SlideShare uma empresa Scribd logo
1 de 36
Baixar para ler offline
Dott.ssa Donatella Cocca
Definizione di Intervallo
Prima di definire cosa è il Limite di una funzione, dobbiamo capire
cosa è un punto di accumulazione.


Def (Intervallo): Si definisce intervallo chiuso di centro x0 e raggio
d un insieme del tipo:
                        I={x∈R: x∈[x0-d, x0+d]}
Si definisce intervallo aperto di centro x0 e raggio d un insieme del
tipo:
                       I={x∈R: x∈ ] x0-d, x0+d[ }
Dunque un intervallo è detto chiuso se contiene gli estremi, aperto se
non li contiene. Un intervallo può contenere buchi, ad esempio essendo
definito privo del proprio punto centrale.
Punto di accumulazione
Def (Punto di accumulazione): Si dice che x0 è punto di
accumulazione se ogni intervallo I di centro x0 contiene infiniti punti.

Il concetto di punto di accumulazione è uno strumento per studiare il
comportamento delle funzioni in un intorno infinitamente piccolo di un
punto. Affermare che un punto è di accumulazione significa assicurarsi
l’esistenza di tutti i punti infinitamente vicini a quel punto e, quindi, di
poter operare su di essi.


  Nozione di limite finito di una funzione in un punto
Data una funzione reale y = f(x) definita in un insieme X⊆R, detto c un
punto d’accumulazione per X, appartenente o no a X, vogliamo studiare
il comportamento della funzione in un intorno di c, cioè in prossimità di
c.
Limite finito di una funzione
Ci proponiamo, quindi, di esaminare l’insieme dei valori che assume la
funzione f(x), quando la x si “avvicina indefinitamente” a c.
Precisamente, se avviene che il corrispondente valore di f(x) si
“avvicina indefinitamente” ad una costante L, all’avvicinarsi
indefinitamente di x a c, si dice che L è il limite della funzione y = f(x),
per x tendente a c nell’intorno di c, e si scrive:

                           lim f ( x ) = L
                            x→c


La precedente definizione ci dà una cognizione intuitiva del concetto di
limite.
Volendo precisare tale concetto in modo rigoroso, dobbiamo valutare di
quanto la x dovrà avvicinarci a c affinché il valore della funzione si
avvicini a L di quel tanto stabilito.
Limite finito di una funzione
Una definizione rigorosa del concetto di limite è la seguente.
Def.(Limite finito di una funzione) Sia y = f(x) una funzione
definita in un insieme X e sia c un punto d’accumulazione per X. Si dice
che la funzione f(x) tende a L (o ha per limite L ), per x che tende a c,
se la f(x) assume valori che differiscono da L, in valore assoluto, per
non più di ε, ossia:
lim f ( x ) = L ⇔ ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c − δ c , c + δ c ) − {c}
 x→c


                     si ha      f(x) - L < ε
Per verificare se un dato numero L è il limite di f(x) per x→c si deve
risolvere la disequazione |f(x)-L|<ε : se le soluzioni di questa
costituiscono, qualunque sia ε >0, un intorno completo di c, escluso al
più c, allora L è il limite di f(x) per x→c; mentre se la disequazione non
è verificata in un intorno di c, oppure non è mai verificata, L non è
limite di f(x) per x→c.
Limite di una funzione
Esempio1: Verificare che: lim( x + 2 ) = 8
                           x→6

Bisogna verificare che in un intorno di c = 6 la disequazione:
                              |(x+2)-8|<ε
è soddisfatta per ogni scelta di ε>0. Si ha:
     (x + 2 ) − 8 < ε ⇒    x + 2 − 8 < ε ⇒ x − 6 < ε cioè
              -ε < x -6 < ε ⇒ 6 -ε < x < 6 +ε
Essendo l’intervallo 6-ε<x<6+ε un intorno di c = 6, con δc=ε, segue
che la disequazione |(x+2)-8|<ε è verificata intorno a 6. Pertanto il
limite proposto è vero.
Limite infinito di una funzione
Consideriamo la funzione f(x)=1/(x2) definita per x ≠ 0 e sempre
positiva. Si può osservare che i valori della funzione diventano sempre
più grandi man mano che x si avvicina a zero, cioè lim f ( x ) = ∞ .
                                                     x→0

Ciò significa che se scegliamo ad arbitrio un numero positivo E, grande
a piacere, la disequazione 1 x > E è soddisfatta in un intorno di 0.
                                2




Def.(Limite infinito di una funzione) Siano y = f(x) una
funzione definita nell’insieme e c un punto d’accumulazione per X. Si
dice che la f(x) tende a + ∞ ( -∞ ), o ha per limite + ∞ (-∞ ), per x → c,
e si scrive lim f ( x ) = +∞ (-∞ ) se:
           x →c

      ∀E > 0 (grande a piacere) ∃ I c : ∀x ∈ I c − {c},
              risulta f(x) > E (f(x) < E)
Limite destro/sinistro di una funzione
Def.(Limite destro/sinistro di una funzione) Diremo che L è
limite sinistro della funzione y = f(x) per x tendente da sinistra a c e si
scrive lim − f ( x ) = L , se:
       x→ c

       ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c − δ c ,c ) si ha f(x) - L < ε
Analogamente, si dice che L è limite destro e si scrive lim+ f ( x ) = L, se:
                                                          x →c
      ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c , c + δ c ) si ha f(x) - L < ε

Proprietà:
• Se una funzione annette limite per x→x0 tale limite è unico
   (Teorema dell’unicità del limite).
Proprietà sui Limiti
• Siano f, g ed h tre funzioni definite in un intorno I di x0 , e tale che
   per ogni x∈I risulti f(x)≤g(x)≤h(x) . Se:
           lim f ( x ) = lim h ( x ) = l allora
          x → x0             x → x0

          risulterà          lim g ( x ) = l
                             x → x0
   (Teorema del confronto)

