of all emergency vehicles and then sends
preemption signals to traffic signal controllers accordingly.
Figure 3. An ambulance (with an Android device) receives GPS coordinates from satellites and
then transmits the coordinates to the web server. The web server in turn computes position, speed
and other factors and then sends preemption commands to the corresponding traffic signal where
the ambulance is approaching.
3.1. Module 1: Arduino Microcontroller
Arduino is an Open Source Hardware platform. It consists of a microcontroller development
platform which can be programmed and a development environment for creating custom software
for the board. Additional capabilities can be provided using add-on boards. All the components
including Circuit diagrams and other specification is open-source and is available to modify [3].
In other words Arduino is a tiny microcontroller board with a number of connection sockets that
can be connected to external electronic components, such as microphones, relays, light sensors,
motors, laser diodes, buzzers etc. You can power an Arduino board either from a computer using
a USB cable or from a 9V DC power source. Once the program is uploaded the Arduino board
can be disconnected from the computer and can work independently.
222 Computer Science & Information Technology (CS & IT)
Figure 4. Arduino Uno
Additional capability can be added to the Arduino board by adding auxiliary boards (also known
as shields). The shields have pins in the same physical layout as the Arduino board, thus they can
simply be mounted on the headers of the Arduino board. The Arduino board controls the shield
by accessing the shields pins via the Arduino pins. Arduino provides some programming libraries
which allow users to easily include sensors and device in their projects instead of writing
programs from scratch. Some examples of Arduino shields are Arduino Ethernet Shield, Wi-Fi
Shield etc., that allows the board to connect to the internet and be networked with other devices
[4].
Figure 5. An Arduino Ethernet Shield mounted over an Arduino Uno [4].
In this proposed model, we will be using an Arduino Uno Microcontroller with an Arduino
Ethernet Shield that will perform the following functions:
• Normal Mode: Operate the traffic signal lights and buzzer normally, using pre-stored
timings in a cyclic manner.
• Accept preemption commands from the web server and switch to Emergency mode
smoothly by changing signal lights to the corresponding road.
• Accept return-to-normal mode commands from the web server and switch back to
Normal mode.
Computer Science & Information Technology (CS & IT) 223
3.2. Module 2: Android App using Location Manager
Android is a software stack for mobile devices that includes an operating system, middleware and
key applications. By providing an open development platform, android offers developers the
ability to build extremely rich and innovative applications. Developers have full access to the
same framework APIs used by the core applications. The architecture is designed to simplify the
reuse of components. Any application can make use of the capabilities of other applications. This
same mechanism allows components to be replaced by the user. The Android SDK provides the
tools and APIs necessary to begin developing applications on the Android platform [5].
GPS is a space-based satellite navigation system that provides location and time information
during all weathers anywhere on or near the earth, where there is an unobstructed line of sight to
four or more GPS satellites. Satellites measure accurate time by using an inbuilt atomic clock
which are of high-precision. At any given time a GPS receiver possesses information about the
position of a given satellite. By timing how long signals take to traverse the distance between the
satellite and the receiver, the precise location of the receiver can be computed.
A ground receiver can calculate its 3D position, that is latitude, longitude and altitude by mapping
the data from three different satellites. A fourth satellite may be used to improve accuracy and
correct errors in timing offsets between the clock in the satellite and that in the receiver. The more
satellites there are, the greater the accuracy is [6]. Android provides 4 classes to help developers
make use of inbuilt GPS receivers in smart phones. They are:
• Location Manager
• Location Provider
• Geocoding.
• Google Maps.
The proposed model will use an android application which will be used on a smart phone or tablet
installed in every ambulance. The app will use the Location Manager, and Location Provider to
perform the following functions:
• The app can only be accessed using a secure login.
• The staff of the emergency vehicle can then select a destination using Google Maps.
• The shortest path to the destination will be displayed.
• The staff can select a priority level and request an emergency status.
• Once the vehicle is declared as an emergency vehicle, the app will send regular updates to
the server, which consists of the geo-coordinates of the vehicle, obtained using GPS
Location Manager.
3.3. Module 3: Web Server
The primary function of a web server is to deliver web pages and files, on request to clients, using
the Hypertext Transfer Protocol (HTTP). The web server in the proposed model will perform the
following functions:
224 Computer Science & Information Technology (CS & IT)
• Will accept login authentication requests from android device app.
• Will accept emergency status requests from android app.
• Accepts and monitors geo-coordinates of declared emergency vehicles in a database on
the server.
• For each emergency vehicle, the closest approaching traffic signal is computed.
• Preemption commands are sent to the corresponding traffic controller.
• Commands are also sent to the traffic controller, to return to normal mode once the
emergency vehicle has passed.
• Maintains logs and statistics of preempted signals, emergency vehicles etc.
4. ADVANTAGES OF THE PROPOSED SYSTEM
