SlideShare uma empresa Scribd logo
1 de 19
Baixar para ler offline
from the association
           Position of the American Dietetic Association,
      Dietitians of Canada, and the American College of
     Sports Medicine: Nutrition and Athletic Performance
ABSTRACT                                       This American Dietetic Association (ADA) position paper uses ADA’s
It is the position of the American Die-     Evidence Analysis Process and information from ADA’s Evidence Analysis
tetic Association, Dietitians of Canada,    Library. Similar information is also available from Dietitians of Canada’s
and the American College of Sports          Practice-based Evidence in Nutrition. The use of an evidence-based ap-
Medicine that physical activity, ath-       proach provides important added benefits to earlier review methods. The
letic performance, and recovery from        major advantage of the approach is the more rigorous standardization of
exercise are enhanced by optimal            review criteria, which minimizes the likelihood of reviewer bias and in-
nutrition. These organizations rec-         creases the ease with which disparate articles may be compared. For a
ommend appropriate selection of             detailed description of the methods used in the evidence analysis process,
foods and fluids, timing of intake,          access ADA’s Evidence Analysis Process at http://adaeal.com/eaprocess/.
and supplement choices for optimal             Conclusion Statements are assigned a grade by an expert work group
health and exercise performance.            based on the systematic analysis and evaluation of the supporting research
This updated position paper couples         evidence. Grade I Good, Grade II Fair, Grade III Limited, Grade IV
a rigorous, systematic, evidence-           Expert Opinion Only, and Grade V Grade Is Not Assignable (because there
based analysis of nutrition and             is no evidence to support or refute the conclusion).
performance-specific literature with            Evidence-based information for this and other topics can be found at
current scientific data related to           www.adaevidencelibrary.com and www.dieteticsatwork.com/pen and sub-
energy needs, assessment of body            scriptions for non-ADA members are available for purchase at https://
composition, strategies for weight          www.adaevidencelibrary.com/store.cfm. Subscriptions for Dietitians of
change, nutrient and fluid needs,            Canada and non-Dietitians of Canada members are available for Practice-
special nutrient needs during train-        based Evidence in Nutrition at http://www.dieteticsatwork.com/pen_order.
ing and competition, the use of             asp.
supplements and ergogenic aids, nu-
trition recommendations for vege-
tarian athletes, and the roles and         maintain blood glucose concentra-       genic aids are poorly enforced, they
responsibilities of sports dietitians.     tion during exercise, maximize exer-    should be used with caution, and
Energy and macronutrient needs,            cise performance, and improve re-       only after careful product evalua-
especially carbohydrate and protein,       covery time. Athletes should be well    tion for safety, efficacy, potency, and
must be met during times of high           hydrated before exercise and drink      legality. A qualified sports dietitian
physical activity to maintain body         enough fluid during and after exer-      and in particular in the United
weight, replenish glycogen stores,         cise to balance fluid losses. Sports     States, a Board Certified Specialist
and provide adequate protein to            beverages containing carbohydrates      in Sports Dietetics, should provide
build and repair tissue. Fat intake        and electrolytes may be consumed        individualized nutrition direction
should be sufficient to provide the         before, during, and after exercise to   and advice subsequent to a compre-
essential fatty acids and fat-soluble      help maintain blood glucose concen-     hensive nutrition assessment.
vitamins, as well as contribute            tration, provide fuel for muscles,      J Am Diet Assoc. 2009;109:509-527.
energy for weight maintenance. Al-         and decrease risk of dehydration
though exercise performance can be         and hyponatremia. Vitamin and
affected by body weight and compo-         mineral supplements are not needed
                                                                                   POSITION STATEMENT
sition, these physical measures            if adequate energy to maintain body
should not be a criterion for sports       weight is consumed from a variety       It is the position of the American Die-
performance and daily weigh-ins            of foods. However, athletes who re-     tetic Association, Dietitians of Can-
are discouraged. Adequate food and         strict energy intake, use severe        ada, and the American College of
fluid should be consumed before,            weight-loss practices, eliminate one    Sports Medicine that physical activ-
during, and after exercise to help         or more food groups from their diet,    ity, athletic performance, and recovery
                                           or consume unbalanced diets with        from exercise are enhanced by optimal
                                           low micronutrient density, may re-      nutrition. These organizations recom-
 0002-8223/09/10903-0017$36.00/0
                                           quire supplements. Because regula-      mend appropriate selection of food
 doi: 10.1016/j.jada.2009.01.005
                                           tions specific to nutritional ergo-      and fluids, timing of intake, and sup-


© 2009 by the American Dietetic Association                                   Journal of the AMERICAN DIETETIC ASSOCIATION   509
plement choices for optimal health                 does not benefit performance. Fat,              weight during the first 30 minutes
and exercise performance.                          which is a source of energy, fat-sol-          and again every 2 hours for 4 to 6
                                                   uble vitamins, and essential fatty             hours will be adequate to replace gly-


T
     he following key points summa-                acids, is important in the diets of            cogen stores. Protein consumed after
     rize the current energy, nutrient,            athletes. High-fat diets are not rec-          exercise will provide amino acids for
     and fluid recommendations for                  ommended for athletes.                         building and repair of muscle tissue.
active adults and competitive ath-             ●   Athletes who restrict energy intake        ●   In general, no vitamin and mineral
letes. These general recommenda-                   or use severe weight-loss practices,           supplements are required if an ath-
tions can be adjusted by sports nutri-             eliminate one or more food groups              lete is consuming adequate energy
tion experts to accommodate the                    from their diet, or consume high- or           from a variety of foods to maintain
unique concerns of individual ath-                 low-carbohydrate diets of low mi-              body weight. Supplementation rec-
letes regarding health, sports, nutri-             cronutrient density are at greatest            ommendations unrelated to exercise,
ent needs, food preferences, and body              risk of micronutrient deficiencies.             such as folic acid for women of child-
weight and body composition goals.                 Athletes should consume diets that             bearing potential, should be followed.
                                                   provide at least the Recommended               A multivitamin/mineral supplement
●   Athletes need to consume adequate              Dietary Allowance (RDA) for all mi-            may be appropriate if an athlete is
    energy during periods of high-in-              cronutrients.                                  dieting, habitually eliminating foods
    tensity and/or long-duration train-        ●   Dehydration (water deficit in excess            or food groups, is ill or recovering
    ing to maintain body weight and                of 2% to 3% body mass) decreases               from injury, or has a specific micro-
    health and maximize training ef-               exercise performance; thus, ade-               nutrient deficiency. Single-nutrient
    fects. Low energy intakes can result           quate fluid intake before, during,              supplements may be appropriate for
    in loss of muscle mass; menstrual              and after exercise is important for            a specific medical or nutritional rea-
    dysfunction; loss of or failure to             health and optimal performance.                son (eg, iron supplements to correct
    gain bone density; an increased risk           The goal of drinking is to prevent             iron deficiency anemia).
    of fatigue, injury, and illness; and a         dehydration from occurring during          ●   Athletes should be counseled re-
    prolonged recovery process.                    exercise and individuals should not            garding the appropriate use of ergo-
●   Body weight and composition should             drink in excess of sweating rate. Af-          genic aids. Such products should
    not be the sole criterion for participa-       ter exercise, the athlete should               only be used after careful evalua-
    tion in sports; daily weigh-ins are dis-       drink adequate fluids to replace                tion for safety, efficacy, potency,
    couraged. Optimal body fat levels de-          sweat losses during exercise, ap-              and legality.
    pend upon the sex, age, and heredity           proximately 16 to 24 oz (450 to 675        ●   Vegetarian athletes may be at risk
    of the athlete, and may be sport-spe-          mL) fluid for every pound (0.5 kg) of           for low intakes of energy, protein,
    cific. Body fat assessment techniques           body weight lost during exercise.              fat, and key micronutrients such as
    have inherent variability and limita-      ●   Before exercise, a meal or snack               iron, calcium, vitamin D, riboflavin,
    tions. Preferably, weight loss (fat            should provide sufficient fluid to               zinc, and vitamin B-12. Consulta-
    loss) should take place during the off-        maintain hydration, be relatively              tion with a sports dietitian is rec-
    season or begin before the competi-            low in fat and fiber to facilitate gas-         ommended to avoid these nutrition
    tive season and involve a qualified             tric emptying and minimize gastro-             problems.