• Se     lim f ( x ) = l ≠ 0 esiste un intorno I di x0 , privato al più del
         x → x0
   punto x0 , in cui la funzione assume lo stesso segno di l. Viceversa,
   se esiste un intorno I di x0 , privato al più del punto x0 , in cui
   risulta f(x)>0 (f(x)<0), e se esiste il lim f ( x ) = l , si avrà:
                                         x → x0
    l≥0 (l≤0).
   (Teorema della permanenza del segno)
Proprietà sui Limiti
Proprietà sui Limiti
Proprietà sui Limiti
Lo schema seguente mostra il valore di limiti noti:
Proprietà sui Limiti
Ancora altri limiti noti:
Proprietà sui Limiti
Esercizi sui Limiti
Esempio1: Calcolare il valore del seguente limite:
                                           A(x)
                            x − 3x + 2
                              2
                        lim 2
                        x→2 x + x − 6
                                       B(x)
Poiché A(2) = B(2) = 0 la forma è indeterminata ma per lo stesso
motivo, i due polinomi risultano divisibili per 2, cioè x = 2 è uno zero
dei polinomi A(x) e B(x). Scomponendo allora con il metodo di Ruffini
si ottiene:

        x − 3 x + 2 = lim (x − 2 )(x − 1) = lim x − 1 = 1
          2
   lim 2
   x →2 x + x − 6     x →2 ( x − 2 )( x + 3 ) x →2 x + 3 5
Esercizi sui Limiti
Esempio2: Calcolare il valore del seguente limite:
                         x − x −6
                           2
                lim 3
               x →−2 x + 5 x 2 + 8 x + 4

Il limite rientra nella forma 0/0 per cui scomponendo numeratore e
denominatore si trova:


     lim 3   x − x −6
                 2
                            = lim
                                    (x + 2 )(x − 3) =
    x →−2 x + 5 x + 8 x + 4
                 2           x →−2 ( x + 2 )2 ( x + 1)
                                          ±



                           x−3
                  lim ±                 = ±∞
                x →−2 ( x + 2 )( x + 1)
Esercizi sui Limiti
Esempio3: Calcolare il valore del seguente limite:
                        3 x3 + 4 x 2 + x − 1
                   lim            4
                   x →∞
                                  x
Raccogliendo la potenza x3 al numeratore otteniamo:
                                 4 1 1               4 1 1
                            x 3 + + 2 − 3         3 + + 2 − 3 
                          3

     3x + 4 x + x −1
       3     2
                                 x x x               x x x 
lim          4
                     = lim           4
                                             = lim                 =0
x →∞                   x →∞                    x →∞
           x                       x                      x

Infatti abbiamo che:
                    4      1      1
               lim = lim 2 = lim 3 = 0
               x →∞
                    x x →∞ x x →∞ x
Esercizi sui Limiti
Esempio4: Calcolare il valore del seguente limite:
                               x +1
                                    3

                        lim
                        x → ±∞
                                x −1
Raccogliendo la potenza x3 al numeratore ed x ad denominatore
otteniamo:
                              1         2    1
                       x 1 + 3         x 1 + 3 
                           3

            x + 1 = lim  x  = lim  x  = +∞
             3

     lim
     x → ±∞
            x − 1 x→ ±∞      1  x → ±∞
                                              1
                        x 1 −           1 − 
                             x              x
Infatti abbiamo che:

                        lim x = +∞
                                2
                        x →±∞
Esercizi sui Limiti
Esempio5: Calcolare il valore del seguente limite:
                                  x −1
                           lim
                            x →1
                                 x −1
Questo limite lo risolviamo in due modi diversi:
   razionalizziamo il numeratore della funzione:
   x −1 x +1              x −1                x −1
           ⋅       =               ⇒ lim           =
  x −1        x + 1 ( x − 1) x + 1    (
                                      x →1
                                              )
                                             x −1
              x −1             1     1        1
 = lim                  = lim      =       =
    x →1
                (            )
         (x − 1) x + 1 x→1 x + 1 1 + 1 2
   si scompone il denominatore come una differenza di quadrati:
       x −1                    x −1                    1    1   1
            = lim                     = lim               =   =
lim
 x →1
      x −1     x →1
                      (          )(
                           x − 1 x + 1 x→1)       (      )
                                                      x +1 1+1 2
Esercizi sui Limiti
Esempio6: Calcolare il valore del seguente limite:
                   lim x
                   x → +∞
                                (   x − 1+ x   )
Il limite si presenta nella forma indeterminata +∞−∞. Conviene
pertanto trasformare la funzione tramite una razionalizzazione del tipo:
                                x + 1+ x
                            (
          x − 1+ x = x − 1+ x ⋅
                                x + 1+ x
                                         )
                                         =

            x −1− x       −1
        =            =
            x + 1+ x   x + 1+ x
Pertanto:
                                    −1            − x
lim x
x →+∞
         (            )
             x − 1 + x = lim x ⋅
                         x →+∞
                                          = lim
                                 x + 1 + x x→+∞ x + 1 + x
Esercizi sui Limiti
che risulta ancora indeterminato ma della forma ∞/∞. Poichè però il
grado del numeratore e del denominatore sono uguali ad 1/2 ci si
aspetta un limite finito. Difatti:

         − x                   −1        −1    1
lim                 = lim              =    =−
x →+∞
           1 + x  x→+∞       1+ x  1+1     2
      x1 +
                        1 +       
             x  
                          