The proposed system offers several advantages in terms of cost and the simplicity to implement
the system.
• By using an android based phone, the cost of implementing hardware on each and every
emergency vehicle is greatly reduced. The cost of owning a smart phone is being lowered
with newer and more economic models entering the market every week. The phone can
be used for other purposes by the hospital or dispatcher to know the status of the patient
and other details.
• The Arduino Microcontroller and Ethernet Shield that needs to be installed at every
traffic intersections is open source and comes at a market price of about Rs 4000 (appx.
$80). Since the hardware is open source, this cost can be lowered further if customized
manufacturing is done in bulk.
• GPS technology has improved a lot in recent years and it retrieves accurate locations.
Accurate atomic clocks in GPS satellites provide a way to calculate location that can be
precise to the closest millimeter.
• Due to accuracy of GPS there is very little chance of false triggering of preemption. In
contrast, Radio and Acoustic based systems can easily trigger preemption in the opposite
direction or at an intersection a few feet away.
• The entire system will have all the security benefits of a centralized secure web server.
Illegal hardware that can preempt signals cannot be purchased, as these will not be
recognized by the central server. In contrast, other systems such as Acoustic, Line of
Sight and Radio based implementations do not provide any kind of security against illegal
access. A clever analysis can be done and hardware can be forged.
The only demerit of the proposed system is that in densely populated cities, tall buildings may
prevent satellite signals in reaching the GPS receiver. This demerit doesn’t pose much threat as
Android smart phones are capable of computing location based on mobile tower triangulation and
also close range Wi-Fi signals.
The benefits and demerits of the proposed model as well as other implementations are tabulated
in Table 1.
Computer Science & Information Technology (CS & IT) 225
Table 1. Comparision Of Technologies.
Consideration
Acoustic
System
Line of Sight
System
Radio System
Proposed Model
(GPS)
Dedicate Emitter
Required?
No Yes Yes
No (smart phone
serves as emitter)
Susceptible to
Electronic Noise
Interference?
No No Yes No
Clear Line of Sight
Required?
Yes No No No
Affected by weather? No Yes No No
Possible Preemption
of Other Approaches
Yes No Yes No
Possibility of Illegal
Triggering of
Preemption
High High High Low
Centralized Traffic
Signal Monitoring
and Log Statistics
No No No Yes
5. CONCLUSION AND FUTURE SCOPE
The Arduino microcontroller once installed can be used for various other purposes:
• Smart Traffic Management: Using traffic data obtained from various sources such as
Google Traffic and Traffic updates from ground controllers, the same server-centric
model, using the same microcontroller can be used to slightly manipulate and vary traffic
signal timings to ease congested roads.
• The same microcontroller can also be used to display traffic updates on LED screens at
traffic signals, so commuters can avoid congested routes.
• Cameras, speed detecting sensors and other sensors can also be connected to the same
controller and violations can be viewed automatically at the Central office.
Since the Arduino microcontroller can be used with different types of hardware, this server-
centric model using Arduino and GPS can also be used for similar applications such as:
• Automated closing and opening of railway gates.
• Dynamic display of bus arrivals and bus timings at bus stops for passenger convenience.
• Anti-collision systems in railways.
226 Computer Science & Information Technology (CS & IT)
Our model presents a solution for the easy passage of emergency vehicles by means of
preemption of signals at intersections. We plan to implement a small scale working model, and
we will demonstrate the network feasibility and feasibility that it can be implemented as a real
world application. Traffic Signal Preemption if implemented can reduce emergency response
times and increase road safety with minimum inconvenience to regular traffic.
REFERENCES
[1] Sahar Z Shatnawi, Balqees A Mohammad , Alaa I Kalaf and Hussein R Al-zoubi. A Wireless Mobile-
Phone Approach to Traffic Signal Preemption for Faster Service of Emergency Vehicles.
International Journal of Computer Applications 46(3):35-41, May 2012. Published by Foundation of
Computer Science, New York, USA.
[2] January 2006, Traffic Signal Preemption for Emergency Vehicles: A Cross- Cutting Study, FHWA-
JPO-05-010. A report by U.S. Department of Transportation.
[3] Peter J. Gould, Daniel K. Fisher: “Open-Source Hardware Is a Low-Cost Alternative for Scientific
Instrumentation and Research”. Modern Instrumentation, 2012, 1, 8-20 doi:10.4236/mi.2012.12002
Published Online April 2012 (http://www.SciRP.org/journal/mi). ISSN Print: 2165-9257 ISSN
Online: 2165-9273
[4] Arduino http://www.arduino.cc
[5] Android Developers http://developer.android.com
[6] Jaizki Mendizabal; Roc Berenguer; Juan Melendez (2009). GPS and Galileo. McGraw Hill ISBN
978-0-07-159869-9.
[7] Collura, J. and Willhaus, E. W. 2001. Traffic Signal Preemption and Priority: Technologies, Past
Deployments, and System Requirements. Proceedings of the 11th ITS America, Florida, USA.
[8] Vreeken, J., Wiering, M., Veenen, and Koopman, A. 2004 Intelligent Traffic Light Control. Technical
report. UU-CS-2004-029.
[9] Global Traffic Technologies, LLC (GTT) http://www.gtt.com.
[10] Lin Dong, Wushan Chen. Real-Time Traffic Signal Timing for Urban Road Multi-intersection.
Intelligent Information Management Journal 2010. 21605912
[11] Manav Singhal, Anupam Shukla. Implementation of Location based Services in Android using GPS
and Web Services. International Journal of Computer Science Issues 2012. 16940784-16940814.
[12] Karan Mahajan, Manish Mahajan. Navigating the Current Location without the Availability of GPS.
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958,
Volume-2, Issue-3, February 2013.