    sports dietitian.                              intestinal distress, be relatively
●   Carbohydrate recommendations for               high in carbohydrate to maximize
    athletes range from 6 to 10 g/kg (2.7          maintenance of blood glucose, be           EVIDENCE-BASED ANALYSIS
    to 4.5 g/lb) body weight per day.              moderate in protein, be composed of        Studies used in the development of
    Carbohydrates maintain blood glu-              familiar foods, and be well tolerated      this position paper were identified
    cose levels during exercise and re-            by the athlete.                            from the PubMed database main-
    place muscle glycogen. The amount          ●   During exercise, primary goals for         tained by the National Library of
    required depends upon the athlete’s            nutrient consumption are to replace        Medicine and CENTRAL database, as
    total daily energy expenditure, type           fluid losses and provide carbohy-           well as through research articles and
    of sport, sex, and environmental               drates (approximately 30 to 60 g per       literature reviews. Five topic-specific
    conditions.                                    hour) for maintenance of blood glu-        questions were identified for evi-
●   Protein recommendations for endur-             cose levels. These nutrition guide-        dence-based analysis (Figure 1) and
    ance and strength-trained athletes             lines are especially important for en-     incorporated into this position, updat-
    range from 1.2 to 1.7 g/kg (0.5 to 0.8         durance events lasting longer than         ing the prior position on nutrition and
    g/lb) body weight per day. These rec-          an hour when an athlete has not con-       performance (1). Search terms used
    ommended protein intakes can gen-              sumed adequate food or fluid before         were athlete, performance, power,
    erally be met through diet alone,              exercise, or if an athlete is exercising   strength, endurance, or competition
    without the use of protein or amino            in an extreme environment (eg, heat,       and macronutrient, meal, carbohy-
    acid supplements. Energy intake suf-           cold, or high altitude).                   drate, fat, protein, or energy. For the
    ficient to maintain body weight is          ●   After exercise, dietary goals are to       purpose of this analysis, inclusion cri-
    necessary for optimal protein use              provide adequate fluids, electrolytes,      teria were adults aged 18 to 40 years;
    and performance.                               energy, and carbohydrates to replace       all sport settings; and trained ath-
●   Fat intake should range from 20%               muscle glycogen and ensure rapid re-       letes, athletes in training, or individ-
    to 35% of total energy intake. Con-            covery. A carbohydrate intake of           uals regularly exercising. Since the
    suming 20% of energy from fat                    1.0 to 1.5 g/kg (0.5 to 0.7 g/lb) body   grading system used provides allow-


510     March 2009 Volume 109 Number 3
mary fuel used for high intensity, short
    Topic                        Question                                                          duration activities such as the clean
                                                                                                   and jerk in weight lifting, or fast break
    ● Energy balance and         What is the relationship between energy balance/imbalance,        in basketball.
      body composition             body composition, and/or weight management and                     The anaerobic glycolytic pathway
                                   athletic performance?                                           uses muscle glycogen and glucose
    ● Training                   What is the evidence to support a particular meal timing,         that are rapidly metabolized anaero-
                                   energy intake, and macronutrient intake for optimal             bically through the glycolytic cascade.
                                   athletic performance during training?                           This pathway supports events lasting
    ● Competition                What is the evidence to support a particular meal timing,         60 to 180 seconds. Approximately
                                   energy intake, and macronutrient intake for optimal             25% to 35% of total muscle glycogen
                                   athletic performance during competition during the 24           stores are used during a single 30-
                                   hours before competition?                                       second sprint or resistance exercise
                                 What is the evidence to support a particular meal timing,         bout. Neither the phosphagen nor the
                                   energy intake, and macronutrient intake for optimal             glycolytic pathway can sustain the
                                   athletic performance during competition?                        rapid provision of energy to allow
    ● Recovery                   What is the evidence to support a particular meal timing,         muscles to contract at a very high
                                   energy intake, and macronutrient intake for optimal             rate for events lasting greater than
                                   athletic performance during recovery?                             2 to 3 minutes.
                                                                                                      The oxidative pathway fuels events
Figure 1. Specific topics and the respective questions used for the evidence analysis sections of   lasting longer than 2 to 3 minutes.
the American Dietetic Association, Dietitians of Canada, and American College of Sports Medicine   The major substrates include muscle
position on nutrition and athletic performance.                                                    and liver glycogen, intramuscular,
                                                                                                   blood, and adipose tissue triglycer-
ances for consideration of study de-               Conclusion statements were formu-               ides, and negligible amounts of amino
sign, the evidence-based analysis was            lated summarizing the strength of evi-            acids from muscle, blood, liver, and
not limited to randomized controlled             dence with respect to each question               the gut. Examples of events for which
trials. Study design preferences were            (Figure 1). The strength of the evidence          the major fuel pathway is the oxida-
randomized controlled trials or clini-           was graded using the following ele-               tive pathway include a 1,500-meter
cal controlled studies; large nonran-            ments: quality, consistency across                run, marathon, half-marathon, and
domized observational studies; and               studies, quantity, and generalizability.          endurance cycling or         500 meter
cohort, case-control studies. All sam-           A more detailed description of the                swimming events. As oxygen becomes
ple sizes were included and study                methodology used for this evidence-               more available to the working muscle,
drop out rate could not exceed 20%.              based analysis may be found on the                the body uses more of the aerobic (ox-
The publication range for the evi-               American Dietetic Association Web site            idative) pathways and less of the an-
dence-based analysis spanned 1995-               at www.eatright.org/cps/rde/xchg/ada/             aerobic (phosphagen and glycolytic)
2006. If an author was included on               hs.xsl/8099_ENU_HTML.htm.                         pathways. Only the aerobic pathway
more than one review article or pri-                                                               can produce large amounts of ATP
mary research article which were                                                                   over time via the Kreb’s cycle and
similar in content, the most recent              ENERGY METABOLISM                                 the electron transport system. The
paper was accepted and earlier ver-              Energy expenditure must equal en-                 greater dependence upon aerobic
sions rejected. However, when an au-             ergy intake to achieve energy bal-                pathways does not occur abruptly,
thor was included on more than one               ance. The energy systems used during              nor is one pathway ever relied on
review article or primary research ar-           exercise for muscular work include                exclusively. The intensity, duration,
ticle for which content differed, then           the phosphagen and glycolytic (both               frequency, type of activity, sex, and
both reviews could be accepted for               anaerobic) and the oxidative (aerobic)            fitness level of the individual, as
analysis.                                        pathways. The phosphagen system is                well as prior nutrient intake and en-
   The following exclusion criteria              used for events lasting no longer than            ergy stores, determine when the
were applied to all identified studies:           a few seconds and of high intensity.              crossover from primarily aerobic to
                                                 Adenosine triphosphate (ATP) and cre-             anaerobic pathways occurs (2).
●   adults older than age 40 years,              atine phosphate provide the readily
    young adults younger than age 18             available energy present within the
    years, infants, children, and adoles-        muscle. The amount of ATP present in              Conversion of Energy Sources Over Time
    cents;                                       skeletal muscles ( 5 mmol/kg wet                  Approximately 50% to 60% of energy
●   settings not related to sports;              weight) is not sufficient to provide a             during 1 to 4 hours of continuous ex-
●   nonathletes;                                 continuous supply of energy, especially           ercise at 70% of maximal oxygen ca-
●   critical illness and other diseases          at high exercise intensities. Creatine            pacity is derived from carbohydrates
    and conditions;                              phosphate is an ATP reserve in muscle             and the rest from free fatty acid oxi-
●   drop out rates 20%;                          that can be readily converted to sustain          dation (3). A greater proportion of en-
●   publication before 1995;                     activity for 3 to 5 minutes (2). The              ergy comes from oxidation of free
●   studies by same author that were             amount of creatine phosphate available            fatty acids, primarily those from mus-
    similar in content; and                      in skeletal muscle is 4 times greater             cle triglycerides as intensity of the
●   articles not in English.                     than ATP, and therefore, is the pri-              exercise decreases (3). Training does


                                                                               March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION   511
not alter the total amount of energy
expended but rather the proportion of       Adult man
energy derived from carbohydrates           662 9.53 (age in years) PAa [15.91 (weight in kilograms) 539.6 (height in meters)].
and fat (3). As a result of aerobic         Adult woman
training, the energy derived from fat       354 6.91 (age in years) PA [9.36 (weight in kilograms) 726 (height in meters)]
increases and from carbohydrates de-
creases. A trained individual uses a        PA level
greater percentage of fat than an un-       1.0-1.39     Sedentary, typical daily living activities (eg, household tasks, walking to bus).
trained person does at the same work-       1.4-1.59     Low active, typical daily living activities plus 30-60 minutes of daily moderate
load (2). Long-chain fatty aids derived                  activity (eg, walking at 5-7 km/h).
from stored muscle triglycerides are        1.6-1.89     Active, typical daily living activities plus 60 minutes of daily moderate
the preferred fuel for aerobic exercise                  activity.
for individuals involved in mild- to        1.9-2.5      Very active, typical daily activities plus at least 60 minutes of daily moderate
moderate-intensity exercise (4).                         activity plus an additional 60 minutes of vigorous activity or 120 minutes of
                                                         moderate activity.