                                 x 
Esercizi sui Limiti
Esempio7: Calcolare il valore del seguente limite:
                           x+4 −2
                     lim
                      x →0
                             x
Razionalizzando il numeratore:


              x+4 −2 x+4 +2           x+4−4
                    ⋅           = lim            =
     lim
      x →0
                x                             (
                       x + 4 + 2 x→0 x x + 4 + 2     )
                  1      1
     = lim            =
         x →0
               x+4 +2 4
Definizione di rapporto incrementale
Sia y = f(x) una funzione definita in un intervallo (a, b) e siano x e x + h
due punti dello stesso intervallo (a, b), in cui la funzione assume
rispettivamente i valori f(x) e f(x+h).
Def: Si definisce incremento della variabile indipendente x il
segmento P’Q’ (indicato generalmente con ∆x), e incremento della
funzione f il segmento AQ (indicato con ∆y). Si chiama, quindi,
rapporto incrementale della funzione f il rapporto tra l’incremento
della variabile dipendente e l’incremento della variabile indipendente,
cioè:


  ∆y f ( x + ∆x ) − f ( x )
     =
  ∆x         ∆x
Definizione di derivata
Si dice derivata di una funzione y = f(x), definita nell’intervallo aperto
(a, b), nel punto c ∈ (a, b) il valore, se esiste ed è finito, del rapporto
incrementale per h (o ∆x) tendente a zero, cioè:
                            f (x + h) − f (x )
                       lim
                        h→0
                                    h
E si scrive:
                            f (x + h) − f (x )
                 y′ = lim                                   (1)
                       h →0
                                    h
La derivata di una funzione si può indicare anche con uno dei seguenti
simboli:                                    df dy
               y′, f ′( x ), f
                           (1 )
                                 ( x ), Df ( x ),     ,
                                                    dx dx
La (1) può essere scritta nei seguenti modi:
        f ( x + ∆x ) − f ( x )              f ( x ) − f (c )
  lim                          oppure lim
  ∆x →0         ∆x                     x →c
                                                 x−c
Definizione di ordine superiore
Se la funzione f(x) ammette la derivata finita per ogni x ∈ (a, b) si dice
derivabile in (a, b), e in questo caso la derivata prima è ancora una
funzione di x. Si dice derivata seconda di f(x) la derivata della derivata
prima:
                    f (x ) = D f (x )
                       (2 )              (1 )


e di conseguenza risulta:


                    f (x) = D f                    (x )
                      (n )              ( n −1 )


cioè la derivata d’ordine n di f(x) è uguale alla derivata della derivata
d’ordine n – 1.
Significato geometrico della derivata
I problemi che diedero origine al concetto di derivata furono quelli delle
tangenti ad una curva e della velocità.
a) Problema delle tangenti: Se si vuol definire la retta tangente ad
una circonferenza, diciamo che è la retta che la tocca in un sol punto;
ma tale definizione non si può estendere ad una curva qualsiasi, perché
possono presentarsi anche casi di questo tipo:




Quindi per definire, in una maniera rigorosa la tangente ad una curva in
un punto , consideriamo una curva d’equazione y = f(x) definita in un
intervallo (a, b) e un punto x di tale intervallo.
Significato geometrico della derivata
Possiamo definire la tangente alla curva nel punto x, la posizione limite
se esiste, a cui tende la secante passante per P e per Q, quando il punto

                                                   f (x + h) − f (x )
Q tende a P. Cioè si ha:
                                        y′ = lim                      =
                                              h →0
                                                           h
                                        = lim tgα = tgβ
                                          h →0

                                    Diciamo, quindi che la derivata

                                                 f ′( x ) = tgβ = m
è il coefficiente angolare della retta tangente alla curva y = f(x) nel suo
punto d’ascissa x. Di conseguenza la retta t tangente alla curva
d’equazione y = f(x) nel punto P d’ascissa c ha equazione:
        y − f (c ) = f ′(c )( x − c )      con         P(c, f (c ))
Significato geometrico della derivata
b)    Significato cinematico della derivata: Dal punto di vista
cinematico la nozione di derivata può essere interpretata come la
velocità di un punto in un certo istante. Precisamente, la velocità v di un
punto P0 all’istante t0 , in moto rettilineo secondo la legge oraria s=s(t),
è il valore che assume la derivata s′(t) per t = t0 , ossia:


                        v (t 0 ) = [s ′(t )] t =t   0



Inoltre, l’accelerazione dello stesso punto P0 all’istante t0 coincide con il
valore che assume la derivata seconda della funzione (legge oraria)
s=s(t) per t = t0, ossia:

                 a(t 0 ) = [s′′(t )]t =t = [v′(t )]t =t
                                        0                 0
Proprietà sulle derivate
Consideriamo le seguenti proprietà sulle derivate:

    Derivata di una costante:y = k ⇒ y′ = 0
    Derivata della funzione: y = x ⇒ y′ = 1

    Derivata della funzione :   y = x ⇒ y′ = 2 x
                                     2



    Derivata della funzione:    y=x ⇒y
                                     n
                                       ′ = nx n−1
    ……..