Mais conteúdo relacionado

Mais procurados

SMART MONITORING OF AUTOMOBILE USING IOT
SMART MONITORING OF AUTOMOBILE USING IOTSMART MONITORING OF AUTOMOBILE USING IOT
SMART MONITORING OF AUTOMOBILE USING IOTJournal For Research
 
RFID based design for vehicle location system
RFID based design for vehicle location systemRFID based design for vehicle location system
RFID based design for vehicle location systemmsc84
 
IRJET - A Design Thinking based Smart Parking System for Vehicle Parking ...
IRJET -  	  A Design Thinking based Smart Parking System for Vehicle Parking ...IRJET -  	  A Design Thinking based Smart Parking System for Vehicle Parking ...
IRJET - A Design Thinking based Smart Parking System for Vehicle Parking ...IRJET Journal
 
Inginious Trafalgar Contrivition System
Inginious Trafalgar Contrivition SystemInginious Trafalgar Contrivition System
Inginious Trafalgar Contrivition SystemIJSRED
 
IRJET-Smart Parking System
IRJET-Smart Parking SystemIRJET-Smart Parking System
IRJET-Smart Parking SystemIRJET Journal
 
IRJET- Emergency Vehicle Pre-Emption using Smart City Concept
IRJET- Emergency Vehicle Pre-Emption using Smart City ConceptIRJET- Emergency Vehicle Pre-Emption using Smart City Concept
IRJET- Emergency Vehicle Pre-Emption using Smart City ConceptIRJET Journal
 
ITS "Intelligent Transportation System" Guided Vehicle using IOT Project
ITS "Intelligent Transportation System" Guided Vehicle using IOT ProjectITS "Intelligent Transportation System" Guided Vehicle using IOT Project
ITS "Intelligent Transportation System" Guided Vehicle using IOT ProjectMohamed Abd Ela'al
 
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...IRJET Journal
 
IoT in Transportation Sector
IoT in Transportation SectorIoT in Transportation Sector
IoT in Transportation SectorMd. Sohag Miah
 
IRJET- Intelligent Transport System using IoT
IRJET- Intelligent Transport System using IoTIRJET- Intelligent Transport System using IoT
IRJET- Intelligent Transport System using IoTIRJET Journal
 
IRJET- Automatic Detection of Crack Fault in Railway Track
IRJET- Automatic Detection of Crack Fault in Railway TrackIRJET- Automatic Detection of Crack Fault in Railway Track
IRJET- Automatic Detection of Crack Fault in Railway TrackIRJET Journal
 
Design and implement WSN/IOT smart parking management system using microcontr...
Design and implement WSN/IOT smart parking management system using microcontr...Design and implement WSN/IOT smart parking management system using microcontr...
Design and implement WSN/IOT smart parking management system using microcontr...IJECEIAES
 
IRJET- High Responsive Smart Parking System using IoT
IRJET- High Responsive Smart Parking System using IoTIRJET- High Responsive Smart Parking System using IoT
IRJET- High Responsive Smart Parking System using IoTIRJET Journal
 
THE SMART PARKING MANAGEMENT SYSTEM
THE SMART PARKING MANAGEMENT SYSTEMTHE SMART PARKING MANAGEMENT SYSTEM
THE SMART PARKING MANAGEMENT SYSTEMijcsit
 
Safety check IoT Automobile
Safety check IoT AutomobileSafety check IoT Automobile
Safety check IoT AutomobileAkshank Shah
 
SMART CAR-PARKING SYSTEM USING IOT
SMART CAR-PARKING SYSTEM USING IOTSMART CAR-PARKING SYSTEM USING IOT
SMART CAR-PARKING SYSTEM USING IOTSaipandu143
 
Automatic Free Parking Slot Status Intimating System
Automatic Free Parking Slot Status Intimating SystemAutomatic Free Parking Slot Status Intimating System
Automatic Free Parking Slot Status Intimating SystemIRJET Journal
 
IRJET - IoT based Smart Vehicle Alert System for Accident Prevention
IRJET -  	  IoT based Smart Vehicle Alert System for Accident PreventionIRJET -  	  IoT based Smart Vehicle Alert System for Accident Prevention
IRJET - IoT based Smart Vehicle Alert System for Accident PreventionIRJET Journal
 
ACCIDENT PREVENTION AND DETECTION SYSTEM
ACCIDENT PREVENTION AND DETECTION SYSTEMACCIDENT PREVENTION AND DETECTION SYSTEM
ACCIDENT PREVENTION AND DETECTION SYSTEManand bedre
 

Mais procurados (20)

Iot car parking system
Iot car parking systemIot car parking system
Iot car parking system
 
SMART MONITORING OF AUTOMOBILE USING IOT
SMART MONITORING OF AUTOMOBILE USING IOTSMART MONITORING OF AUTOMOBILE USING IOT
SMART MONITORING OF AUTOMOBILE USING IOT
 
RFID based design for vehicle location system
RFID based design for vehicle location systemRFID based design for vehicle location system
RFID based design for vehicle location system
 
IRJET - A Design Thinking based Smart Parking System for Vehicle Parking ...
IRJET -  	  A Design Thinking based Smart Parking System for Vehicle Parking ...IRJET -  	  A Design Thinking based Smart Parking System for Vehicle Parking ...
IRJET - A Design Thinking based Smart Parking System for Vehicle Parking ...
 
Inginious Trafalgar Contrivition System
Inginious Trafalgar Contrivition SystemInginious Trafalgar Contrivition System
Inginious Trafalgar Contrivition System
 
IRJET-Smart Parking System
IRJET-Smart Parking SystemIRJET-Smart Parking System
IRJET-Smart Parking System
 
IRJET- Emergency Vehicle Pre-Emption using Smart City Concept
IRJET- Emergency Vehicle Pre-Emption using Smart City ConceptIRJET- Emergency Vehicle Pre-Emption using Smart City Concept
IRJET- Emergency Vehicle Pre-Emption using Smart City Concept
 
ITS "Intelligent Transportation System" Guided Vehicle using IOT Project
ITS "Intelligent Transportation System" Guided Vehicle using IOT ProjectITS "Intelligent Transportation System" Guided Vehicle using IOT Project
ITS "Intelligent Transportation System" Guided Vehicle using IOT Project
 
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...
IRJET- Smart Parking System using Facial Recognition, Optical Character Recog...
 