ENERGY REQUIREMENTS                        Figure 2. The Dietary Reference Intake (DRI) method for estimating energy requirement for
Meeting energy needs is a nutrition        adults. Adapted from reference 17. aPA physical activity.
priority for athletes. Optimum athletic
performance is promoted by adequate        particularly of the micronutrients              ing metabolic rate. The two prediction
energy intake. This section provides in-   and may result in metabolic dysfunc-            equations considered to most closely
formation necessary to determine en-       tions associated with nutrient defi-             estimate energy expenditure are the
ergy balance for an individual. Energy     ciencies as well as lowered resting             Cunningham equation (18) and the
balance occurs when energy intake (the     metabolic rate. The newer concept of            Harris-Benedict equation (19). Be-
sum of energy from foods, fluids, and       energy availability, defined as dietary          cause the Cunningham equation re-
supplement products) equals energy         intake minus exercise energy expen-             quires that lean body mass be known,
expenditure or the sum of energy ex-       diture normalized to fat-free mass              sports dietitians typically use the
pended as basal metabolic rate; the        (FFM), is the amount of energy avail-           Harris-Benedict equation. To esti-
thermic effect of food; and the thermic    able to the body to perform all other           mate total energy expenditure, basal
effect of activity, which is the energy    functions after exercise training ex-           metabolic rate or resting metabolic
expended in planned physical activity      penditure is subtracted. Many re-               rate is then multiplied by the appro-
and nonexercise activity thermogenesis     searchers have suggested that 30                priate activity factor of 1.8 to 2.3 (rep-
(5). Spontaneous physical activity is      kcal/kg FFM/day might be the lower              resenting moderate to very heavy
also included in the thermic effect of     threshold of energy availability for            physical activity levels, respectively).
activity.                                  women (12-15).                                  Numeric guidelines such as these (8)
   Athletes need to consume enough            Estimation of energy needs of ath-           only provide an approximation of the
energy to maintain appropriate             letes and active individuals can be             average energy needs of an individual
weight and body composition while          done using a variety of methods. The            athlete. An alternative method for es-
training for a sport (6). Although         Dietary Guidelines for Americans                timating exercise energy expenditure
usual energy intakes for many in-          2005 (16) and the Dietary Reference             is to use metabolic equivalents re-
tensely training female athletes           Intakes (15,17) provide energy recom-           corded over a 24-hour period (20). Any
might match those of male athletes         mendations for men and women who                of these methods can be used to esti-
per kilogram body weight, some fe-         are slightly to very active that are            mate energy expenditure for the de-
male athletes may consume less en-         based on predictive equations devel-            termination of energy intake require-
ergy than they expend. Low energy          oped using the doubly labeled water             ments and provide a sports dietitian
intake (eg, 1,800 to 2,000 kcal/day)       technique, which can also be used to            with a basis to guide an athlete or
for female athletes is a major nutri-      estimate energy needs of athletes               active individual in meeting their en-
tional concern because a persistent        (Figure 2).                                     ergy needs.
state of negative energy balance can          Energy expenditure for different
lead to weight loss and disruption of      types of exercise is dependent upon
endocrine function (7-10).                 the duration, frequency, and inten-             BODY COMPOSITION
   Inadequate energy intake relative       sity of the exercise, the sex of the ath-       Body composition and body weight
to energy expenditure compromises          lete, and prior nutritional status. He-         are two of the many factors that con-
performance and negates the benefits        redity, age, body size, and FFM also            tribute to optimal exercise perfor-
of training. With limited energy in-       influence energy expenditure. The                mance. Taken together, these two fac-
take, fat and lean tissue will be used     more energy used in activity, the               tors may affect an athlete’s potential
for fuel by the body. Loss of lean tis-    more energy needed to achieve energy            for success for a given sport. Body
sue mass results in the loss of            balance.                                        weight can influence an athlete’s
strength and endurance, as well as            Typical laboratory facilities are            speed,   endurance,     and      power,
compromised immune, endocrine,             usually not equipped to determine to-           whereas body composition can affect
and musculoskeletal function (11). In      tal energy expenditure. Therefore,              an athlete’s strength, agility, and ap-
addition, chronically low energy in-       predictive equations are often used to          pearance. A lean body (ie, one with
take results in poor nutrient intake,      estimate basal metabolic rate or rest-          greater muscle/fat ratio) is often ad-


512   March 2009 Volume 109 Number 3
vantageous in sports where speed is        ter weighing, dual-energy x-ray ab-          Kinanthropometry techniques (26) as
involved.                                  sorptiometry and air displacement            efforts are underway to standardize
   Athletic performance cannot be ac-      plethysmography are Level II tech-           measures worldwide. The US Olympic
curately predicted based solely on         niques, and skinfold measurements            Committee advocates using the sum of
body weight and composition given          and bioelectrical impedance analysis         seven skinfolds (millimeters) based on
that many factors affect body compo-       (BIA) are Level III techniques. Level        International Society for Advances in
sition (21). Some sports dictate that      II and Level III techniques are used         Kinanthropometry landmarks, mark-
athletes make changes in body weight       in practice by sports dietitians.            ing skinfold sites on the body, reporting
and composition that may not be best          Underwater weighing, once consid-         duplicate measures, and communicat-
for the individual athlete. Athletes       ered the criterion standard, is no longer    ing the results as a range, rather than
who participate in weight-class            common. dual-energy x-ray absorpti-          percentage body fat.
sports—such as wrestling or light-         ometry, originally developed to assess          BIA is based on the principle that
weight rowing—may be required to           bone mineral density, can be used for        an electrical signal is more easily con-
lose or gain weight to qualify for a       body composition analysis (21). Al-          ducted through lean tissue than fat or
specific weight category. Athletes who      though dual-energy x-ray absorptiom-         bone (22). Fat mass is estimated by
participate in body conscious sports       etry is fairly accurate, quick, and non-     subtracting the BIA determined esti-
such as dance, gymnastics, figure           invasive, the cost of and access to the      mate of FFM from total body mass.
skating, or diving, may be pressured       instrument limits its utility in practice.   Whole body resistance to the flow
to lose weight and body fat to have a      Air displacement plethysmography             of an electrical current conducted
lean physique, although their current      (BodPod, Life Measurement, Inc, Con-         through the body by electrodes placed
weight for health and performance is       cord, CA) is also used to determine          on wrists and ankles can provide
appropriate. With extreme energy re-       body composition by body density (22),       fairly accurate estimates of total body
strictions, losses of both muscle and      and body fat percentage is calculated        water and FFM (22). BIA is depen-
fat mass may adversely influence an         using the Siri (23) or Brozek and col-       dent on a number of factors that can
athlete’s performance.                     leagues (24) equations. Although this        cause error in the measurement and
   Individualized assessment of an         method provides valid and reliable as-       must be taken into account to obtain a
athlete’s body composition and body        sessment of body composition, it may         fairly accurate estimate. Hydration
weight or body image may be advan-         underestimate body fat in adults and         status is the most important factor
tageous for improvement of athletic        children by 2% to 3% (25).                   that may alter the estimated percent-
performance. Age, sex, genetics, and          Two of the most commonly used             age body fat. The prediction accuracy
the requirements of the sport are fac-     Level III methods are skinfold mea-          of BIA is similar to skinfold assess-
tors that influence an individual ath-      surements and BIA. In addition to            ments but BIA may be preferable be-
lete’s body composition. An optimal        measures of body weight, height,             cause it does not require the technical
competitive body weight and relative       wrist and girth circumferences, skin-        skill associated with skinfold mea-
body fatness should be determined          fold measurements are routinely used         surements (27). Currently, upper and
when an athlete is healthy and per-        by sports dietitians to assess body          lower body impedance devices have
forming at his or her best.                composition. Usually, seven skinfold         been developed but have not been
   Methodology and equipment to per-       sites are used, including abdominal,         evaluated in an athletic population.
form body composition assessments          biceps, front thigh, medial calf, sub-
must be accessible and cost effective.     scapular, supraspinale, and triceps.