Di seguito è riportato uno schema sulle principali regole di derivazione,
oltre ad uno schema sulle derivate fondamentali.
Principali regole di derivazioni
Proprietà sulle derivate
Proprietà sulle derivate
Esercizi sulle derivate
Esempio1: Calcolare il valore della derivata della seguente funzione:
                          y=x3+4x+1
La derivata è: y′=3x2+4

Esempio2: Calcolare il valore della derivata della seguente funzione:
                              y=xsenx
Derivata di un prodotto per cui abbiamo: y′=1senx+xcosx

Esempio3: Calcolare il valore della derivata della seguente funzione:
                          y=5x3sen2xcosx
Derivata di un prodotto per cui abbiamo:
      y′=5[3x2sen2xcosx +x32senxcos2x+x3sen2x(-senx)]=
           =5(3x2sen2xcosx +2x3senxcos2x-x3sen3x )
Esercizi sulle derivate
Esempio4: Calcolare il valore della derivata della seguente funzione:
                                 1
                            y= 2
                              x −5
                    1         f ′( x )                 2x
Ricordando che: D        =−              ⇒    y′ = − 2
                  f (x )    [ f (x )]2              (x − 5 )2



Esempio5: Calcolare il valore della derivata della seguente funzione:
                               1
                       y=
                          senx + cos x

La derivata è:
                            cos x − senx
                    y′ = −
                           (senx + cos x )2
Esercizi sulle derivate
Esempio6: Calcolare il valore della derivata della seguente funzione:
                                   x −1
                                      2

                           y′ = 2
                                   x +1
Ricordando che: D f ( x ) = f ( x ) ⋅ f ( x ) − f ( x ) ⋅ f ′ ( x )
                              ′
                       1       1      2           1       2         ⇒
                  f (x )
                       2
                                        [ f (x )]
                                          2
                                                      2




                      2 x(x2 + 1) − 2 x(x2 − 1)    4x
                 y′ =                           = 2
                              (x + 1)
                                2     2
                                                 (x + 1)2



Esempio7: Calcolare il valore della derivata della seguente funzione:
                              y = sen2 x
La derivata è:

                              ′               ′
                  y′ = (2 x ) ⋅ (sen2 x ) = 2 cos 2 x
Esercizi sulle derivate
Esempio8: Calcolare il valore della derivata della seguente funzione:
                                              π
                                     sen 2 x + 
                           y=     e           4

La derivata è:
                      ′                  ′                        π
                                                                     ′
                   π             π               sen 2 x +  
                                                           
        y′ =  2 x +  ⋅  sen 2 x +   ⋅        e            4 =
                   4  
                                    4  
                                         
                                                                    
                                                                    
                                         π
                     π       sen  2 x + 
        = 2 cos 2 x +    e             4
                     4

Mais conteúdo relacionado

Mais procurados (20)

Funzione esponenziale
Funzione esponenzialeFunzione esponenziale
Funzione esponenziale
 
Funzione 01
Funzione 01Funzione 01
Funzione 01
 
Limiti
LimitiLimiti
Limiti
 
Esercizi limiti 25-1-2011[1]
Esercizi limiti 25-1-2011[1]Esercizi limiti 25-1-2011[1]
Esercizi limiti 25-1-2011[1]
 
Flessi
FlessiFlessi
Flessi
 
Asintoti
AsintotiAsintoti
Asintoti
 
Matematica
MatematicaMatematica
Matematica
 
Algebra E Matematica Generale
Algebra E Matematica GeneraleAlgebra E Matematica Generale
Algebra E Matematica Generale
 
Logaritmi
LogaritmiLogaritmi
Logaritmi
 
Verifica 2 e_matematica_24-1-2011[1]
Verifica 2 e_matematica_24-1-2011[1]Verifica 2 e_matematica_24-1-2011[1]
Verifica 2 e_matematica_24-1-2011[1]
 
Asintoti
AsintotiAsintoti
Asintoti
 
Massimi e minimi
Massimi e minimiMassimi e minimi
Massimi e minimi
 
Continuità di una funzione
Continuità di una funzioneContinuità di una funzione
Continuità di una funzione
 
Derivate
DerivateDerivate
Derivate
 
Corbo relativita
Corbo relativitaCorbo relativita
Corbo relativita
 
Esercizi 14 1-2011-equaz_logaritmiche
Esercizi 14 1-2011-equaz_logaritmicheEsercizi 14 1-2011-equaz_logaritmiche
Esercizi 14 1-2011-equaz_logaritmiche
 
Le derivate (sintesi)
Le derivate (sintesi)Le derivate (sintesi)
Le derivate (sintesi)
 
Fondamenti di algebra lineare, parte 2: sistemi lineari, autovalori e autovet...
Fondamenti di algebra lineare, parte 2: sistemi lineari, autovalori e autovet...Fondamenti di algebra lineare, parte 2: sistemi lineari, autovalori e autovet...
Fondamenti di algebra lineare, parte 2: sistemi lineari, autovalori e autovet...
 
Extended Summary of “An Algorithm for Solving Multicriteron Linear Programmin...
Extended Summary of “An Algorithm for Solving Multicriteron Linear Programmin...Extended Summary of “An Algorithm for Solving Multicriteron Linear Programmin...
Extended Summary of “An Algorithm for Solving Multicriteron Linear Programmin...
 
Integrale definito
Integrale definitoIntegrale definito
Integrale definito
 

Semelhante a Limiti deriv

studiodifunzione.pdf
studiodifunzione.pdfstudiodifunzione.pdf
studiodifunzione.pdfAlessioDiMeo1
 
Distribuzioni di Probabilita e Variabili Casuali
Distribuzioni di Probabilita e Variabili CasualiDistribuzioni di Probabilita e Variabili Casuali
Distribuzioni di Probabilita e Variabili Casualimaxbt
 
Esercizi svolti di_ro_4_e
Esercizi svolti di_ro_4_eEsercizi svolti di_ro_4_e
Esercizi svolti di_ro_4_eMatekanc
 
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]santi caltabiano
 
Espressioni mate 10-12-2010tris
Espressioni mate 10-12-2010trisEspressioni mate 10-12-2010tris
Espressioni mate 10-12-2010trisMatekanc
 