IoT in Transportation Sector
IoT in Transportation SectorIoT in Transportation Sector
IoT in Transportation Sector
 
IRJET- Intelligent Transport System using IoT
IRJET- Intelligent Transport System using IoTIRJET- Intelligent Transport System using IoT
IRJET- Intelligent Transport System using IoT
 
IRJET- Automatic Detection of Crack Fault in Railway Track
IRJET- Automatic Detection of Crack Fault in Railway TrackIRJET- Automatic Detection of Crack Fault in Railway Track
IRJET- Automatic Detection of Crack Fault in Railway Track
 
Design and implement WSN/IOT smart parking management system using microcontr...
Design and implement WSN/IOT smart parking management system using microcontr...Design and implement WSN/IOT smart parking management system using microcontr...
Design and implement WSN/IOT smart parking management system using microcontr...
 
IRJET- High Responsive Smart Parking System using IoT
IRJET- High Responsive Smart Parking System using IoTIRJET- High Responsive Smart Parking System using IoT
IRJET- High Responsive Smart Parking System using IoT
 
THE SMART PARKING MANAGEMENT SYSTEM
THE SMART PARKING MANAGEMENT SYSTEMTHE SMART PARKING MANAGEMENT SYSTEM
THE SMART PARKING MANAGEMENT SYSTEM
 
Safety check IoT Automobile
Safety check IoT AutomobileSafety check IoT Automobile
Safety check IoT Automobile
 
SMART CAR-PARKING SYSTEM USING IOT
SMART CAR-PARKING SYSTEM USING IOTSMART CAR-PARKING SYSTEM USING IOT
SMART CAR-PARKING SYSTEM USING IOT
 
Automatic Free Parking Slot Status Intimating System
Automatic Free Parking Slot Status Intimating SystemAutomatic Free Parking Slot Status Intimating System
Automatic Free Parking Slot Status Intimating System
 
IRJET - IoT based Smart Vehicle Alert System for Accident Prevention
IRJET -  	  IoT based Smart Vehicle Alert System for Accident PreventionIRJET -  	  IoT based Smart Vehicle Alert System for Accident Prevention
IRJET - IoT based Smart Vehicle Alert System for Accident Prevention
 
ACCIDENT PREVENTION AND DETECTION SYSTEM
ACCIDENT PREVENTION AND DETECTION SYSTEMACCIDENT PREVENTION AND DETECTION SYSTEM
ACCIDENT PREVENTION AND DETECTION SYSTEM
 

Destaque

Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...
Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...
Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...SlideTeam.net
 
Lan based intelligent traffic light system with emergency service identification
Lan based intelligent traffic light system with emergency service identificationLan based intelligent traffic light system with emergency service identification
Lan based intelligent traffic light system with emergency service identificationIjrdt Journal
 
Road Safety Engineering
Road Safety EngineeringRoad Safety Engineering
Road Safety EngineeringAshish Parihar
 
Epidemiology, prevention and control of road traffic accidents
Epidemiology, prevention and control of road traffic accidentsEpidemiology, prevention and control of road traffic accidents
Epidemiology, prevention and control of road traffic accidentsBrig(Dr) Hemant Kumar
 
Database marketing, part 1 roadmap to success
Database marketing, part 1 roadmap to successDatabase marketing, part 1 roadmap to success
Database marketing, part 1 roadmap to successRelevate
 
Traffic light.ppt (1)
Traffic light.ppt (1)Traffic light.ppt (1)
Traffic light.ppt (1)chelseaaaaad
 
Traffic light controller
Traffic light controllerTraffic light controller
Traffic light controllerRkrishna Mishra
 
Indian transportation system
Indian transportation systemIndian transportation system
Indian transportation systemRichard Jackson
 

Destaque (10)

Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...
Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...
Roadway highway freeway exit signs billboards signs exit labels powerpoint pp...
 
Lan based intelligent traffic light system with emergency service identification
Lan based intelligent traffic light system with emergency service identificationLan based intelligent traffic light system with emergency service identification
Lan based intelligent traffic light system with emergency service identification
 
Road Safety Engineering
Road Safety EngineeringRoad Safety Engineering
Road Safety Engineering
 
Epidemiology, prevention and control of road traffic accidents
Epidemiology, prevention and control of road traffic accidentsEpidemiology, prevention and control of road traffic accidents
Epidemiology, prevention and control of road traffic accidents
 
Highway presentation
Highway presentationHighway presentation
Highway presentation
 
Database marketing, part 1 roadmap to success
Database marketing, part 1 roadmap to successDatabase marketing, part 1 roadmap to success
Database marketing, part 1 roadmap to success
 
Traffic light.ppt (1)
Traffic light.ppt (1)Traffic light.ppt (1)
Traffic light.ppt (1)
 
Introduction to road safety
Introduction to road safetyIntroduction to road safety
Introduction to road safety
 
Traffic light controller
Traffic light controllerTraffic light controller
Traffic light controller
 
Indian transportation system
Indian transportation systemIndian transportation system
Indian transportation system
 

