SlideShare uma empresa Scribd logo
1 de 42
Baixar para ler offline
UltrafastLaser-Driven Plasma for Space Propulsion 
Terry Kammash, K. Flippo†, T. Lin, 
A. Maksimchuk, M. Rever, 
S. Banerjee, D. Umstadter 
FOCUS Center / Center forUltrafastOptical Science, University of Michigan, Ann Arbor, MI 48109-2099, USA 
Y. Sentoku 
General Atomics, San Diego, CA 
V. Yu. Bychenkov 
P. N.LebedevPhysics Institute, Russian Academy of Science, 117924 Moscow, Russia 
Lasers supported by the National Science Foundation FOCUS Center 
and the U of M Center for Ultrafast Optical Science, and funding from NASA Institute For Advanced Concepts
Accelerator SetupProton BeamCUOS T3Laser Parameters: •Ti:Sapphire / Nd:Glass•1.053 mm (ωo), 527nm (2 ωo) •up to ~12 TW •5 J•400 fs•Contrast: 10-5:1 @ ωo, 10-7:1 @2 ωo•2x1018-2x1019W/cm2Target Normal Forward DirectionLaser Forward DirectionCR-39 DetectorFWHM = 4.3 um 
Incident Laser Spot
Front Surface Deuteron Acceleration 
•Activation of 10B to 11C is achieved only by illuminating deuterons on the front surface. 
•No activation when deuterons were on the back surface, or without deuterons (i.e. no production of 11C detected from 11B(p,n)11C reaction). 
•Deuterons have about ½the Emaxof the measured protons101001000010203040506070 Counts/2 min Time after shot (min) Decay for 11CIlas=6x1018W/cm2Detection efficiency 15% 10B(d,n)11C reactionBoronsampleLaserMylar filmCD11C10BDeuteronsn 
K.Nemoto, S.Banerjee, K.Flippo, A.Maksimchuk, D.UmstadterApp. Phys.Lett, 78, 595 (2001)
Radioisotope Activation with ProtonsNaIPMTto MCASampleprotonsLasertargetcollimator & shieldNaIPMTto MCA• ••••• • • • ••••••• • ••• • • • • • • • • • • • • • • • • • • •••• • • • • • •• • • •• •• • • • ••• • • • •• • • • • •• • • • • • • • • • • • •• • • • • • •• • • • • 110100100002000400060008000 Count (0.511 MeV) Time (sec) t ~ 38 minCu (p,n) Zn6363Laser Induced••••••••••••••••••••••••••••••••• • • • • •• •• ••• •• ••• • • • ••• • • ••• ••••• • • •• • •• •••• ••••• •• •• ••••• •• •• • • ••• •••••••••• •••• •• •• •• ••• • • ••••• • • ••• •••• • ••••• •••••• •••••••• • •• • • •••• ••• •••••••••••• • • • • • • • • • • • ••• • • • •• • • • • • • • • • •••• •• •• • •••• ••• ••••••• ••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••02004006008001000050100150200250300 Counts Channel Singles SpectrumB (p,n) C11 110.511 MeVSort window• •• • • •••• • • • ••• • • • •• •• • •••• • • 101001000300002004006008001000 Count (0.511 MeV) Time (sec) B (p, n) C1111 t = 20 minLaser Induced
Material Effect on Proton ProductionEe- ConductorInsulatorp+ p+p+BBe- EMylar (polyethylene terephthalate C10H8O4) •ρ~1.2 g/cm3•σ=10-12Ω-1m-1•Z=4.3Aluminum•ρ~2.7 g/cm3•σ=3.6×107Ω-1m-1•Z=13p+ e- 
p+ 
p+ 
laser 
laser 
target 
target
Beam Profile Dependence 
on Initial Target Composition 
RCF (a,c,e,g) / CR-39 (b,d,f,h) detector stack images for 13μm Mylar, 10 μm silicon, 
12.5 μm aluminum, and 12.5 μm copper targets. All pairs are single shot except (c) and 
(d) which were two separate shots. RCF records protons between~0.2 and ~2 MeV, CR-39 
records protons between ~2.5-~4 MeV. Except (d) which recorded between ~1.2 MeV and 3 MeV
Beam Profile Dependence 
on Target Thickness (a) 6 μm, (b) 13 μm , (c) 25 μm, (d) 50 μm, and (e) 100 μm(a) 4 μm, (b) 12.5 μm, (c) 25 μm, (d) 50 μm, and (e) 75 μm 
Call out: White arrows point to beam filamentation, most likely a manifestation of the Weibel, instability.
Comparison with Simulation 
Images: 
Contrast enhanced RCF images of proton beam profiles after a drift of 5 cm from target 
exit from experiments with 13 microns of Mylar (a) top left, and12.5 microns of 
aluminum (b) bottom left. Compare an electron beam profile from a simulation (c) by L. 
Gremillet, et al.[Phys. Plasmas 9, 941(2002)], showing the transverse electron profile 
jb/encat 20 microns inside a silica target for a propagating monoenergetic electron beam 
of energy 500 keV, after 405 fs of propagation, which is also the beam duration. Image 
reproduced with permission. Silica 
Observed profiles 
e-beam simulation
Magnetic Field from Simulation vs. Proton Beam Profile 
E field configuration plot from the simulation at 405 fs. Notice the similarities in the simulation slices to proton beam images in row (I) of the previous slide. 
e-beam induced B field evolution is very similar to that of the proton beam profile seen from Mylar previously. 
And as shown by 
M. Honda, J. Meyer-ter-Vehn and A. Pukov, PRL 85 2128 (2000) the ions can follow the electron filaments in as little as 60 fs.
Electron Distribution From Al TargetProtonsX-ray FilmlaserTargetTop ViewTarget Holder ShadowX-ray Film Line OutX-ray FilmHolder0°