Introduzione allo studio di funzione
Introduzione allo studio di funzioneIntroduzione allo studio di funzione
Introduzione allo studio di funzioneLuigi Pasini
 
Minimax regret solution to linear programming problems with an interval obje...
Minimax regret solution to linear programming problems with  an interval obje...Minimax regret solution to linear programming problems with  an interval obje...
Minimax regret solution to linear programming problems with an interval obje...NicolasTortora
 
Appunti sugli-integrali-definiti
Appunti sugli-integrali-definitiAppunti sugli-integrali-definiti
Appunti sugli-integrali-definitimvivabr
 
027 Scomposizione E Prodotti Notevoli
027 Scomposizione E Prodotti Notevoli027 Scomposizione E Prodotti Notevoli
027 Scomposizione E Prodotti Notevoliguestf75986d
 
Minimax regret solution to linear programming problems with an interval obje...
Minimax regret solution to linear programming problems with  an interval obje...Minimax regret solution to linear programming problems with  an interval obje...
Minimax regret solution to linear programming problems with an interval obje...NicolasTortora
 
Minimiemassimi
MinimiemassimiMinimiemassimi
Minimiemassimialecellini
 
Esercizi applicativi compito_17-11-2010
Esercizi applicativi compito_17-11-2010Esercizi applicativi compito_17-11-2010
Esercizi applicativi compito_17-11-2010Matekanc
 
limiti delle funzioni
limiti delle funzionilimiti delle funzioni
limiti delle funzionishree92
 
Integrali definiti
Integrali definitiIntegrali definiti
Integrali definitiuffamate
 
Disequazioni con valori assoluti
Disequazioni con valori assolutiDisequazioni con valori assoluti
Disequazioni con valori assolutixvalex
 
Teoremi sulle funzioni-continue_e_del_calcolo_differrenziale
Teoremi sulle funzioni-continue_e_del_calcolo_differrenzialeTeoremi sulle funzioni-continue_e_del_calcolo_differrenziale
Teoremi sulle funzioni-continue_e_del_calcolo_differrenzialeLaura Pecoraro
 
Problema 2 (indirizzo ordinario)
Problema 2 (indirizzo ordinario)Problema 2 (indirizzo ordinario)
Problema 2 (indirizzo ordinario)Deiesy
 

Semelhante a Limiti deriv (19)

studiodifunzione.pdf
studiodifunzione.pdfstudiodifunzione.pdf
studiodifunzione.pdf
 
Distribuzioni di Probabilita e Variabili Casuali
Distribuzioni di Probabilita e Variabili CasualiDistribuzioni di Probabilita e Variabili Casuali
Distribuzioni di Probabilita e Variabili Casuali
 
Esercizi svolti di_ro_4_e
Esercizi svolti di_ro_4_eEsercizi svolti di_ro_4_e
Esercizi svolti di_ro_4_e
 
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]
Infinitesimi ed infiniti [teoria ed esericizi][santi caltabiano]
 
Espressioni mate 10-12-2010tris
Espressioni mate 10-12-2010trisEspressioni mate 10-12-2010tris
Espressioni mate 10-12-2010tris
 
Introduzione allo studio di funzione
Introduzione allo studio di funzioneIntroduzione allo studio di funzione
Introduzione allo studio di funzione
 
Minimax regret solution to linear programming problems with an interval obje...
Minimax regret solution to linear programming problems with  an interval obje...Minimax regret solution to linear programming problems with  an interval obje...
Minimax regret solution to linear programming problems with an interval obje...
 
Appunti sugli-integrali-definiti
Appunti sugli-integrali-definitiAppunti sugli-integrali-definiti
Appunti sugli-integrali-definiti
 
027 Scomposizione E Prodotti Notevoli
027 Scomposizione E Prodotti Notevoli027 Scomposizione E Prodotti Notevoli
027 Scomposizione E Prodotti Notevoli
 
Minimax regret solution to linear programming problems with an interval obje...
Minimax regret solution to linear programming problems with  an interval obje...Minimax regret solution to linear programming problems with  an interval obje...
Minimax regret solution to linear programming problems with an interval obje...
 
Minimiemassimi
MinimiemassimiMinimiemassimi
Minimiemassimi
 
Esercizi applicativi compito_17-11-2010
Esercizi applicativi compito_17-11-2010Esercizi applicativi compito_17-11-2010
Esercizi applicativi compito_17-11-2010
 
limiti delle funzioni
limiti delle funzionilimiti delle funzioni
limiti delle funzioni
 
Area equaz matematica
Area equaz matematicaArea equaz matematica
Area equaz matematica
 
Derivata.ppt
Derivata.pptDerivata.ppt
Derivata.ppt
 
Integrali definiti
Integrali definitiIntegrali definiti
Integrali definiti
 
Disequazioni con valori assoluti
Disequazioni con valori assolutiDisequazioni con valori assoluti
Disequazioni con valori assoluti
 
Teoremi sulle funzioni-continue_e_del_calcolo_differrenziale
Teoremi sulle funzioni-continue_e_del_calcolo_differrenzialeTeoremi sulle funzioni-continue_e_del_calcolo_differrenziale
Teoremi sulle funzioni-continue_e_del_calcolo_differrenziale
 
Problema 2 (indirizzo ordinario)
Problema 2 (indirizzo ordinario)Problema 2 (indirizzo ordinario)
Problema 2 (indirizzo ordinario)
 