Semelhante a A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTEM (GPS)

Vehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficVehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficeSAT Journals
 
Vehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficVehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficeSAT Publishing House
 
G041024547
G041024547G041024547
G041024547IOSR-JEN
 
Train control system using can protocol
Train control system using can protocolTrain control system using can protocol
Train control system using can protocolIRJET Journal
 
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...IRJET Journal
 
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...IRJET Journal
 
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...IRJET- Smart Accident Detection and Emergency Notification System using IoT a...
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...IRJET Journal
 
Vehicle Tracking System by Arduino UNO
Vehicle Tracking System by Arduino UNOVehicle Tracking System by Arduino UNO
Vehicle Tracking System by Arduino UNOPulkit Singhal
 
IRJET- Automatic Railway Crack Locator
IRJET-	 Automatic Railway Crack LocatorIRJET-	 Automatic Railway Crack Locator
IRJET- Automatic Railway Crack LocatorIRJET Journal
 
IRJET- A Vehicle to Vehicle Communication System
IRJET-  	  A Vehicle to Vehicle Communication SystemIRJET-  	  A Vehicle to Vehicle Communication System
IRJET- A Vehicle to Vehicle Communication SystemIRJET Journal
 
Object collision avoidance with train using android
Object collision avoidance with train using androidObject collision avoidance with train using android
Object collision avoidance with train using androideSAT Publishing House
 
IRJET- Density based Traffic Controller with Defaulter Identification using IoT
IRJET- Density based Traffic Controller with Defaulter Identification using IoTIRJET- Density based Traffic Controller with Defaulter Identification using IoT
IRJET- Density based Traffic Controller with Defaulter Identification using IoTIRJET Journal
 
IRJET- Automotive Collision Avoidance System
IRJET-  	  Automotive Collision Avoidance SystemIRJET-  	  Automotive Collision Avoidance System
IRJET- Automotive Collision Avoidance SystemIRJET Journal
 
Automatic Vehicle Locator(AVL) Seminar report
 Automatic Vehicle Locator(AVL) Seminar report Automatic Vehicle Locator(AVL) Seminar report
Automatic Vehicle Locator(AVL) Seminar reportRohit Kumar patel
 
IRJET- A Review on Accident Prevention Methods at Railway Line Crossings
IRJET-  	  A Review on Accident Prevention Methods at Railway Line CrossingsIRJET-  	  A Review on Accident Prevention Methods at Railway Line Crossings
IRJET- A Review on Accident Prevention Methods at Railway Line CrossingsIRJET Journal
 
IOT Based Smart Ambulance Monitoring System with Traffic Light Control
IOT Based Smart Ambulance Monitoring System with Traffic Light ControlIOT Based Smart Ambulance Monitoring System with Traffic Light Control
IOT Based Smart Ambulance Monitoring System with Traffic Light ControlIRJET Journal
 
Development of Internet of Things based Decision Support for Vehicle Drivers ...
Development of Internet of Things based Decision Support for Vehicle Drivers ...Development of Internet of Things based Decision Support for Vehicle Drivers ...
Development of Internet of Things based Decision Support for Vehicle Drivers ...IJCSIS Research Publications
 
Embedded system for traffic light control
Embedded system for traffic light controlEmbedded system for traffic light control
Embedded system for traffic light controlMadhu Prasad
 

Semelhante a A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTEM (GPS) (20)

Vehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficVehicle density sensor system to manage traffic
Vehicle density sensor system to manage traffic
 
Vehicle density sensor system to manage traffic
Vehicle density sensor system to manage trafficVehicle density sensor system to manage traffic
Vehicle density sensor system to manage traffic
 
G041024547
G041024547G041024547
G041024547
 
Train control system using can protocol
Train control system using can protocolTrain control system using can protocol
Train control system using can protocol
 
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...
IRJET - A Real-Time Pothole Detection Approach for a Safety Transportation Sy...
 
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...
IRJET - Automatic Potholes Detection and Alert System with Speed Reduction Fe...
 
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...IRJET- Smart Accident Detection and Emergency Notification System using IoT a...
IRJET- Smart Accident Detection and Emergency Notification System using IoT a...
 
Vehicle Tracking System by Arduino UNO
Vehicle Tracking System by Arduino UNOVehicle Tracking System by Arduino UNO
Vehicle Tracking System by Arduino UNO
 
IRJET- Automatic Railway Crack Locator
IRJET-	 Automatic Railway Crack LocatorIRJET-	 Automatic Railway Crack Locator
IRJET- Automatic Railway Crack Locator
 
IRJET- A Vehicle to Vehicle Communication System
IRJET-  	  A Vehicle to Vehicle Communication SystemIRJET-  	  A Vehicle to Vehicle Communication System
IRJET- A Vehicle to Vehicle Communication System
 
Object collision avoidance with train using android
Object collision avoidance with train using androidObject collision avoidance with train using android
Object collision avoidance with train using android
 
IRJET- Density based Traffic Controller with Defaulter Identification using IoT
IRJET- Density based Traffic Controller with Defaulter Identification using IoTIRJET- Density based Traffic Controller with Defaulter Identification using IoT
IRJET- Density based Traffic Controller with Defaulter Identification using IoT
 
IRJET- Automotive Collision Avoidance System
IRJET-  	  Automotive Collision Avoidance SystemIRJET-  	  Automotive Collision Avoidance System
IRJET- Automotive Collision Avoidance System
 