Protons From Front Surface0246810121416050100150200Target Thickness [microns] Maximum Proton Energy [MeV] Eimax ~ 13 μm
Simulation of proton beam 
Sentoku’s[1] recent 1-D PIC simulations predict a 5 MeV beam from the front surface for a 400fs laser pulse, with about 13 MeV from the rear. This agrees well with the observed 4 MeV trend, and a maximum of about 12 MeV. 
[1] Y. Sentoku Phys. Plasmas 10 2009 (2003)
Deuteron Acceleration 
Preliminary Results 
Deuteron coating 
No deuteron coatingp+d+ p+ 
Where do highest energy deuterons come from? 
1.The BACK of 12.5um Al 
2.The FRONT of 6 um Mylar 
3.The FRONT of 13 um Mylar 
4.The FRONT of 12.5 um Al 
5.The BACK of 13 um Mylar
Proton Energy Scaling with Pulse Duration and IntensityFrom Y. Sentoku, T. E. Cowan, A. Kemp, and H. RuhlPhysics of Plasmas 10, 2009 (2003) 14.5 MeV> 30 MeV 
Current T-cubed System 
Future HERCULES System
Peak Proton Energy 
vs. Spot SizeE = 190.87d1.7404010002000300040005000600033.544.555.566.57Spot size diameter [microns] Peak Proton Energy [keV] f/3.3 off-axis parabolaf/1.5 off-axis parabolaPower Scaling FitFor intensities of ~ 1.4 x 1019 W/cm2For intensities of ~ 2.5 x 1019 W/cm2 E =190.87 x d 1.704
Spot Size ComparisonTotal Intensity vs. Diameter for f/1.5 Paraboloid 4.3 FWHM Spot Size02040608010012005101520253035404550Spot Size Diameter [um] Total Energy [%] Profile of 4.3μm FWHM Spot0100002000030000400005000060000-15-10-5051015Radial Position [μm]Intensity [a.u.] 40% in FWHM
Spot Size ComparisonTotal Intensity vs. Diameter for f/3.3 Parabaloid FWHM Focal Spot of 6.4 Microns 8-17-0102040608010012005101520253035404550Spot Size Diameter [um] Total Energy [%] Profile of 6.4 μm FWHM Spot0100002000030000400005000060000-20-1001020Radial Position [μm] Intensity [a.u.] 35% in FWHM
Material Effects on Plume Profile 
Proton Beam Images Using a CCDLaser Propagation Direction 
Target 
Plane 
Dark Side 
Illuminated 
Side 
4 Al Target, 
4MeV beam 
No backfilled gas, 
200 mTorr ambient 
4 um Al Target 
with 2 Torr H2 
25 um Mylar Target 
25 um Mylar Target 
with 2.4 Torr He 
25 um Al Target 
Proton Beam is 
Emitted Normal to Target
Plume Evolution in 1 TorrH2 
Ambient Backfill12.5 mm Al+4 ms+1 ms+4 ms+14 ms3.069 cm25 mm Mylar2.138 cm~31000 m/s2.222cm3.194 cm~32000 m/s1 cm+ 65.5us 
+1 ms
Target Geometry>1.4 MeV, 55º div. @ 1.5x1019 W/cm2>2 MeV, 38º div. @ 1.2x1019 W/cm2> 1.4 MeV, 44º div. @ 1.6x1019W/cm2> 3 MeV, 28º div. @ 1.2x1019W/cm2LaserProtonsTargetTargetHolderCurved TargetGeometry 25 μm Al 
Radius of curvature ~ 0.2 mm 
Radius of curvature 
~ 0.5 mm
Target Geometry 
~100 Micron Half Wire Cross-sections 
Focus on 
flat surface 
Focus on 
round surface 
Wire orientation: ProtonsLaserProtonsProtonsLaserWire positionCR-39FlatRound laserlaser 
Beam Images: 
Focusing on flat surface (840) creates an ion beam, while focusing on the round side produces a cylindrical-like spray
Target Surface GeometryElectron Microscopyof LaserBlack™ Results: •30 mm Laserblack target ~ 8.2 MeV•Enhancement in the number of maximum energy protons•Beam profile does not suffer, regardless of which surface has been coated, i.e. no imprinting even from rear-side100 μm2 μmMurnane et al. APL 62 (1993) used gratings and clusters, Kulcsar et al. PRL 84 (2000) used metallic “velvet”. Both showed enhanced X-ray yield from enhance electron heating from efficient coupling. LaserBlack®is > 96% absorptive at 1 mm. Laser Spot Size ~ 6 micronsUse a material which will “trap”the laser light, to enhance the generation of hot electrons. >1.3MeV31ºdiv.
T-cube LaserThin Film TargetMeshRadiochromicFilm51.8 lines highProtonRadiographyThe possibility exists to use the laser produced proton beam for very small scale imaging or even lithography. The image on the left is a 5x magnified proton radiograph captured on RCF of a mesh with 10 micron wires and 30 micron grid spacing. Proton Beam1 mm1 mmApproximate Region Sampled by BeamArea of Image at Right
Future Laser Development 
100-200 TW@ 25-40 fs0.1 Hz350 ps7-10 J2-pass Amplifier20-30 TW@ 25 fs10 Hz350 ps1-1.5 J4-pass Amplifier1 PW @ 30-40 fs0.1 Hz350ps50 JHigh-Power AmplifierN/A10 Hz350 ps100 mJRegenerativeAmplifierN/A10 Hz15 fs1 mJCleaner(106contrast) N/A80 Mhz10-15 fs1 nJOscillatorCompressed OutputRepetitionRatePulse widthEnergyCurrent Hercules
Proton Acceleration Summary 
•Simulation and experiment support proton acceleration at the laser-irradiated side of the target of a 4 MeV beam, on the back of the underdense plasma under these conditions. 
•And a 12 MeV beam from the rear-surface of Al due to recirculation sheath enhancement. 
•Beam spectrum has bands of energies due to “ion fronts.” 
•Beam profile smoothes out as initial target conductivity increases. 