Not all of the following methods meet      The standard techniques and defini-           Body Composition and Sports
these criteria for the practitioner. In    tions of each of these sites are pro-        Performance
addition, athletes and coaches should      vided by Heymsfield and colleagues            Body fat percentage of athletes varies
know that there are errors associated      and Marfell-Jones and colleagues             depending on the sex of the athlete
with all body composition techniques       (22). Prediction equations using skin-       and the sport. The estimated minimal
and that it is not appropriate to set a    fold measurements to determine body          level of body fat compatible with
specific body fat percentage goal for       fat content are numerous (22). Ap-           health is 5% for men and 12% for
an individual athlete. Rather, a range     proximately 50% to 70% of the vari-          women (22); however, optimal body
of target percentages of body fat val-     ance in body density is accounted for        fat percentages for an individual ath-
ues should be recommended.                 by this measurement. In addition,            lete may be much higher than these
                                           population differences limit the abil-       minimums and should be determined
                                           ity to interchange the prediction            on an individual basis. The Interna-
Assessment Methodology                     equations, standardization of skinfold       tional Society for Advances in Kinan-
Three levels of assessment tech-           sites varies, and skinfold measure-          thropometry sum of seven skinfolds
niques are used to assess body com-        ment techniques vary from investiga-         indicates that the range of values for
position (22). Direct assessment           tor to investigator. Even the skinfold       the athletic population is 30 to 60 mm
based on analysis of cadavers, al-         caliper is a source of variability (22).     for men and 40 to 90 mm for women
though not used in clinical practice, is   Despite the inherent problems of             (26). Body composition analysis
designated as a Level 1 technique.         skinfold measurement, this technique         should not be used as a criterion for
The other two technique levels are         remains a method of choice because it        selection of athletes for athletic
indirect assessments (Level II) and        is convenient and inexpensive. The           teams. Weight management inter-
doubly indirect assessments (Level         US Olympic Committee is using the            ventions should be thoughtfully de-
III). Hydrodensitometry, or underwa-       International Society for Advances in        signed to avoid detrimental outcomes


                                                                      March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION   513
Setting and monitoring goals
 ● Set realistic weight and body composition goals. Ask the athlete:
       What is the maximum weight that you would find acceptable?
       What was the lowest weight you maintained without constant dieting?
       How did you derive your goal weight?
       At what weight and body composition do you perform best?
 ● Encourage less focus on the scale and more on healthful habits such as stress management and making good food choices.
 ● Monitor progress by measuring changes in exercise performance and energy level, the prevention of injuries, normal menstrual function,
   and general overall well-being.
 ● Help athletes to develop lifestyle changes that maintain a healthful weight for themselves—not for their sport, for their coach, for their
   friends, for their parents, or to prove a point.
 Suggestions for food intake
 ● Low energy intake will not sustain athletic training. Instead, decreases in energy intake of 10% to 20% of normal intake will lead to
   weight loss without the athlete feeling deprived or overly hungry. Strategies such as substituting lower-fat foods for whole-fat foods,
   reducing intake of energy-dense snacks, portion awareness, and doing activities other than eating when not hungry can be useful.
 ● If appropriate, athletes can reduce fat intake but need to know that a lower-fat diet will not guarantee weight loss unless a negative
   energy balance (reduced energy intake and increased energy expenditure) is achieved. Fat intake should not be decreased below 15% of
   total energy intake because some fat is essential for good health.
 ● Emphasize increased intake of whole grains and cereals, and legumes.
 ● Five or more daily servings of fruits and vegetables provide nutrients and fiber.
 ● Dieting athletes should not skimp on protein and need to maintain adequate calcium intakes. Accordingly, use of low-fat dairy products
   and lean meats, fish, and poultry is suggested.
 ● A variety of fluids— especially water—should be consumed throughout the day, including before, during, and after exercise. Dehydration
   as a means of reaching a body-weight goal is contraindicated.
 Other weight management strategies
 ● Advise athletes against skipping meals (especially breakfast) and allowing themselves to become overly hungry. They should be prepared
   for times when they might get hungry, including keeping nutritious snacks available for those times.
 ● Athletes should not deprive themselves of favorite foods or set unrealistic dietary rules or guidelines. Instead, dietary goals should be
   flexible and achievable. Athletes should remember that all foods can fit into a healthful lifestyle. Developing list of “good” and “bad”
   foods is discouraged.
 ● Help athletes identify their own dietary weaknesses and plan strategies for dealing with them.
 ● Remind athletes that they are making lifelong dietary changes to sustain a healthful weight and optimal nutritional status rather than
   going on a short-term diet.

Figure 3. Weight management strategies for athletes. (Adapted from: Manore MM. Chronic dieting in active women: What are the health
consequences? Women’s Health Issues. 1996;6:332-341. Copyright 1996, with permission from Elsevier.)
with specific regard for performance,            in the 2005 Dietary Guidelines (16) and          not be sufficient to maintain optimal
as well as body composition (ie, loss of        Eating Well with Canada’s Food Guide             carbohydrate stores (4 to 5 g/kg or 1.8
lean body mass). See Figure 3 for               (28). Although high-carbohydrate diets           to 2.3 g/lb) in a 60-kg (132 lb) athlete.
practical guidelines for weight man-            (more than 60% of energy intake) have
agement of athletes.                            been advocated in the past, caution is           Protein
                                                recommended in using specific percent-
Conclusion Statement. Four studies have                                                          Protein metabolism during and fol-
                                                ages as a basis for meal plans for ath-          lowing exercise is affected by sex, age,
reported inconclusive findings related to        letes. For example, when energy intake
the effects of energy and protein restric-                                                       intensity, duration, and type of exer-
                                                is 4,000 to 5,000 kcal/day, even a diet          cise, energy intake, and carbohydrate
tion on athletic performance, but carbo-        containing 50% of energy from carbo-
hydrate restriction has been shown to be                                                         availability. More detailed reviews of
                                                hydrate will provide 500 to 600 g car-           these factors and their relationship to
detrimental. For weight class athletes,
                                                bohydrate (or approximately 7 to 8 g/kg          protein metabolism and needs of ac-
two studies show that weight loss preced-
                                                [3.2 to 3.6 g/lb] for a 70-kg [154 lb] ath-      tive individuals can be found else-
ing athletic competition may have no sig-
                                                lete), an amount sufficient to maintain           where (30,31). The current RDA is 0.8
nificant effect on measures of perfor-
mance, depending on refeeding protocol.         muscle glycogen stores from day to day           g/kg body weight and the Acceptable
Evidence Grade III Limited (www.                (29). Similarly, if protein intake for this      Macronutrient Distribution Range for
adaevidencelibrary.com/conclusion.cfm?          plan was 10% of energy intake, abso-             protein intake for adults older than
conclusion_statement_id 250448).                lute protein intake (100 to 125 g/day)           age 18 years is 10% to 35% of total
                                                could exceed the recommended protein             energy (15). Because there is not a
                                                intake for athletes (1.2 to 1.7 g/kg/day         strong body of evidence documenting
MACRONUTRIENT REQUIREMENTS FOR                  or 84 to 119 g in a 70-kg athlete). Con-         that additional dietary protein is
EXERCISE                                        versely, when energy intake is less              needed by healthy adults who under-
Athletes do not need a diet substan-            than 2,000 kcal/day, a diet providing            take endurance or resistance exer-
tially different from that recommended          60% of energy from carbohydrate may              cise, the current Dietary Reference


514   March 2009 Volume 109 Number 3
Intakes for protein and amino acids         supplementation with individual           pathways where micronutrients are
does not specifically recognize the          amino acids (37,38) more recent work      required, and exercise training may
unique needs of routinely active in-        has shown that intact, high-quality       result in muscle biochemical adapta-
dividuals and competitive athletes.         proteins such as whey, casein, or soy     tions that increase micronutrient
However, recommending protein in-           are effectively used for the mainte-      needs. Routine exercise may also in-
takes in excess of the RDA to main-         nance, repair, and synthesis of skele-    crease the turnover and loss of these
tain optimum physical performance is        tal muscle proteins in response to        micronutrients from the body. As a
commonly done in practice.                  training (39). Protein or amino acids     result, greater intakes of micronutri-
Endurance Athletes. An increase in pro-     consumed in close proximity to            ents may be required to cover in-
tein oxidation during endurance exer-       strength and endurance exercise can       creased needs for building, repair,
cise, coupled with nitrogen balance         enhance maintenance of, and net           and maintenance of lean body mass in
studies, provides the basis for recom-      gains in, skeletal muscle (39,40). Be-    athletes (46).