Limiti deriv

  • 2. Definizione di Intervallo Prima di definire cosa è il Limite di una funzione, dobbiamo capire cosa è un punto di accumulazione. Def (Intervallo): Si definisce intervallo chiuso di centro x0 e raggio d un insieme del tipo: I={x∈R: x∈[x0-d, x0+d]} Si definisce intervallo aperto di centro x0 e raggio d un insieme del tipo: I={x∈R: x∈ ] x0-d, x0+d[ } Dunque un intervallo è detto chiuso se contiene gli estremi, aperto se non li contiene. Un intervallo può contenere buchi, ad esempio essendo definito privo del proprio punto centrale.
  • 3. Punto di accumulazione Def (Punto di accumulazione): Si dice che x0 è punto di accumulazione se ogni intervallo I di centro x0 contiene infiniti punti. Il concetto di punto di accumulazione è uno strumento per studiare il comportamento delle funzioni in un intorno infinitamente piccolo di un punto. Affermare che un punto è di accumulazione significa assicurarsi l’esistenza di tutti i punti infinitamente vicini a quel punto e, quindi, di poter operare su di essi. Nozione di limite finito di una funzione in un punto Data una funzione reale y = f(x) definita in un insieme X⊆R, detto c un punto d’accumulazione per X, appartenente o no a X, vogliamo studiare il comportamento della funzione in un intorno di c, cioè in prossimità di c.
  • 4. Limite finito di una funzione Ci proponiamo, quindi, di esaminare l’insieme dei valori che assume la funzione f(x), quando la x si “avvicina indefinitamente” a c. Precisamente, se avviene che il corrispondente valore di f(x) si “avvicina indefinitamente” ad una costante L, all’avvicinarsi indefinitamente di x a c, si dice che L è il limite della funzione y = f(x), per x tendente a c nell’intorno di c, e si scrive: lim f ( x ) = L x→c La precedente definizione ci dà una cognizione intuitiva del concetto di limite. Volendo precisare tale concetto in modo rigoroso, dobbiamo valutare di quanto la x dovrà avvicinarci a c affinché il valore della funzione si avvicini a L di quel tanto stabilito.
  • 5. Limite finito di una funzione Una definizione rigorosa del concetto di limite è la seguente. Def.(Limite finito di una funzione) Sia y = f(x) una funzione definita in un insieme X e sia c un punto d’accumulazione per X. Si dice che la funzione f(x) tende a L (o ha per limite L ), per x che tende a c, se la f(x) assume valori che differiscono da L, in valore assoluto, per non più di ε, ossia: lim f ( x ) = L ⇔ ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c − δ c , c + δ c ) − {c} x→c si ha f(x) - L < ε Per verificare se un dato numero L è il limite di f(x) per x→c si deve risolvere la disequazione |f(x)-L|<ε : se le soluzioni di questa costituiscono, qualunque sia ε >0, un intorno completo di c, escluso al più c, allora L è il limite di f(x) per x→c; mentre se la disequazione non è verificata in un intorno di c, oppure non è mai verificata, L non è limite di f(x) per x→c.
  • 6. Limite di una funzione Esempio1: Verificare che: lim( x + 2 ) = 8 x→6 Bisogna verificare che in un intorno di c = 6 la disequazione: |(x+2)-8|<ε è soddisfatta per ogni scelta di ε>0. Si ha: (x + 2 ) − 8 < ε ⇒ x + 2 − 8 < ε ⇒ x − 6 < ε cioè -ε < x -6 < ε ⇒ 6 -ε < x < 6 +ε Essendo l’intervallo 6-ε<x<6+ε un intorno di c = 6, con δc=ε, segue che la disequazione |(x+2)-8|<ε è verificata intorno a 6. Pertanto il limite proposto è vero.
  • 7. Limite infinito di una funzione Consideriamo la funzione f(x)=1/(x2) definita per x ≠ 0 e sempre positiva. Si può osservare che i valori della funzione diventano sempre più grandi man mano che x si avvicina a zero, cioè lim f ( x ) = ∞ . x→0 Ciò significa che se scegliamo ad arbitrio un numero positivo E, grande a piacere, la disequazione 1 x > E è soddisfatta in un intorno di 0. 2 Def.(Limite infinito di una funzione) Siano y = f(x) una funzione definita nell’insieme e c un punto d’accumulazione per X. Si dice che la f(x) tende a + ∞ ( -∞ ), o ha per limite + ∞ (-∞ ), per x → c, e si scrive lim f ( x ) = +∞ (-∞ ) se: x →c ∀E > 0 (grande a piacere) ∃ I c : ∀x ∈ I c − {c}, risulta f(x) > E (f(x) < E)
  • 8. Limite destro/sinistro di una funzione Def.(Limite destro/sinistro di una funzione) Diremo che L è limite sinistro della funzione y = f(x) per x tendente da sinistra a c e si scrive lim − f ( x ) = L , se: x→ c ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c − δ c ,c ) si ha f(x) - L < ε Analogamente, si dice che L è limite destro e si scrive lim+ f ( x ) = L, se: x →c ∀ε > 0 ∃δ c > 0 : ∀x ∈ (c , c + δ c ) si ha f(x) - L < ε Proprietà: • Se una funzione annette limite per x→x0 tale limite è unico (Teorema dell’unicità del limite).