•Filamentation and structures similar to the electron simulation by Gremillet et. alhave been observed. 
•Demonstrated beam profile modification with modest geometry, and enhancement of number at the maximum energy achieved by initial target geometry and surface conditions 
•CR-39 response is highly non-linear when scanned optically. 
•By using a highly absorptive material we have increased the number of maximum energy protons without sacrificing beam quality. No imprint of LB on beam profile, unlike Roth et. al 
•New 30 fs laser has produced 1021W/cm2 on target in a 1 micron spot, expect high efficiency acceleration
Ion Acceleration Physics Relativistic Electron Cloud (Beam) Model One- Dimensional 
Poisson’s Equation 
∇·E=-4 πenb 
Where: 
e=electron charge 
nb=beam electron density 
Can readily show: 
Ez=2πenbh 
Where: 
h=thickness of electron cloud 
R=radius of electron cloud 
d=diameter of electron cloudd 
R 
Ez
Physics Continued 
Energy conservation for electrons in cloud PE=KEPE≈πe2nbh2KE=( γb-1)moc2where γb=Relativistic ParameterHence: h=√(γb-1)moc2/πe2nb= =√(γb-1)/πrenb Where: re=classical electron radius re=e2/moc2=2.8×10-13Substituting into exp. for Ezwe get Ez=2c√πmo(γb-1)nb
Example 
We begin with 
γb=10 
nb=1019cm-3 
h=10μm 
Ez=913GV/m 
Over a distance of h=10 μm, the electron acquires an energy of 
Eb=9 MeV
Continued 
The Ion Energy Ei=ZEb=ZeEzhEi=9MeV (Z=1) Mean Ion Velocity Viis given by ½miVi2=ZeEzh And the ion acceleration time tiis ti=h/Vi or ti=√mi/Ze2nb
Two Asymptotic Regimes for Ion Acceleration 
1.“Isothermal” expansion relevant to long pulse lengths i.e. τ>ti(ti=1ps) Ions acquire exponential distribution in velocity dni/dv~ exp-( v/CS) Where CS=√ZTe/mi= ion sound speed
Two Asymptotic Regimes for Ion Acceleration 
2.“Adiabatic” regime corresponding to 
shorter, sub picosecondpulses i.e. 
τ<<ti 
Here ion distribution is “steeper” 
and the form 
dni/dv~ exp-( v2/2CS 2) 
For the adiabatic expansion electron cooling takes place according 
Te=Te0(ti/t)2
Ion Velocities 
MaxiumIon Velocities: Isothermal vmax=2CSln(d/h) Adiabatic vmax=2√2CSln(d/h) Note in both instances: Ion Acceleration is more efficient when(d/h)>>1i.e. for larger focal spots
Relationship Between Ion Energy, Laser and Target Parameters 
Consider power balance between laser and ejected electrons: 
[nb(γb-1)moc2]c=ηI 
Where 
η=Efficiency of energy transfer 
Rewrites as 
εe=ηI/nbc 
Also electron must exceed Coulomb Energy to penetrate the target i.e. 
nb=εe/(πe2hR)
Relationship Between Ion Energy, Laser and Target Parameters 
Combining we get: εe=√πe2IRh η/cSince h≈λ= laser wave length, thenεe=√πe2IRh η/cAndεi=Z εeIf we express intensity Iin units of 1018W/cm2and Rand λin microns thenεi=Z εe≈√ηIRλMeV
An Example 
I=1021W/cm2 
η=0.10 
R=2.5 μm 
Then 
εi=14 MeV
Thrust 
F=NiMiωVi 
Mi = ion mass (proton) = 1.6 ×10-27kg 
ω= representation rate ≈1kHz 
Vi = ion velocity (14 MeV) = 5.2×107 m/s
Plasma Expansion in Vacuum 
Ion acceleration time ti=h/vi= 19×10-15secPulse length (projected) τ=30×10-15Thenτ>tiExpansion is Isothermal vi max= 2 CSln(d/h) CS= √ZTe/mi=3×107m/sec vi max= 108m/sec Vi initial≈5×107m/sec
Specific Impulse 
Note improvement in energy transfer efficiency for increasing (d/h), namely for larger aspect ratios 
27.6×107 
27.6×107 
4.61 
100 
23.5×107 
23.5×107 
3.91 
50 
13.8×107 
13.8×107 
2.3 
10 
9.7×107 
9.7×107 
1.61 
5 
Max Isp(s) 
Vimax(m/s) 
ln(d/h) 
d/h
Accomplishments Thus Far 
1.Generate a RelativisticallyConsistent Mathematical Expression for the energy of the ejected ion as a function of laser and target parameters, i.e. Ei=z √ηIRλwhere z = ion chargeη= energy conversion efficiency R= radius of focal spotλ= laser wave length
Accomplishments Thus Far 
2.Experimentally validated Ei~ √IEi~ √λ 3.Indirectly established relationships relating Eito Rand dependence on η. More work is needed in this area! Just purchased 5 parabolic mirrors to investigate thoroughly dependence of Eiand total number of ejected particles on R.
Accomplishments Thus Far 
4.Experimentally established dependence of Eion target thickness “t”, optimized t≈10λ 
5.Experimentally established conditions for 
filamentationinstability 
P =5Pc=5[17(ωo/ωp)2GW] 
4Tc/ωpa0≤2R 
c = speed of light 
a0=8.5×10-10λ[μm] I1/2[W/cm2] 
ωp=plasma frequency 
R= radius of focal spot
Accomplishments Thus Far 
4.Experimentally established energy of ions ejected from front and rear surfaces of target which appear to agree well with simulations 
5.Established dependence of proton beam profiles on materials, surface conditions and geometry 
6.Carried out designs of space Nuclear Reactor for use in LAPPS. Likely candidates are gas-cooled Cermetreactors using Uranium, Plutonium or Americium as fuel.