Project-FINAL
Project-FINALProject-FINAL
Project-FINAL
 
Ie3415061510
Ie3415061510Ie3415061510
Ie3415061510
 
Automatic Vehicle Locator(AVL) Seminar report
 Automatic Vehicle Locator(AVL) Seminar report Automatic Vehicle Locator(AVL) Seminar report
Automatic Vehicle Locator(AVL) Seminar report
 
IRJET- A Review on Accident Prevention Methods at Railway Line Crossings
IRJET-  	  A Review on Accident Prevention Methods at Railway Line CrossingsIRJET-  	  A Review on Accident Prevention Methods at Railway Line Crossings
IRJET- A Review on Accident Prevention Methods at Railway Line Crossings
 
IOT Based Smart Ambulance Monitoring System with Traffic Light Control
IOT Based Smart Ambulance Monitoring System with Traffic Light ControlIOT Based Smart Ambulance Monitoring System with Traffic Light Control
IOT Based Smart Ambulance Monitoring System with Traffic Light Control
 
Development of Internet of Things based Decision Support for Vehicle Drivers ...
Development of Internet of Things based Decision Support for Vehicle Drivers ...Development of Internet of Things based Decision Support for Vehicle Drivers ...
Development of Internet of Things based Decision Support for Vehicle Drivers ...
 
Embedded system for traffic light control
Embedded system for traffic light controlEmbedded system for traffic light control
Embedded system for traffic light control
 

Último

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 

Último (20)

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTEM (GPS)