  • 9. Proprietà sui Limiti • Siano f, g ed h tre funzioni definite in un intorno I di x0 , e tale che per ogni x∈I risulti f(x)≤g(x)≤h(x) . Se: lim f ( x ) = lim h ( x ) = l allora x → x0 x → x0 risulterà lim g ( x ) = l x → x0 (Teorema del confronto) • Se lim f ( x ) = l ≠ 0 esiste un intorno I di x0 , privato al più del x → x0 punto x0 , in cui la funzione assume lo stesso segno di l. Viceversa, se esiste un intorno I di x0 , privato al più del punto x0 , in cui risulta f(x)>0 (f(x)<0), e se esiste il lim f ( x ) = l , si avrà: x → x0 l≥0 (l≤0). (Teorema della permanenza del segno)
  • 12. Proprietà sui Limiti Lo schema seguente mostra il valore di limiti noti:
  • 13. Proprietà sui Limiti Ancora altri limiti noti:
  • 15. Esercizi sui Limiti Esempio1: Calcolare il valore del seguente limite: A(x) x − 3x + 2 2 lim 2 x→2 x + x − 6 B(x) Poiché A(2) = B(2) = 0 la forma è indeterminata ma per lo stesso motivo, i due polinomi risultano divisibili per 2, cioè x = 2 è uno zero dei polinomi A(x) e B(x). Scomponendo allora con il metodo di Ruffini si ottiene: x − 3 x + 2 = lim (x − 2 )(x − 1) = lim x − 1 = 1 2 lim 2 x →2 x + x − 6 x →2 ( x − 2 )( x + 3 ) x →2 x + 3 5
  • 16. Esercizi sui Limiti Esempio2: Calcolare il valore del seguente limite: x − x −6 2 lim 3 x →−2 x + 5 x 2 + 8 x + 4 Il limite rientra nella forma 0/0 per cui scomponendo numeratore e denominatore si trova: lim 3 x − x −6 2 = lim (x + 2 )(x − 3) = x →−2 x + 5 x + 8 x + 4 2 x →−2 ( x + 2 )2 ( x + 1) ± x−3 lim ± = ±∞ x →−2 ( x + 2 )( x + 1)
  • 17. Esercizi sui Limiti Esempio3: Calcolare il valore del seguente limite: 3 x3 + 4 x 2 + x − 1 lim 4 x →∞ x Raccogliendo la potenza x3 al numeratore otteniamo:  4 1 1  4 1 1 x 3 + + 2 − 3  3 + + 2 − 3  3 3x + 4 x + x −1 3 2  x x x   x x x  lim 4 = lim 4 = lim =0 x →∞ x →∞ x →∞ x x x Infatti abbiamo che: 4 1 1 lim = lim 2 = lim 3 = 0 x →∞ x x →∞ x x →∞ x
  • 18. Esercizi sui Limiti Esempio4: Calcolare il valore del seguente limite: x +1 3 lim x → ±∞ x −1 Raccogliendo la potenza x3 al numeratore ed x ad denominatore otteniamo:  1 2 1 x 1 + 3  x 1 + 3  3 x + 1 = lim  x  = lim  x  = +∞ 3 lim x → ±∞ x − 1 x→ ±∞  1 x → ±∞  1 x 1 −  1 −   x  x Infatti abbiamo che: lim x = +∞ 2 x →±∞
  • 19. Esercizi sui Limiti Esempio5: Calcolare il valore del seguente limite: x −1 lim x →1 x −1 Questo limite lo risolviamo in due modi diversi: razionalizziamo il numeratore della funzione: x −1 x +1 x −1 x −1 ⋅ = ⇒ lim = x −1 x + 1 ( x − 1) x + 1 ( x →1 ) x −1 x −1 1 1 1 = lim = lim = = x →1 ( ) (x − 1) x + 1 x→1 x + 1 1 + 1 2 si scompone il denominatore come una differenza di quadrati: x −1 x −1 1 1 1 = lim = lim = = lim x →1 x −1 x →1 ( )( x − 1 x + 1 x→1) ( ) x +1 1+1 2
  • 20. Esercizi sui Limiti Esempio6: Calcolare il valore del seguente limite: lim x x → +∞ ( x − 1+ x ) Il limite si presenta nella forma indeterminata +∞−∞. Conviene pertanto trasformare la funzione tramite una razionalizzazione del tipo: x + 1+ x ( x − 1+ x = x − 1+ x ⋅ x + 1+ x ) = x −1− x −1 = = x + 1+ x x + 1+ x Pertanto: −1 − x lim x x →+∞ ( ) x − 1 + x = lim x ⋅ x →+∞ = lim x + 1 + x x→+∞ x + 1 + x
  • 21. Esercizi sui Limiti che risulta ancora indeterminato ma della forma ∞/∞. Poichè però il grado del numeratore e del denominatore sono uguali ad 1/2 ci si aspetta un limite finito. Difatti: − x −1 −1 1 lim = lim = =− x →+∞  1 + x  x→+∞  1+ x  1+1 2 x1 +   1 +   x     x 
  • 22. Esercizi sui Limiti Esempio7: Calcolare il valore del seguente limite: x+4 −2 lim x →0 x Razionalizzando il numeratore: x+4 −2 x+4 +2 x+4−4 ⋅ = lim = lim x →0 x ( x + 4 + 2 x→0 x x + 4 + 2 ) 1 1 = lim = x →0 x+4 +2 4
  • 23. Definizione di rapporto incrementale Sia y = f(x) una funzione definita in un intervallo (a, b) e siano x e x + h due punti dello stesso intervallo (a, b), in cui la funzione assume rispettivamente i valori f(x) e f(x+h). Def: Si definisce incremento della variabile indipendente x il segmento P’Q’ (indicato generalmente con ∆x), e incremento della funzione f il segmento AQ (indicato con ∆y). Si chiama, quindi, rapporto incrementale della funzione f il rapporto tra l’incremento della variabile dipendente e l’incremento della variabile indipendente, cioè: ∆y f ( x + ∆x ) − f ( x ) = ∆x ∆x