Mais conteúdo relacionado

Mais procurados

Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11nishmoh
 
Scanning tunneling microscopy
Scanning tunneling microscopyScanning tunneling microscopy
Scanning tunneling microscopyAzhar Ansari
 
hh2014_presentation2noBackup
hh2014_presentation2noBackuphh2014_presentation2noBackup
hh2014_presentation2noBackupJere Harrison
 
Laser in Ophthalmology
Laser in Ophthalmology Laser in Ophthalmology
Laser in Ophthalmology Gazy Khatmi
 
FOURIER TRANSFORM SPECTROSCOPY 1
FOURIER TRANSFORM SPECTROSCOPY 1FOURIER TRANSFORM SPECTROSCOPY 1
FOURIER TRANSFORM SPECTROSCOPY 1Asmaira RZ
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic CosmosCosmoAIMS Bassett
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYSalmanLatif14
 

Mais procurados (20)

Laser Functions
Laser FunctionsLaser Functions
Laser Functions
 
Basics of Lasers
Basics of Lasers Basics of Lasers
Basics of Lasers
 
Laser lecture 05
Laser lecture 05Laser lecture 05
Laser lecture 05
 
Lasers In Urology
Lasers In UrologyLasers In Urology
Lasers In Urology
 
Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11
 
Scanning tunneling microscopy
Scanning tunneling microscopyScanning tunneling microscopy
Scanning tunneling microscopy
 
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
 
Laser ii 2 ppt
Laser ii 2 pptLaser ii 2 ppt
Laser ii 2 ppt
 
hh2014_presentation2noBackup
hh2014_presentation2noBackuphh2014_presentation2noBackup
hh2014_presentation2noBackup
 
Laser in Ophthalmology
Laser in Ophthalmology Laser in Ophthalmology
Laser in Ophthalmology
 
Laser lecture 04
Laser lecture 04Laser lecture 04
Laser lecture 04
 
Talbot Interferometry to estimate focal length
Talbot Interferometry  to estimate focal lengthTalbot Interferometry  to estimate focal length
Talbot Interferometry to estimate focal length
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
 