  • 1. Sundarapandian et al. (Eds) : ACITY, AIAA, CNSA, DPPR, NeCoM, WeST, DMS, P2PTM, VLSI - 2013 pp. 219–226, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3423 A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTEM (GPS) Nikhil Mascarenhas1 , Pradeep G1 , Manish Agrawal1 , Subash P1 , Ajina A2 1 Final year B.E.(Information Science and Engineering, Sir M. Visvesvaraya Institute of Technology, Bangalore. 2 Faculty, Dept. Of Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology, Bangalore. ABSTRACT A Traffic Signal Preemption system is an automated system that allows normal operation of traffic lights at automated signalized intersections to be preempted. Preemption of signals is generally done to assist emergency vehicles, such as ambulances, so that response times are reduced and right-of-way is provided in a smooth and controlled manner. This paper proposes an innovative and cost-effective server-centric model to facilitate preemption using a simple mobile phone app which uses Global Positioning System (GPS) and a microcontroller which controls traffic signals. KEYWORDS Traffic Signal Preemption, GPS, Mobile Application, Arduino Microcontroller, Emergency Vehicle, Road Traffic, Traffic Management. 1. INTRODUCTION Human Life is a valuable asset for a country. Accidents and Medical emergencies such as fire, road accidents, heart attacks etc. occur every day. It is critical for emergency teams to reach the accident spot so as to save human lives. Thus, hospitals and fire stations are spread evenly across the city to reduce response time. However rapid population growth in cities has resulted in high traffic densities on city roads. This is an additional hindrance to fire, ambulance and other emergency vehicles [1]. Conventionally, commuters give way to emergency vehicles, on hearing the vehicle’s siren. However since most traffic signals today are automated, an emergency vehicle passing an intersection poses danger to traffic approaching the signal from other roads. Thus an emergency vehicle has to wait for the entire traffic signal cycle to complete in order to pass the intersection. This imposes considerable delay in response time. Other means of transport such as air ambulances are expensive and not feasible for small cities [1]. Thus, Traffic Signal Preemption is the need of the hour, in large cities where traffic densities are ever increasing. Traffic signal Preemption helps in reducing delay and increasing response time and road safety with minimum cost. Several existing technologies use stand-alone hardware to
  • 2. 220 Computer Science & Information Technology (CS & IT) achieve this goal. In this paper, we present an innovative and economic solution that uses the accuracy of GPS and the advantages of a server-centric networked system. The paper is organized as follows. In Section II we discuss existing implementation, the technologies used and their disadvantages. . We discuss the design of the proposed system in Section III. In Section IV the advantages of the proposed system are discussed and in Section V we discuss the future scope and possible enhancements. 2. SURVEY OF EXISTING IMPLEMENTATIONS Traffic preemption devices are implemented in a variety of ways such as acoustic devices, line of sight, and localized radio signals. Acoustic Systems use audio sensors to detect the pattern of waves from the siren of an emergency vehicle. . An example of an audio sensor is shown in Fig 1. Such a system can either be used independently or it can also be used together with another system. Disadvantage of this system is that traffic preemption can be easily triggered in the wrong direction or at the wrong intersection as sound waves are reflected and traverse in all directions. Another disadvantage is the non- uniformity of waves emitted from different sirens. A malicious illegal preemption can easily be triggered by simulating the audio of a siren. The hardware for sensors and extra circuitry at each intersection is an additional burden [2]. Figure 1. Acoustic Sensors installed at a Traffic Intersection. Line-of-Sight traffic signal preemption systems emit a fine beam of infrared towards traffic lights in front of the vehicle. Sensors at the intersection (depicted in Fig. 2) detect the beam and change traffic lights accordingly to provide right-of-way to the emergency vehicle. A visible range strobe light may also be used in some cases. Obstructions to the line-of-sight, pollutants and other atmospheric conditions contribute to poor preemption. As with acoustic systems, the cost of additional hardware in both the ambulance and the intersection is high. The system is insecure and hardware to trigger preemption illegally can be easily forged [2]. Figure 2. Light-based emitters installed on an Ambulance.
  • 3. Computer Science & Information Technology (CS & IT) 221 Radio-based traffic-preemption systems use radio signals to trigger preemption. This overcomes most of the disadvantages of Line-of-sight and Acoustic systems. Radio-signals are not blocked by visual obstructions, lighting or weather conditions. However additional hardware is still a major expense [2]. The model proposed in this paper will make use of GPS technology to overcome all the above limitations. The advantages of using such a system are listed in section IV. 3. PROPOSED MODEL The proposed model will use GPS hardware, already existing in most smart phones, to receive and transmit GPS signals. These signals are transmitted to a central server which can communicate to traffic signal controllers via Internet. The model consists of 3 main components as depicted in Fig. 3. • An Arduino Microcontroller at each traffic intersection with an Ethernet Shield to enable it to connect to the Internet. • An Android Application for an Android Smartphone will have to be carried by the staff of each ambulance. This app will receive GPS coordinates and transmit the same to a web server. • A Web Server which receives GPS coordinates of all emergency vehicles and then sends preemption signals to traffic signal controllers accordingly. Figure 3. An ambulance (with an Android device) receives GPS coordinates from satellites and then transmits the coordinates to the web server. The web server in turn computes position, speed and other factors and then sends preemption commands to the corresponding traffic signal where the ambulance is approaching. 3.1. Module 1: Arduino Microcontroller Arduino is an Open Source Hardware platform. It consists of a microcontroller development platform which can be programmed and a development environment for creating custom software for the board. Additional capabilities can be provided using add-on boards. All the components including Circuit diagrams and other specification is open-source and is available to modify [3]. In other words Arduino is a tiny microcontroller board with a number of connection sockets that can be connected to external electronic components, such as microphones, relays, light sensors, motors, laser diodes, buzzers etc. You can power an Arduino board either from a computer using a USB cable or from a 9V DC power source. Once the program is uploaded the Arduino board can be disconnected from the computer and can work independently.
  • 4. 222 Computer Science & Information Technology (CS & IT) Figure 4. Arduino Uno Additional capability can be added to the Arduino board by adding auxiliary boards (also known as shields). The shields have pins in the same physical layout as the Arduino board, thus they can simply be mounted on the headers of the Arduino board. The Arduino board controls the shield by accessing the shields pins via the Arduino pins. Arduino provides some programming libraries which allow users to easily include sensors and device in their projects instead of writing programs from scratch. Some examples of Arduino shields are Arduino Ethernet Shield, Wi-Fi Shield etc., that allows the board to connect to the internet and be networked with other devices [4]. Figure 5. An Arduino Ethernet Shield mounted over an Arduino Uno [4]. In this proposed model, we will be using an Arduino Uno Microcontroller with an Arduino Ethernet Shield that will perform the following functions: • Normal Mode: Operate the traffic signal lights and buzzer normally, using pre-stored timings in a cyclic manner. • Accept preemption commands from the web server and switch to Emergency mode smoothly by changing signal lights to the corresponding road. • Accept return-to-normal mode commands from the web server and switch back to Normal mode.