mending increased protein intakes for       cause protein or amino acid supple-          The most common vitamins and
recovery from intense endurance train-      mentation has not been shown to pos-      minerals found to be of concern in
ing (32). Nitrogen balance studies          itively influence athletic performance     athletes’ diets are calcium and vita-
suggest that dietary protein intake         (41,42), recommendations regarding        min D, the B vitamins, iron, zinc,
necessary to support nitrogen balance       protein supplementation are conser-       magnesium, as well as some antioxi-
in endurance athletes ranges from 1.2       vative and directed primarily at opti-    dants such as vitamins C and E, beta
to 1.4 g/kg/day (29-31). These recom-       mizing the training response to and       carotene, and selenium (46-50). Ath-
mendations remain unchanged even            the recovery period following exer-       letes at greatest risk for poor micro-
though recent studies have shown            cise. From a practical perspective, it    nutrient status are those who restrict
that protein turnover may become            is important to conduct a thorough        energy intake or have severe weight
more efficient in response to endur-         nutrition assessment specific to an        loss practices, who eliminate one or
ance exercise training (29,32). Ultra-      athlete’s goals before recommending       more of the food groups from their
endurance athletes who engage in            protein powders and amino acid sup-       diet, or who consume unbalanced and
continuous activity for several hours       plements to athletes.                     low micronutrient-dense diets. These
or consecutive days of intermittent                                                   athletes may benefit from a daily
exercise should also consume protein                                                  multivitamin/mineral      supplement.
                                            Fat                                       Use of vitamin and mineral supple-
at, or slightly above 1.2 to 1.4 g/kg/
                                            Fat is a necessary component of a nor-    ments does not improve performance
day (32). Energy balance, or the con-
                                            mal diet, providing energy and essen-     in individuals consuming nutrition-
sumption of adequate energy, partic-
                                            tial elements of cell membranes and       ally adequate diets (46-48,50).
ularly carbohydrates, to meet those
expended, is important to protein me-       associated nutrients such as vitamins
tabolism so that amino acids are            A, D, and E. The Acceptable Macro-
                                            nutrient Distribution Range for fat is    B Vitamins: Thiamin, Riboflavin, Niacin, B-6,
spared for protein synthesis and not                                                  Pantothenic Acid, Biotin, Folate, and B-12
oxidized to assist in meeting energy        20% to 35% of energy intake (17). The
                                            2005 Dietary Guidelines (16) and          Adequate intake of B vitamins is im-
needs (33,34). In addition, discussion
                                            Eating Well with Canada’s Food            portant to ensure optimum energy
continues as to whether sex differ-
                                            Guide (28) make recommendations           production and the building and re-
ences in protein-related metabolic re-
                                            that the proportion of energy from        pair of muscle tissue (48,51). The B-
sponses to exercise exist (35,36).
                                            fatty acids be 10% saturated, 10%         complex vitamins have two major
Strength Athletes. Resistance exercise      polyunsaturated, and 10% monoun-          functions directly related to exercise.
may necessitate protein intake in ex-       saturated and include sources of es-      Thiamin, riboflavin, niacin, pyridox-
cess of the RDA, as well as that needed     sential fatty acids. Athletes should      ine (B-6), pantothenic acid, and biotin
for endurance exercise, because addi-       follow these general recommenda-          are involved in energy production
tional protein, essential amino acids in    tions. Careful evaluation of studies      during exercise (46,51), whereas fo-
particular, is needed along with suffi-      suggesting a positive effect of con-      late and B-12 are required for the pro-
cient energy to support muscle growth       suming diets for which fat provides       duction of red blood cells, for protein
(30,31). This is particularly true in the     70% of energy intake on athletic        synthesis, and in tissue repair and
early phase of strength training when       performance (43,44) does not support      maintenance including the central
the most significant gains in muscle         this concept (45).                        nervous system. Of the B vitamins,
size occurs. The amount of protein                                                    riboflavin, pyridoxine, folate and B-12
needed to maintain muscle mass may                                                    are frequently low in female athletes’
be lower for individuals who routinely      VITAMINS AND MINERALS                     diets, especially those who are vege-
resistance train due to more efficient       Micronutrients play an important          tarian or have disordered eating pat-
protein utilization (30,31). Recom-         role in energy production, hemoglobin     terns (47,48).
mended protein intakes for strength-        synthesis, maintenance of bone              Limited research has been con-
trained athletes range from approxi-        health, adequate immune function,         ducted to examine whether exercise
mately 1.2 to 1.7 g/kg/day (30,32).         and protection of body against oxida-     increases the need for the B-complex
Protein and Amino Acid Supplements.         tive damage. They assist with synthe-     vitamins (46,48). Some data suggest
High-protein diets have been popular        sis and repair of muscle tissue during    that exercise may increase the need
throughout history. Although earlier        recovery from exercise and injury. Ex-    for these vitamins as much as twice
investigations in this area involved        ercise stresses many of the metabolic     the current recommended amount


                                                                    March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION   515
(48); however, these increased needs      dant supplements enhance physical           quate dietary calcium and vitamin D
can generally be met with higher en-      performance (49,50,64,66). Athletes at      increase the risk of low bone-mineral
ergy intakes. Although short-term         greatest risk for poor antioxidant in-      density and stress fractures. Female
marginal deficiencies of B vitamins        takes are those following a low-fat diet,   athletes are at greatest risk for low
have not been observed to affect per-     restricting energy intakes, or limiting     bone-mineral density if energy in-
formance, severe deficiency of B-12,       dietary intakes of fruits, vegetables,      takes are low, dairy products and
folate, or both may result in anemia      and whole grains (29,66).                   other calcium-rich foods are inade-
and reduced endurance performance            The evidence that a combination          quate or eliminated from the diet, and
(46,47,52). Therefore, it is important    of antioxidants or single antioxi-          menstrual dysfunction is present
that athletes consume adequate            dants such as vitamin E may be              (47,52,55,71-73).
amounts of these micronutrients to        helpful in reducing inflammation                Supplementation with calcium and
support their efforts for optimal per-    and muscle soreness during recov-           vitamin D should be determined after
formance and health.                      ery from intense exercise remains           nutrition assessment. Current recom-
                                          unclear (42,67). Although the ergo-         mendations for athletes with disor-
                                          genic potential of vitamin E with           dered eating, amenorrhea, and risk
Vitamin D                                 regard to physical performance has          for early osteoporosis are 1,500 mg
Vitamin D is required for adequate        not been clearly documented, endur-         elemental calcium and 400 to 800 IU
calcium absorption, regulation of se-     ance athletes may have a higher             of vitamin D per day (50,72,73).
rum calcium and phosphorus levels,        need for this vitamin. Indeed, vita-
                                                                                      Iron. Iron is required for the forma-
and promotion of bone health. Vita-       min E supplementation has been
                                                                                      tion of oxygen-carrying proteins, he-
min D also regulates the development      shown to reduce lipid peroxidation
                                                                                      moglobin and myoglobin, and for en-
and homeostasis of the nervous sys-       during aerobic/endurance exercise
                                                                                      zymes involved in energy production
tem and skeletal muscle (53-55). Ath-     and have a limited effect with
                                                                                      (50,74). Oxygen carrying capacity is
letes who live at northern latitudes or   strength training (66). There is
                                                                                      essential for endurance exercise as
who train primarily indoors through-      some evidence that vitamin E may
                                                                                      well as normal function of the ner-
out the year, such as gymnasts and        attenuate exercise-induced DNA
                                          damage and enhance recovery in              vous, behavioral, and immune sys-
figure skaters, are at risk for poor vi-
                                          certain active individuals; however,        tems (64,74). Iron depletion (low iron
tamin D status, especially if they do
                                          more research is needed (66). Ath-          stores) is one of the most prevalent
not consume foods fortified with vita-
                                          letes should be advised not to exceed       nutrient deficiencies observed among
min D (50,56,57). These athletes
would benefit from supplementation         the Tolerable Upper Intake Levels           athletes, especially women (75). Iron
with vitamin D at the Dietary Refer-      for antioxidants because higher             deficiency, with or without anemia,
ence Intake level (5 g/day or 200 IU      doses could be pro-oxidative with           can impair muscle function and limit
for ages 19 to 49 years) (54,56,58-61).   potential negative effects (46,64,68).      work capacity (47,58,75,76). Iron re-
A growing number of experts advo-            Vitamin C supplements do not ap-         quirements for endurance athletes, es-
cate that the RDA for vitamin D is not    pear to have an ergogenic effect if the     pecially distance runners, are in-
adequate (53,62,63).                      diet provides adequate amounts of           creased by approximately 70% (58,74).