Laser (medical)
Laser (medical)Laser (medical)
Laser (medical)
 
Laser lecture 09 (applications, fiber optics)
Laser lecture 09 (applications, fiber optics)Laser lecture 09 (applications, fiber optics)
Laser lecture 09 (applications, fiber optics)
 
FOURIER TRANSFORM SPECTROSCOPY 1
FOURIER TRANSFORM SPECTROSCOPY 1FOURIER TRANSFORM SPECTROSCOPY 1
FOURIER TRANSFORM SPECTROSCOPY 1
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic Cosmos
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
 
Neutronpdf
NeutronpdfNeutronpdf
Neutronpdf
 
Lasers in ophthalmology
Lasers in ophthalmologyLasers in ophthalmology
Lasers in ophthalmology
 

Semelhante a Laser drivenplasma

03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdfHassanSoboh
 
Srsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometrySrsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometryssuser29ce41
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOSRoman Hodson
 
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Dynasil Corporation of America
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+niba50
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsEnrico Castro
 
Future accelerator scenarios
Future accelerator scenariosFuture accelerator scenarios
Future accelerator scenariosESS BILBAO
 
Pulse laser micro polishing
Pulse laser micro polishingPulse laser micro polishing
Pulse laser micro polishingSlidegiant
 
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013The Air Force Office of Scientific Research
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptxLasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptxRabiulIslamSikder
 
MS Thesis Defense Presentation
MS Thesis Defense PresentationMS Thesis Defense Presentation
MS Thesis Defense PresentationGhulam Destgeer
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 

Semelhante a Laser drivenplasma (20)

03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Srsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometrySrsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometry
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
 
Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.
 
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
Microwave advancement
Microwave advancementMicrowave advancement
Microwave advancement
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 
TUDORTMUND1
TUDORTMUND1TUDORTMUND1
TUDORTMUND1
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
Future accelerator scenarios
Future accelerator scenariosFuture accelerator scenarios
Future accelerator scenarios
 
Pulse laser micro polishing
Pulse laser micro polishingPulse laser micro polishing
Pulse laser micro polishing
 
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptxLasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Research Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuResearch Poster 2 Dongwei Liu
Research Poster 2 Dongwei Liu
 
MS Thesis Defense Presentation
MS Thesis Defense PresentationMS Thesis Defense Presentation
MS Thesis Defense Presentation
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 