  • 5. Computer Science & Information Technology (CS & IT) 223 3.2. Module 2: Android App using Location Manager Android is a software stack for mobile devices that includes an operating system, middleware and key applications. By providing an open development platform, android offers developers the ability to build extremely rich and innovative applications. Developers have full access to the same framework APIs used by the core applications. The architecture is designed to simplify the reuse of components. Any application can make use of the capabilities of other applications. This same mechanism allows components to be replaced by the user. The Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform [5]. GPS is a space-based satellite navigation system that provides location and time information during all weathers anywhere on or near the earth, where there is an unobstructed line of sight to four or more GPS satellites. Satellites measure accurate time by using an inbuilt atomic clock which are of high-precision. At any given time a GPS receiver possesses information about the position of a given satellite. By timing how long signals take to traverse the distance between the satellite and the receiver, the precise location of the receiver can be computed. A ground receiver can calculate its 3D position, that is latitude, longitude and altitude by mapping the data from three different satellites. A fourth satellite may be used to improve accuracy and correct errors in timing offsets between the clock in the satellite and that in the receiver. The more satellites there are, the greater the accuracy is [6]. Android provides 4 classes to help developers make use of inbuilt GPS receivers in smart phones. They are: • Location Manager • Location Provider • Geocoding. • Google Maps. The proposed model will use an android application which will be used on a smart phone or tablet installed in every ambulance. The app will use the Location Manager, and Location Provider to perform the following functions: • The app can only be accessed using a secure login. • The staff of the emergency vehicle can then select a destination using Google Maps. • The shortest path to the destination will be displayed. • The staff can select a priority level and request an emergency status. • Once the vehicle is declared as an emergency vehicle, the app will send regular updates to the server, which consists of the geo-coordinates of the vehicle, obtained using GPS Location Manager. 3.3. Module 3: Web Server The primary function of a web server is to deliver web pages and files, on request to clients, using the Hypertext Transfer Protocol (HTTP). The web server in the proposed model will perform the following functions:
  • 6. 224 Computer Science & Information Technology (CS & IT) • Will accept login authentication requests from android device app. • Will accept emergency status requests from android app. • Accepts and monitors geo-coordinates of declared emergency vehicles in a database on the server. • For each emergency vehicle, the closest approaching traffic signal is computed. • Preemption commands are sent to the corresponding traffic controller. • Commands are also sent to the traffic controller, to return to normal mode once the emergency vehicle has passed. • Maintains logs and statistics of preempted signals, emergency vehicles etc. 4. ADVANTAGES OF THE PROPOSED SYSTEM The proposed system offers several advantages in terms of cost and the simplicity to implement the system. • By using an android based phone, the cost of implementing hardware on each and every emergency vehicle is greatly reduced. The cost of owning a smart phone is being lowered with newer and more economic models entering the market every week. The phone can be used for other purposes by the hospital or dispatcher to know the status of the patient and other details. • The Arduino Microcontroller and Ethernet Shield that needs to be installed at every traffic intersections is open source and comes at a market price of about Rs 4000 (appx. $80). Since the hardware is open source, this cost can be lowered further if customized manufacturing is done in bulk. • GPS technology has improved a lot in recent years and it retrieves accurate locations. Accurate atomic clocks in GPS satellites provide a way to calculate location that can be precise to the closest millimeter. • Due to accuracy of GPS there is very little chance of false triggering of preemption. In contrast, Radio and Acoustic based systems can easily trigger preemption in the opposite direction or at an intersection a few feet away. • The entire system will have all the security benefits of a centralized secure web server. Illegal hardware that can preempt signals cannot be purchased, as these will not be recognized by the central server. In contrast, other systems such as Acoustic, Line of Sight and Radio based implementations do not provide any kind of security against illegal access. A clever analysis can be done and hardware can be forged. The only demerit of the proposed system is that in densely populated cities, tall buildings may prevent satellite signals in reaching the GPS receiver. This demerit doesn’t pose much threat as Android smart phones are capable of computing location based on mobile tower triangulation and also close range Wi-Fi signals. The benefits and demerits of the proposed model as well as other implementations are tabulated in Table 1.
  • 7. Computer Science & Information Technology (CS & IT) 225 Table 1. Comparision Of Technologies. Consideration Acoustic System Line of Sight System Radio System Proposed Model (GPS) Dedicate Emitter Required? No Yes Yes No (smart phone serves as emitter) Susceptible to Electronic Noise Interference? No No Yes No Clear Line of Sight Required? Yes No No No Affected by weather? No Yes No No Possible Preemption of Other Approaches Yes No Yes No Possibility of Illegal Triggering of Preemption High High High Low Centralized Traffic Signal Monitoring and Log Statistics No No No Yes 5. CONCLUSION AND FUTURE SCOPE The Arduino microcontroller once installed can be used for various other purposes: • Smart Traffic Management: Using traffic data obtained from various sources such as Google Traffic and Traffic updates from ground controllers, the same server-centric model, using the same microcontroller can be used to slightly manipulate and vary traffic signal timings to ease congested roads. • The same microcontroller can also be used to display traffic updates on LED screens at traffic signals, so commuters can avoid congested routes. • Cameras, speed detecting sensors and other sensors can also be connected to the same controller and violations can be viewed automatically at the Central office. Since the Arduino microcontroller can be used with different types of hardware, this server- centric model using Arduino and GPS can also be used for similar applications such as: • Automated closing and opening of railway gates. • Dynamic display of bus arrivals and bus timings at bus stops for passenger convenience. • Anti-collision systems in railways.
  • 8. 226 Computer Science & Information Technology (CS & IT) Our model presents a solution for the easy passage of emergency vehicles by means of preemption of signals at intersections. We plan to implement a small scale working model, and we will demonstrate the network feasibility and feasibility that it can be implemented as a real world application. Traffic Signal Preemption if implemented can reduce emergency response times and increase road safety with minimum inconvenience to regular traffic. REFERENCES [1] Sahar Z Shatnawi, Balqees A Mohammad , Alaa I Kalaf and Hussein R Al-zoubi. A Wireless Mobile- Phone Approach to Traffic Signal Preemption for Faster Service of Emergency Vehicles. International Journal of Computer Applications 46(3):35-41, May 2012. Published by Foundation of Computer Science, New York, USA. [2] January 2006, Traffic Signal Preemption for Emergency Vehicles: A Cross- Cutting Study, FHWA- JPO-05-010. A report by U.S. Department of Transportation. [3] Peter J. Gould, Daniel K. Fisher: “Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research”. Modern Instrumentation, 2012, 1, 8-20 doi:10.4236/mi.2012.12002 Published Online April 2012 (http://www.SciRP.org/journal/mi). ISSN Print: 2165-9257 ISSN Online: 2165-9273 [4] Arduino http://www.arduino.cc [5] Android Developers http://developer.android.com [6] Jaizki Mendizabal; Roc Berenguer; Juan Melendez (2009). GPS and Galileo. McGraw Hill ISBN 978-0-07-159869-9. [7] Collura, J. and Willhaus, E. W. 2001. Traffic Signal Preemption and Priority: Technologies, Past Deployments, and System Requirements. Proceedings of the 11th ITS America, Florida, USA. [8] Vreeken, J., Wiering, M., Veenen, and Koopman, A. 2004 Intelligent Traffic Light Control. Technical report. UU-CS-2004-029. [9] Global Traffic Technologies, LLC (GTT) http://www.gtt.com. [10] Lin Dong, Wushan Chen. Real-Time Traffic Signal Timing for Urban Road Multi-intersection. Intelligent Information Management Journal 2010. 21605912 [11] Manav Singhal, Anupam Shukla. Implementation of Location based Services in Android using GPS and Web Services. International Journal of Computer Science Issues 2012. 16940784-16940814. [12] Karan Mahajan, Manish Mahajan. Navigating the Current Location without the Availability of GPS. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-3, February 2013.