                                          this nutrient. Because strenuous and        Athletes who are vegetarian or regular
                                          prolonged exercise has been shown to        blood donors should aim for an iron in-
Antioxidants: Vitamins C and E, Beta      increase the need for vitamin C, phys-      take greater than their respective RDA
Carotene, and Selenium                    ical performance can be compromised         (ie, 18 mg and 8 mg, for women and
The antioxidant nutrients, vitamins C     with marginal vitamin C status or de-       men, respectively) (58,75).
and E, beta carotene, and selenium,       ficiency. Athletes who participate in           The high incidence of iron depletion
play important roles in protecting cell   habitual prolonged, strenuous exer-         among athletes is usually attributed to
membranes from oxidative damage.          cise should consume 100 to 1,000 mg         inadequate energy intake. Other fac-
Because exercise can increase oxygen      vitamin C daily (47,69,70).                 tors that can affect iron status include
consumption by 10- to 15-fold, it has                                                 vegetarian diets that have poor iron
been hypothesized that chronic exer-                                                  availability, periods of rapid growth,
cise produces a constant “oxidative       Minerals: Calcium, Iron, Zinc, and          training at high altitudes, increased
stress” on the muscles and other cells    Magnesium                                   iron losses in sweat, feces, urine, men-
(49) leading to lipid peroxidation of     The primary minerals low in the diets       strual blood, intravascular hemolysis,
membranes. Although acute exercise        of athletes, especially female athletes,    foot-strike hemolysis, regular blood do-
may increase levels of lipid peroxide     are calcium, iron, zinc, and magne-         nation, or injury (50,75,77). Athletes,
byproducts (64), habitual exercise has    sium (47). Low intakes of these min-        especially women, long-distance run-
been shown to result in an augmented      erals are often due to energy restric-      ners, adolescents, and vegetarians
antioxidant system and reduced lipid      tion or avoidance of animal products        should be screened periodically to as-
peroxidation (50,65). Thus, a well-       (55).                                       sess and monitor iron status (75,77,78).
trained athlete may have a more devel-    Calcium. Calcium is especially impor-          Because reversing iron deficiency
oped endogenous antioxidant system        tant for growth, maintenance, and re-       anemia can require 3 to 6 months, it
than a sedentary person. Whether ex-      pair of bone tissue; maintenance of         is advantageous to begin nutrition in-
ercise increases the need for antioxi-    blood calcium levels, regulation of         tervention before iron deficiency ane-
dant nutrients remains controversial.     muscle contraction, nerve conduction,       mia develops (47,75). Although de-
There is little evidence that antioxi-    and normal blood clotting. Inade-           pleted iron stores (low serum ferritin)


516   March 2009 Volume 109 Number 3
are more prevalent in female ath-          difficult to measure because clear as-        adequate for maintaining normal po-
letes, the incidence of iron deficiency     sessment criteria have not been es-          tassium status among athletes (32,83).
anemia in athletes is similar to that      tablished and plasma zinc concentra-
of the nonathlete female population        tions may not reflect changes in whole
(50,75,77). Chronic iron deficiency,        body zinc status (47,79). Decreases in       HYDRATION
with or without anemia, that results       cardiorespiratory function, muscle           Being well hydrated is an important
from consistently poor iron intake can     strength, and endurance have been            consideration for optimal exercise
negatively affect health, physical and     noted with poor zinc status (47). The        performance. Because dehydration
mental performance, and warrants           Tolerable Upper Intake Level for zinc        increases the risk of potentially life-
prompt medical intervention and            is 40 mg (74). Athletes should be cau-       threatening heat injury such as heat
monitoring (76,78).                        tioned against single dose zinc sup-         stroke, athletes should strive for eu-
   Some athletes may experience a          plements because they often exceed           hydration before, during, and after
transient decrease in serum ferritin       this amount and unnecessary zinc             exercise. Dehydration (loss of 2%
and hemoglobin at the initiation of        supplementation may lead to low              body weight) can compromise aerobic
training due to hemodilution subse-        high-density lipoprotein cholesterol         exercise performance, particularly in
quent to an increase in plasma vol-        and nutrient imbalances by interfer-         hot weather, and may impair mental/
ume known as “dilutional” or “sports       ing with absorption of other nutrients       cognitive performance (83).
anemia” and may not respond to nu-         such as iron and copper (47). Further-          The American College of Sports
trition intervention. These changes        more, the benefits of zinc supplemen-         Medicine’s Position Stand on Exercise
appear to be a beneficial adaptation        tation to physical performance have          and Fluid Replacement (83) provides
to aerobic training that do not nega-      not been established.                        a comprehensive review of the re-
tively affect performance (50).            Magnesium. Magnesium plays a variety         search and recommendations for
   In athletes who are iron deficient,      of roles in cellular metabolism (eg, gly-    maintaining hydration before, dur-
iron supplementation not only im-          colysis, fat, and protein metabolism),       ing, and after exercise. In addition,
proves blood biochemical measures          and regulates membrane stability and         the American College of Sports Med-
and iron status but also increases         neuromuscular, cardiovascular, im-           icine has published position stands
                                           mune, and hormonal functions (47,55).        specific to special environmental con-
work capacity as evidenced by in-
                                           Magnesium deficiency impairs endur-           ditions (84,85). The major points from
creasing oxygen uptake, reducing
                                           ance performance by increasing oxygen        these position stands are the basis for
heart rate, and decreasing lactate
                                           requirements to complete submaximal          the following recommendations.
concentration during exercise (47).
There is some evidence that athletes       exercise. Athletes in weight-class and
who are iron deficient but do not have      body conscious sports such as wres-
                                                                                        Fluid and Electrolyte Recommendations
anemia may benefit from iron supple-        tling, ballet, gymnastics, as well as ten-
                                           nis, have been reported to consume in-       Before Exercise. At least 4 hours before
mentation (50,75). Recent findings                                                       exercise, individuals should drink
provide additional support for im-         adequate dietary magnesium. Athletes
                                           should be educated about good food           about 5 to 7 mL/kg body weight ( 2 to
proved performance (eg, less skeletal                                                   3 mL/lb) of water or a sport beverage.
muscle fatigue) when iron supple-          sources of magnesium. In athletes with
                                           low magnesium status, supplementa-           This would allow enough time to op-
mentation was prescribed as 100 mg                                                      timize hydration status and for excre-
ferrous sulfate for 4-6 weeks (76). Im-    tion might be beneficial (47).
                                                                                        tion of any excess fluid as urine. Hy-
proving work capacity and endur-                                                        perhydration with fluids that expand
ance, increasing oxygen uptake, re-        Sodium, Chloride, and Potassium              the extra- and intracellular spaces
duced lactate concentrations, and                                                       (eg, water and glycerol solutions) will
                                           Sodium is a critical electrolyte, partic-
reduced muscle fatigue are benefits of                                                   greatly increase the risk of having to
                                           ularly for athletes with high sweat
improved iron status (50).                                                              void during competition (83) and pro-
                                           losses (80-83). Many endurance ath-
Zinc. Zinc plays a role in growth,         letes will require much more than the        vides no clear physiologic or perfor-
building and repair of muscle tissue,      Tolerable Upper Intake Level for so-         mance advantage over euhydration.
energy production, and immune sta-         dium (2.3 g/day) and chloride (3.6           This practice should be discouraged
tus. Diets low in animal protein, high     g/day). Sports drinks containing so-         (83).