Mais de Clifford Stone (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 

Laser drivenplasma

  • 1. UltrafastLaser-Driven Plasma for Space Propulsion Terry Kammash, K. Flippo†, T. Lin, A. Maksimchuk, M. Rever, S. Banerjee, D. Umstadter FOCUS Center / Center forUltrafastOptical Science, University of Michigan, Ann Arbor, MI 48109-2099, USA Y. Sentoku General Atomics, San Diego, CA V. Yu. Bychenkov P. N.LebedevPhysics Institute, Russian Academy of Science, 117924 Moscow, Russia Lasers supported by the National Science Foundation FOCUS Center and the U of M Center for Ultrafast Optical Science, and funding from NASA Institute For Advanced Concepts
  • 2. Accelerator SetupProton BeamCUOS T3Laser Parameters: •Ti:Sapphire / Nd:Glass•1.053 mm (ωo), 527nm (2 ωo) •up to ~12 TW •5 J•400 fs•Contrast: 10-5:1 @ ωo, 10-7:1 @2 ωo•2x1018-2x1019W/cm2Target Normal Forward DirectionLaser Forward DirectionCR-39 DetectorFWHM = 4.3 um Incident Laser Spot
  • 3. Front Surface Deuteron Acceleration •Activation of 10B to 11C is achieved only by illuminating deuterons on the front surface. •No activation when deuterons were on the back surface, or without deuterons (i.e. no production of 11C detected from 11B(p,n)11C reaction). •Deuterons have about ½the Emaxof the measured protons101001000010203040506070 Counts/2 min Time after shot (min) Decay for 11CIlas=6x1018W/cm2Detection efficiency 15% 10B(d,n)11C reactionBoronsampleLaserMylar filmCD11C10BDeuteronsn K.Nemoto, S.Banerjee, K.Flippo, A.Maksimchuk, D.UmstadterApp. Phys.Lett, 78, 595 (2001)
  • 4. Radioisotope Activation with ProtonsNaIPMTto MCASampleprotonsLasertargetcollimator & shieldNaIPMTto MCA• ••••• • • • ••••••• • ••• • • • • • • • • • • • • • • • • • • •••• • • • • • •• • • •• •• • • • ••• • • • •• • • • • •• • • • • • • • • • • • •• • • • • • •• • • • • 110100100002000400060008000 Count (0.511 MeV) Time (sec) t ~ 38 minCu (p,n) Zn6363Laser Induced••••••••••••••••••••••••••••••••• • • • • •• •• ••• •• ••• • • • ••• • • ••• ••••• • • •• • •• •••• ••••• •• •• ••••• •• •• • • ••• •••••••••• •••• •• •• •• ••• • • ••••• • • ••• •••• • ••••• •••••• •••••••• • •• • • •••• ••• •••••••••••• • • • • • • • • • • • ••• • • • •• • • • • • • • • • •••• •• •• • •••• ••• ••••••• ••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••02004006008001000050100150200250300 Counts Channel Singles SpectrumB (p,n) C11 110.511 MeVSort window• •• • • •••• • • • ••• • • • •• •• • •••• • • 101001000300002004006008001000 Count (0.511 MeV) Time (sec) B (p, n) C1111 t = 20 minLaser Induced
  • 5. Material Effect on Proton ProductionEe- ConductorInsulatorp+ p+p+BBe- EMylar (polyethylene terephthalate C10H8O4) •ρ~1.2 g/cm3•σ=10-12Ω-1m-1•Z=4.3Aluminum•ρ~2.7 g/cm3•σ=3.6×107Ω-1m-1•Z=13p+ e- p+ p+ laser laser target target
  • 6. Beam Profile Dependence on Initial Target Composition RCF (a,c,e,g) / CR-39 (b,d,f,h) detector stack images for 13μm Mylar, 10 μm silicon, 12.5 μm aluminum, and 12.5 μm copper targets. All pairs are single shot except (c) and (d) which were two separate shots. RCF records protons between~0.2 and ~2 MeV, CR-39 records protons between ~2.5-~4 MeV. Except (d) which recorded between ~1.2 MeV and 3 MeV
  • 7. Beam Profile Dependence on Target Thickness (a) 6 μm, (b) 13 μm , (c) 25 μm, (d) 50 μm, and (e) 100 μm(a) 4 μm, (b) 12.5 μm, (c) 25 μm, (d) 50 μm, and (e) 75 μm Call out: White arrows point to beam filamentation, most likely a manifestation of the Weibel, instability.
  • 8. Comparison with Simulation Images: Contrast enhanced RCF images of proton beam profiles after a drift of 5 cm from target exit from experiments with 13 microns of Mylar (a) top left, and12.5 microns of aluminum (b) bottom left. Compare an electron beam profile from a simulation (c) by L. Gremillet, et al.[Phys. Plasmas 9, 941(2002)], showing the transverse electron profile jb/encat 20 microns inside a silica target for a propagating monoenergetic electron beam of energy 500 keV, after 405 fs of propagation, which is also the beam duration. Image reproduced with permission. Silica Observed profiles e-beam simulation
  • 9. Magnetic Field from Simulation vs. Proton Beam Profile E field configuration plot from the simulation at 405 fs. Notice the similarities in the simulation slices to proton beam images in row (I) of the previous slide. e-beam induced B field evolution is very similar to that of the proton beam profile seen from Mylar previously. And as shown by M. Honda, J. Meyer-ter-Vehn and A. Pukov, PRL 85 2128 (2000) the ions can follow the electron filaments in as little as 60 fs.
  • 10. Electron Distribution From Al TargetProtonsX-ray FilmlaserTargetTop ViewTarget Holder ShadowX-ray Film Line OutX-ray FilmHolder0°