  • 24. Definizione di derivata Si dice derivata di una funzione y = f(x), definita nell’intervallo aperto (a, b), nel punto c ∈ (a, b) il valore, se esiste ed è finito, del rapporto incrementale per h (o ∆x) tendente a zero, cioè: f (x + h) − f (x ) lim h→0 h E si scrive: f (x + h) − f (x ) y′ = lim (1) h →0 h La derivata di una funzione si può indicare anche con uno dei seguenti simboli: df dy y′, f ′( x ), f (1 ) ( x ), Df ( x ), , dx dx La (1) può essere scritta nei seguenti modi: f ( x + ∆x ) − f ( x ) f ( x ) − f (c ) lim oppure lim ∆x →0 ∆x x →c x−c
  • 25. Definizione di ordine superiore Se la funzione f(x) ammette la derivata finita per ogni x ∈ (a, b) si dice derivabile in (a, b), e in questo caso la derivata prima è ancora una funzione di x. Si dice derivata seconda di f(x) la derivata della derivata prima: f (x ) = D f (x ) (2 ) (1 ) e di conseguenza risulta: f (x) = D f (x ) (n ) ( n −1 ) cioè la derivata d’ordine n di f(x) è uguale alla derivata della derivata d’ordine n – 1.
  • 26. Significato geometrico della derivata I problemi che diedero origine al concetto di derivata furono quelli delle tangenti ad una curva e della velocità. a) Problema delle tangenti: Se si vuol definire la retta tangente ad una circonferenza, diciamo che è la retta che la tocca in un sol punto; ma tale definizione non si può estendere ad una curva qualsiasi, perché possono presentarsi anche casi di questo tipo: Quindi per definire, in una maniera rigorosa la tangente ad una curva in un punto , consideriamo una curva d’equazione y = f(x) definita in un intervallo (a, b) e un punto x di tale intervallo.
  • 27. Significato geometrico della derivata Possiamo definire la tangente alla curva nel punto x, la posizione limite se esiste, a cui tende la secante passante per P e per Q, quando il punto f (x + h) − f (x ) Q tende a P. Cioè si ha: y′ = lim = h →0 h = lim tgα = tgβ h →0 Diciamo, quindi che la derivata f ′( x ) = tgβ = m è il coefficiente angolare della retta tangente alla curva y = f(x) nel suo punto d’ascissa x. Di conseguenza la retta t tangente alla curva d’equazione y = f(x) nel punto P d’ascissa c ha equazione: y − f (c ) = f ′(c )( x − c ) con P(c, f (c ))
  • 28. Significato geometrico della derivata b) Significato cinematico della derivata: Dal punto di vista cinematico la nozione di derivata può essere interpretata come la velocità di un punto in un certo istante. Precisamente, la velocità v di un punto P0 all’istante t0 , in moto rettilineo secondo la legge oraria s=s(t), è il valore che assume la derivata s′(t) per t = t0 , ossia: v (t 0 ) = [s ′(t )] t =t 0 Inoltre, l’accelerazione dello stesso punto P0 all’istante t0 coincide con il valore che assume la derivata seconda della funzione (legge oraria) s=s(t) per t = t0, ossia: a(t 0 ) = [s′′(t )]t =t = [v′(t )]t =t 0 0
  • 29. Proprietà sulle derivate Consideriamo le seguenti proprietà sulle derivate: Derivata di una costante:y = k ⇒ y′ = 0 Derivata della funzione: y = x ⇒ y′ = 1 Derivata della funzione : y = x ⇒ y′ = 2 x 2 Derivata della funzione: y=x ⇒y n ′ = nx n−1 …….. Di seguito è riportato uno schema sulle principali regole di derivazione, oltre ad uno schema sulle derivate fondamentali.
  • 30. Principali regole di derivazioni
  • 33. Esercizi sulle derivate Esempio1: Calcolare il valore della derivata della seguente funzione: y=x3+4x+1 La derivata è: y′=3x2+4 Esempio2: Calcolare il valore della derivata della seguente funzione: y=xsenx Derivata di un prodotto per cui abbiamo: y′=1senx+xcosx Esempio3: Calcolare il valore della derivata della seguente funzione: y=5x3sen2xcosx Derivata di un prodotto per cui abbiamo: y′=5[3x2sen2xcosx +x32senxcos2x+x3sen2x(-senx)]= =5(3x2sen2xcosx +2x3senxcos2x-x3sen3x )
  • 34. Esercizi sulle derivate Esempio4: Calcolare il valore della derivata della seguente funzione: 1 y= 2 x −5 1 f ′( x ) 2x Ricordando che: D =− ⇒ y′ = − 2 f (x ) [ f (x )]2 (x − 5 )2 Esempio5: Calcolare il valore della derivata della seguente funzione: 1 y= senx + cos x La derivata è: cos x − senx y′ = − (senx + cos x )2
  • 35. Esercizi sulle derivate Esempio6: Calcolare il valore della derivata della seguente funzione: x −1 2 y′ = 2 x +1 Ricordando che: D f ( x ) = f ( x ) ⋅ f ( x ) − f ( x ) ⋅ f ′ ( x ) ′ 1 1 2 1 2 ⇒ f (x ) 2 [ f (x )] 2 2 2 x(x2 + 1) − 2 x(x2 − 1) 4x y′ = = 2 (x + 1) 2 2 (x + 1)2 Esempio7: Calcolare il valore della derivata della seguente funzione: y = sen2 x La derivata è: ′ ′ y′ = (2 x ) ⋅ (sen2 x ) = 2 cos 2 x
  • 36. Esercizi sulle derivate Esempio8: Calcolare il valore della derivata della seguente funzione:  π sen 2 x +  y= e  4 La derivata è: ′ ′ π ′  π   π   sen 2 x +    y′ =  2 x +  ⋅  sen 2 x +   ⋅  e  4 =  4    4        π  π sen  2 x +  = 2 cos 2 x +  e  4  4