in fiber, and vegetarian diets, in par-     dium (0.5 to 0.7 g/L) and potassium          During Exercise. Athletes dissipate heat
ticular, are associated with decreased     (0.8 to 2.0 g/L), as well as carbohy-        produced during physical activity by
zinc intake (50,52). Zinc status has       drate, are recommended for athletes          radiation, conduction, convection, and
been shown to directly affect thyroid      especially in endurance events ( 2           by vaporization of water. In hot, dry
hormone levels, basal metabolic rate,      hours) (50,80,82,83).                        environments, evaporation accounts
and protein use, which in turn can            Potassium is important for fluid and       for more than 80% of metabolic heat
negatively affect health and physical      electrolyte balance, nerve transmis-         loss. Sweat rates for any given activity
performance (50). Survey data indi-        sion, and active transport mechanisms.       will vary according to ambient temper-
cate that a large number of North          During intense exercise, plasma potas-       ature, humidity, body weight, genetics,
Americans have zinc intakes below          sium concentrations tend to decline to a     heat acclimatization state, and meta-
recommended levels (74,75,79). Ath-        lesser degree than sodium. A diet rich       bolic efficiency. Depending on the sport
letes, particularly women, are also at     in a variety of fresh vegetables, fruits,    and condition, sweat rates can range
risk for zinc deficiency (79). The affect   nuts and seeds, dairy foods, lean meats,     from as little as 0.3 to as much as 2.4
of low zinc intakes on zinc status is      and whole grains is usually considered       liters per hour (83). In addition to wa-


                                                                      March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION   517
ter, sweat also contains substantial but   Although some individuals begin ex-      lytes lost during exercise. Rapid and
variable amounts of sodium. The aver-      ercise euhydrated and dehydrate over     complete recovery from excessive de-
age concentration of sodium in sweat       an extended duration, athletes in        hydration can be accomplished by
approximates 1 g/L (50 mmol/L) (al-        some sports might start training or      drinking at least 16 to 24 oz (450 to
though concentrations vary widely).        competition in a dehydrated state be-    675 mL) of fluid for every pound (0.5
There are modest amounts of potas-         cause the interval between exercise      kg) of body weight lost during exer-
sium and small amounts of minerals         sessions is inadequate for full rehy-    cise. Consuming rehydration bever-
such as magnesium and chloride lost in     dration (82). Another factor that may    ages and salty foods at meals/snacks
sweat.                                     predispose an athlete to dehydration     will help replace fluid and electrolyte
   The intent of drinking during exer-     is making weight as a prerequisite for   losses (83).
cise is to avert a water deficit in ex-     a specific sport or event. Hypohydra-
cess of 2% of body weight. The             tion, a practice of some athletes com-
amount and rate of fluid replacement        peting in weight class sports (eg,       Special Environmental Conditions
is dependent on an individual ath-         wrestling, boxing, lightweight crew,     Hot and Humid Environments. The risk
lete’s sweat rate, exercise duration,      and martial arts), can occur when        for dehydration and heat injury in-
and opportunities to drink (83). Read-     athletes dehydrate themselves before     creases dramatically in hot, humid
ers are referred to the American Col-      beginning a competitive event. Hypo-     environments (84). When the ambient
lege of Sports Medicine position stand     hydration can develop by fluid restric-   temperature exceeds body tempera-
for specific recommendations related        tion, certain exercise practices, di-    ture, heat cannot be dissipated by ra-
to body size, sweat rates, types of        uretic use, or sauna exposure before     diation. Moreover, the potential to
work, and encouraged to individual-        an event. In addition, fluid deficits      dissipate heat by evaporation of
ize hydration protocols when possible      may span workouts for athletes who       sweat is substantially reduced when
(83). Routine measurement of pre-          participate in multiple or prolonged     the relative humidity is high. There is
and postexercise body weights will         daily sessions of exercise in the heat   a very high risk of heat illness when
assist practitioners in determining        (84).                                    temperature and humidity are both
sweat rates and customizing fluid re-          Hyponatremia (serum sodium con-       high. If competitive events occur un-
placement programs for individual          centration 130 mEq/L [ 130 mmol/         der these conditions, it is necessary to
athletes (83).                             L]) can result from prolonged, heavy     take every precaution to assure that
   Consumption of beverages contain-       sweating with failure to replace so-     athletes are well hydrated, have am-
ing electrolytes and carbohydrates         dium, or excessive water intake. Hy-     ple access to fluids, and are monitored
can help sustain fluid and electrolyte      ponatremia is more likely to develop     for heat-related illness.
balance and endurance exercise per-        in novice marathoners who are not
formance (83). The type, intensity,                                                 Cold Environments. It is possible for de-
                                           lean, run slowly, sweat less or con-     hydration to occur in cool or cold
and duration of exercise and environ-      sume excess water before, during, or
mental conditions will alter the need                                               weather (85). Factors contributing to
                                           after an event (83).                     dehydration in cold environments in-
for fluids and electrolytes. Fluids con-       Skeletal muscle cramps are associ-
taining sodium and potassium help                                                   clude respiratory fluid losses, as well
                                           ated with dehydration, electrolyte       as sweat losses that occur when insu-
replace sweat electrolyte losses,          deficits, and muscle fatigue. Non–
whereas sodium stimulates thirst and                                                lated clothing is worn during intense
                                           heat acclimatized American football      exercise. Dehydration can also occur
fluid retention, and carbohydrates
                                           players commonly experience dehy-        because of low rates of fluid ingestion.
provide energy. Beverages containing
                                           dration and muscle cramping partic-      If an athlete is chilled and available
6% to 8% carbohydrate are recom-
                                           ularly during formal preseason prac-     fluids are cold, the incentive to drink
mended for exercise events lasting
                                           tice sessions in late summer. Athletes   may be reduced. Finally, removal of
longer than 1 hour (83).
                                           participating in tennis matches, long    multiple layers of clothing to urinate
   Fluid balance during exercise is not
                                           cycling races, late-season triathlons,   may be inconvenient and difficult for
always possible because maximal
sweat rates exceed maximal gastric         soccer, and beach volleyball are also    some athletes, especially women, and
emptying rates that in turn limit fluid     susceptible to dehydration and mus-      they may voluntarily limit fluid in-
absorption and most often rates of         cle cramping. Muscle cramps also oc-     take (86).
fluid ingestion by athletes during ex-      cur in winter-sport athletes such as     Altitude. Fluid losses beyond those as-
ercise fall short of amounts that can      cross-country skiers and ice-hockey      sociated with any exercise performed
be emptied from the stomach and ab-        players. Muscle cramps are more          may occur at altitudes         2,500 m
sorbed by the gut. Gastric emptying is     common in profuse sweaters who ex-       (8,200 ft) consequent to mandatory
maximized when the amount of fluid          perience large sweat sodium losses       diuresis and high respiratory water
in the stomach is high and reduced         (83).                                    losses, accompanied by decreased ap-
with hypertonic fluids or when carbo-       After Exercise. Because many athletes    petite. Respiratory water losses may
hydrate concentration is 8%.               do not consume enough fluids during       be as high as 1,900 mL (1.9 L) per day
   Disturbances of fluid and electro-       exercise to balance fluid losses, they    in men and 850 mL (0.85 L) per day in
lyte balance that can occur in athletes    complete their exercise session dehy-    women (87,88). Total fluid intake at
include dehydration, hypohydration,        drated to some extent. Given ade-        high altitude approaches 3 to 4 L per
and hyponatremia (83). Exercise-in-        quate time, intake of normal meals       day to promote optimal kidney func-
duced dehydration develops because         and beverages will restore hydration     tion and maintain urine output of
fluid losses that exceed fluid intake.       status by replacing fluids and electro-     1.4 L in adults (87).


518   March 2009 Volume 109 Number 3
THE TRAINING DIET                          fore competition results in improved        whether the glycemic index of carbo-
The fundamental differences between        muscle glycogen concentrations and/or       hydrate in the pre-exercise meal af-
an athlete’s diet and that of the gen-     significant improvements in athletic per-    fects performance (92,99-102).
eral population are that athletes re-      formance. Two studies reported no addi-        Although the above guidelines are
quire additional fluid to cover sweat       tional performance benefits when con-        sound and effective, the athlete’s in-
losses and additional energy to fuel       suming levels above 6 g carbohydrate/kg     dividual needs must be emphasized.
physical activity. As discussed ear-       body weight. Two studies report sex dif-    Some athletes consume and enjoy a
lier, it is appropriate for much of the    ferences; women may have less ability to    substantial meal (eg, pancakes, juice,
additional energy to be supplied as        increase muscle glycogen concentrations     and scrambled eggs) 2 to 4 hours be-
carbohydrate. The proportional in-         through increased carbohydrate con-         fore exercise or competition; however,
crease in energy requirements ap-          sumption, especially when energy intake     others may suffer severe gastrointes-
pears to exceed the proportional in-       is insufficient. One study based on the      tinal distress following such a meal
crease in needs for most other             consumption of a high-fat diet ( 65% of     and need to rely on liquid meals. Ath-
nutrients. Accordingly, as energy re-      energy) for 10 days followed by a high-     letes should always ensure that they
quirements increase, athletes should       carbohydrate diet ( 65% of energy) for 3    know what works best for themselves
first aim to consume the maximum            days reported a significant improvement      by experimenting with new foods and
number of servings appropriate for         in athletic performance. Nine studies re-   beverages during practice sessions
their needs from carbohydrate-based        port no significant effects of macronutri-   and planning ahead to ensure they
food groups (ie, bread, cereals and        ent composition on athletic performance     will have access to these foods at the
grains, legumes, milk/alternatives,        during the training period and week         appropriate time.