  • 11. Protons From Front Surface0246810121416050100150200Target Thickness [microns] Maximum Proton Energy [MeV] Eimax ~ 13 μm
  • 12. Simulation of proton beam Sentoku’s[1] recent 1-D PIC simulations predict a 5 MeV beam from the front surface for a 400fs laser pulse, with about 13 MeV from the rear. This agrees well with the observed 4 MeV trend, and a maximum of about 12 MeV. [1] Y. Sentoku Phys. Plasmas 10 2009 (2003)
  • 13. Deuteron Acceleration Preliminary Results Deuteron coating No deuteron coatingp+d+ p+ Where do highest energy deuterons come from? 1.The BACK of 12.5um Al 2.The FRONT of 6 um Mylar 3.The FRONT of 13 um Mylar 4.The FRONT of 12.5 um Al 5.The BACK of 13 um Mylar
  • 14. Proton Energy Scaling with Pulse Duration and IntensityFrom Y. Sentoku, T. E. Cowan, A. Kemp, and H. RuhlPhysics of Plasmas 10, 2009 (2003) 14.5 MeV> 30 MeV Current T-cubed System Future HERCULES System
  • 15. Peak Proton Energy vs. Spot SizeE = 190.87d1.7404010002000300040005000600033.544.555.566.57Spot size diameter [microns] Peak Proton Energy [keV] f/3.3 off-axis parabolaf/1.5 off-axis parabolaPower Scaling FitFor intensities of ~ 1.4 x 1019 W/cm2For intensities of ~ 2.5 x 1019 W/cm2 E =190.87 x d 1.704
  • 16. Spot Size ComparisonTotal Intensity vs. Diameter for f/1.5 Paraboloid 4.3 FWHM Spot Size02040608010012005101520253035404550Spot Size Diameter [um] Total Energy [%] Profile of 4.3μm FWHM Spot0100002000030000400005000060000-15-10-5051015Radial Position [μm]Intensity [a.u.] 40% in FWHM
  • 17. Spot Size ComparisonTotal Intensity vs. Diameter for f/3.3 Parabaloid FWHM Focal Spot of 6.4 Microns 8-17-0102040608010012005101520253035404550Spot Size Diameter [um] Total Energy [%] Profile of 6.4 μm FWHM Spot0100002000030000400005000060000-20-1001020Radial Position [μm] Intensity [a.u.] 35% in FWHM
  • 18. Material Effects on Plume Profile Proton Beam Images Using a CCDLaser Propagation Direction Target Plane Dark Side Illuminated Side 4 Al Target, 4MeV beam No backfilled gas, 200 mTorr ambient 4 um Al Target with 2 Torr H2 25 um Mylar Target 25 um Mylar Target with 2.4 Torr He 25 um Al Target Proton Beam is Emitted Normal to Target
  • 19. Plume Evolution in 1 TorrH2 Ambient Backfill12.5 mm Al+4 ms+1 ms+4 ms+14 ms3.069 cm25 mm Mylar2.138 cm~31000 m/s2.222cm3.194 cm~32000 m/s1 cm+ 65.5us +1 ms
  • 20. Target Geometry>1.4 MeV, 55º div. @ 1.5x1019 W/cm2>2 MeV, 38º div. @ 1.2x1019 W/cm2> 1.4 MeV, 44º div. @ 1.6x1019W/cm2> 3 MeV, 28º div. @ 1.2x1019W/cm2LaserProtonsTargetTargetHolderCurved TargetGeometry 25 μm Al Radius of curvature ~ 0.2 mm Radius of curvature ~ 0.5 mm
  • 21. Target Geometry ~100 Micron Half Wire Cross-sections Focus on flat surface Focus on round surface Wire orientation: ProtonsLaserProtonsProtonsLaserWire positionCR-39FlatRound laserlaser Beam Images: Focusing on flat surface (840) creates an ion beam, while focusing on the round side produces a cylindrical-like spray
  • 22. Target Surface GeometryElectron Microscopyof LaserBlack™ Results: •30 mm Laserblack target ~ 8.2 MeV•Enhancement in the number of maximum energy protons•Beam profile does not suffer, regardless of which surface has been coated, i.e. no imprinting even from rear-side100 μm2 μmMurnane et al. APL 62 (1993) used gratings and clusters, Kulcsar et al. PRL 84 (2000) used metallic “velvet”. Both showed enhanced X-ray yield from enhance electron heating from efficient coupling. LaserBlack®is > 96% absorptive at 1 mm. Laser Spot Size ~ 6 micronsUse a material which will “trap”the laser light, to enhance the generation of hot electrons. >1.3MeV31ºdiv.
  • 23. T-cube LaserThin Film TargetMeshRadiochromicFilm51.8 lines highProtonRadiographyThe possibility exists to use the laser produced proton beam for very small scale imaging or even lithography. The image on the left is a 5x magnified proton radiograph captured on RCF of a mesh with 10 micron wires and 30 micron grid spacing. Proton Beam1 mm1 mmApproximate Region Sampled by BeamArea of Image at Right
  • 24. Future Laser Development 100-200 TW@ 25-40 fs0.1 Hz350 ps7-10 J2-pass Amplifier20-30 TW@ 25 fs10 Hz350 ps1-1.5 J4-pass Amplifier1 PW @ 30-40 fs0.1 Hz350ps50 JHigh-Power AmplifierN/A10 Hz350 ps100 mJRegenerativeAmplifierN/A10 Hz15 fs1 mJCleaner(106contrast) N/A80 Mhz10-15 fs1 nJOscillatorCompressed OutputRepetitionRatePulse widthEnergyCurrent Hercules
  • 25. Proton Acceleration Summary •Simulation and experiment support proton acceleration at the laser-irradiated side of the target of a 4 MeV beam, on the back of the underdense plasma under these conditions. •And a 12 MeV beam from the rear-surface of Al due to recirculation sheath enhancement. •Beam spectrum has bands of energies due to “ion fronts.” •Beam profile smoothes out as initial target conductivity increases. •Filamentation and structures similar to the electron simulation by Gremillet et. alhave been observed. •Demonstrated beam profile modification with modest geometry, and enhancement of number at the maximum energy achieved by initial target geometry and surface conditions •CR-39 response is highly non-linear when scanned optically. •By using a highly absorptive material we have increased the number of maximum energy protons without sacrificing beam quality. No imprint of LB on beam profile, unlike Roth et. al •New 30 fs laser has produced 1021W/cm2 on target in a 1 micron spot, expect high efficiency acceleration
  • 26. Ion Acceleration Physics Relativistic Electron Cloud (Beam) Model One- Dimensional Poisson’s Equation ∇·E=-4 πenb Where: e=electron charge nb=beam electron density Can readily show: Ez=2πenbh Where: h=thickness of electron cloud R=radius of electron cloud d=diameter of electron cloudd R Ez
  • 27. Physics Continued Energy conservation for electrons in cloud PE=KEPE≈πe2nbh2KE=( γb-1)moc2where γb=Relativistic ParameterHence: h=√(γb-1)moc2/πe2nb= =√(γb-1)/πrenb Where: re=classical electron radius re=e2/moc2=2.8×10-13Substituting into exp. for Ezwe get Ez=2c√πmo(γb-1)nb
  • 28. Example We begin with γb=10 nb=1019cm-3 h=10μm Ez=913GV/m Over a distance of h=10 μm, the electron acquires an energy of Eb=9 MeV
  • 29. Continued The Ion Energy Ei=ZEb=ZeEzhEi=9MeV (Z=1) Mean Ion Velocity Viis given by ½miVi2=ZeEzh And the ion acceleration time tiis ti=h/Vi or ti=√mi/Ze2nb
  • 30. Two Asymptotic Regimes for Ion Acceleration 1.“Isothermal” expansion relevant to long pulse lengths i.e. τ>ti(ti=1ps) Ions acquire exponential distribution in velocity dni/dv~ exp-( v/CS) Where CS=√ZTe/mi= ion sound speed
  • 31. Two Asymptotic Regimes for Ion Acceleration 2.“Adiabatic” regime corresponding to shorter, sub picosecondpulses i.e. τ<<ti Here ion distribution is “steeper” and the form dni/dv~ exp-( v2/2CS 2) For the adiabatic expansion electron cooling takes place according Te=Te0(ti/t)2
  • 32. Ion Velocities MaxiumIon Velocities: Isothermal vmax=2CSln(d/h) Adiabatic vmax=2√2CSln(d/h) Note in both instances: Ion Acceleration is more efficient when(d/h)>>1i.e. for larger focal spots
  • 33. Relationship Between Ion Energy, Laser and Target Parameters Consider power balance between laser and ejected electrons: [nb(γb-1)moc2]c=ηI Where η=Efficiency of energy transfer Rewrites as εe=ηI/nbc Also electron must exceed Coulomb Energy to penetrate the target i.e. nb=εe/(πe2hR)
  • 34. Relationship Between Ion Energy, Laser and Target Parameters Combining we get: εe=√πe2IRh η/cSince h≈λ= laser wave length, thenεe=√πe2IRh η/cAndεi=Z εeIf we express intensity Iin units of 1018W/cm2and Rand λin microns thenεi=Z εe≈√ηIRλMeV
  • 35. An Example I=1021W/cm2 η=0.10 R=2.5 μm Then εi=14 MeV
  • 36. Thrust F=NiMiωVi Mi = ion mass (proton) = 1.6 ×10-27kg ω= representation rate ≈1kHz Vi = ion velocity (14 MeV) = 5.2×107 m/s
  • 37. Plasma Expansion in Vacuum Ion acceleration time ti=h/vi= 19×10-15secPulse length (projected) τ=30×10-15Thenτ>tiExpansion is Isothermal vi max= 2 CSln(d/h) CS= √ZTe/mi=3×107m/sec vi max= 108m/sec Vi initial≈5×107m/sec
  • 38. Specific Impulse Note improvement in energy transfer efficiency for increasing (d/h), namely for larger aspect ratios 27.6×107 27.6×107 4.61 100 23.5×107 23.5×107 3.91 50 13.8×107 13.8×107 2.3 10 9.7×107 9.7×107 1.61 5 Max Isp(s) Vimax(m/s) ln(d/h) d/h
  • 39. Accomplishments Thus Far 1.Generate a RelativisticallyConsistent Mathematical Expression for the energy of the ejected ion as a function of laser and target parameters, i.e. Ei=z √ηIRλwhere z = ion chargeη= energy conversion efficiency R= radius of focal spotλ= laser wave length
  • 40. Accomplishments Thus Far 2.Experimentally validated Ei~ √IEi~ √λ 3.Indirectly established relationships relating Eito Rand dependence on η. More work is needed in this area! Just purchased 5 parabolic mirrors to investigate thoroughly dependence of Eiand total number of ejected particles on R.
  • 41. Accomplishments Thus Far 4.Experimentally established dependence of Eion target thickness “t”, optimized t≈10λ 5.Experimentally established conditions for filamentationinstability P =5Pc=5[17(ωo/ωp)2GW] 4Tc/ωpa0≤2R c = speed of light a0=8.5×10-10λ[μm] I1/2[W/cm2] ωp=plasma frequency R= radius of focal spot
  • 42. Accomplishments Thus Far 4.Experimentally established energy of ions ejected from front and rear surfaces of target which appear to agree well with simulations 5.Established dependence of proton beam profiles on materials, surface conditions and geometry 6.Carried out designs of space Nuclear Reactor for use in LAPPS. Likely candidates are gas-cooled Cermetreactors using Uranium, Plutonium or Americium as fuel.