vegetables, and fruits). Energy needs      prior to competition. Evidence Grade        Conclusion Statement. Nineteen studies
for many athletes will exceed the          II Fair (www.adaevidencelibrary.com/        investigating the consumption of a range
amount of energy (kilocalories per         conclusion.cfm?conclusion_statement_        of macronutrient composition during the
                                           id 250447).                                 24 hours before competition on athletic
day) in the upper range of servings for
these food groups. Conversely, ath-                                                    performance were evaluated. Of eight
letes who are small and/or have lower                                                  studies, six reported no significant effect
                                           Pre-Exercise Meal                           of meal consumption 90 minutes to 4
energy needs will need to pay greater
attention to making nutrient-dense         Eating before exercise, as opposed to       hours before trials on athletic perfor-
food choices to obtain adequate carbo-     exercising in the fasting state, has been   mance. Six studies that focused on the
hydrate, protein, essential fats, and      shown to improve performance (89,90).       consumption of food or beverage within
micronutrients.                            The meal or snack consumed before           the hour before competition reported no
                                           competition or an intense workout           significant effects on athletic perfor-
   With regard to the timing of meals
                                           should prepare athletes for the upcom-      mance, despite hyperglycemia, hyper-
and snacks, common sense dictates
                                           ing activity, and leave the individual      insulinemia, increased carbohydrate
that food and fluid intake around
                                           neither hungry nor with undigested          oxidation, and reduced free fatty acid
workouts be determined on an indi-
                                           food in the stomach. Accordingly, the       availability. Variations in research meth-
vidual basis with consideration for an
                                           following general guidelines for meals      odology on glycemic index of meals con-
athlete’s gastrointestinal characteris-
                                           and snacks should be used: sufficient        sumed prior to competition have led to
tics as well as the duration and inten-
                                           fluid should be ingested to maintain         inconclusive findings. Evidence Grade
sity of the workout. For example, an
                                           hydration, foods should be relatively       II Fair (www.adaevidencelibrary.com/
athlete might tolerate a snack con-
                                           low in fat and fiber to facilitate gastric   conclusion.cfm?conclusion_statement_
sisting of milk and a sandwich 1 hour      emptying and minimize gastrointesti-        id 250452).
before a low-intensity workout, but        nal distress, high in carbohydrate to
would be uncomfortable if the same         maintain blood glucose and maximize
meal was consumed before a very            glycogen stores, moderate in protein,       During Exercise
hard effort. Athletes in heavy train-      and familiar to the athlete.                Current research supports the ben-
ing or doing multiple daily workouts          The size and timing of the pre-ex-       efit of carbohydrate consumption in
may need to eat more than three            ercise meal are interrelated. Because       amounts typically provided in sport
meals and three snacks per day and         most athletes do not like to compete        drinks (6% to 8%) to endurance per-
should consider every possible eating      on a full stomach, smaller meals            formance in events lasting 1 hour or
occasion. These athletes should con-       should be consumed in closer proxim-        less (103-105), especially in athletes
sider eating in close proximity to the     ity to the event to allow for gastric       who exercise in the morning after an
end of a workout, having more than         emptying, whereas larger meals can          overnight fast when liver glycogen
one afternoon snack, or eating a sub-      be consumed when more time is avail-        levels are decreased. Providing exog-
stantial snack before bed.                 able before exercise or competition.        enous carbohydrate during exercise
Conclusion Statement. Twenty-three stud-   Amounts of carbohydrate shown to            helps maintain blood glucose levels
ies investigating consumption of a range   enhance performance have ranged             and improve performance (106).
of macronutrient composition during the    from approximately 200 to 300 g car-          For longer events, consuming 0.7 g
training period on athletic performance    bohydrate for meals consumed 3 to 4         carbohydrate/kg body weight per hour
were evaluated. Nine studies have re-      hours before exercise. Studies report       (approximately 30 to 60 g per hour) has
ported that the consumption of a high      either no effect or beneficial effects of    been shown unequivocally to extend
carbohydrate diet ( 60% of energy) dur-    pre-event feeding on performance (91-       endurance performance (107,108).
ing the training period and the week be-   98). Data are equivocal concerning          Consuming carbohydrates during ex-


                                                                     March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION   519
ercise is even more important in situ-      will finish a marathon with depleted        repair and promote a more anabolic
ations when athletes have not carbo-        glycogen stores, whereas glycogen          hormonal profile (33).
hydrate-loaded, not consumed pre-           depletion would be less marked fol-        Conclusion Statement. Twenty-five studies
exercise meals, or restricted energy        lowing a 90-minute training run. Be-       investigating the consumption of a range
intake for weight loss. Carbohydrate        cause athletes competing in a mara-        of macronutrient composition during the
intake should begin shortly after the       thon are not likely to perform another     recovery period were evaluated. Nine
onset of activity; consuming a given        race or hard workout the same day,         studies report that consumption of diets
amount of carbohydrate as a bolus           the timing and composition of the          higher in carbohydrate ( 65% carbohy-
after 2 hours of exercise is not as         postexercise meal is less critical for     drate or 0.8 to 1.0 g carbohydrate/kg body
effective as consuming the same             these athletes. Conversely, a triath-      weight/hour) during the recovery period
amount at 15 to 20 minute intervals         lete participating in a 90-minute run      increase plasma glucose and insulin con-
throughout the 2 hours of activity          in the morning and a 3-hour cycling        centrations and increase muscle glyco-
(109). The carbohydrate consumed            workout in the afternoon needs to          gen resynthesis. Provided that carbohy-
should yield primarily glucose; fruc-       maximize recovery between training         drate intake is sufficient, four studies
tose alone is not as effective and may      sessions. The post workout meal as-        show no significant benefit of addi-
cause diarrhea, although mixtures of        sumes considerable importance in           tional protein intake and two studies
glucose and fructose, other simple          meeting this goal.                         show no significant effect of meal timing
sugars and maltodextrins, appear ef-           Timing of post-exercise carbohy-        on muscle glycogen resynthesis during
fective (107). If the same total amount     drate intake affects glycogen synthe-      the recovery period. Studies focusing on
of carbohydrate and fluid is ingested,       sis over the short term (110). Con-        carbohydrate consumption during recov-
the form of carbohydrate does not           sumption of carbohydrates within 30        ery periods of 4 hours or more suggest
seem to matter. Some athletes may           minutes after exercise (1.0 to 1.5 g       improvements in athletic performance.
prefer to use a sport drink whereas         carbohydrate/kg at 2-hour intervals        Evidence Grade II Fair (www.
others may prefer to consume a car-         up to 6 hours is often recommended)        adaevidencelibrary.com/conclusion.cfm?
bohydrate snack or sports gel and           results in higher glycogen levels post     conclusion_statement_id 250451).
consume water. As described else-           exercise than when ingestion is de-
where in this document, adequate            layed for 2 hours (111). It is unneces-
fluid intake is also essential for main-     sary for athletes who rest one or more     DIETARY SUPPLEMENTS AND ERGOGENIC
taining endurance performance.              days between intense training ses-         AIDS
Conclusion Statement. Thirty-six studies    sions to practice nutrient timing          The overwhelming number and in-
investigating the consumption of a range    with regard to glycogen replenish-         creased availability of sports supple-
of macronutrient composition during         ment provided sufficient carbohy-           ments presents an ongoing challenge
competition on athletic performance         drates are consumed during the 24-         for the practitioner and the athlete to
were evaluated. Seven studies based on      hour period subsequent to the exercise     keep up-to-date about the validity of
carbohydrate consumption during exer-       bout (112). Nevertheless, consuming a      both the claims and scientific evidence.
cise lasting less than 60 minutes show      meal or snack in close proximity to the    Although dietary supplements, as well
conflicting results on athletic perfor-      end of exercise may be important for       nutritional ergogenic aids—nutritional
mance. However, of 17 studies based on      athletes to meet daily carbohydrate        products that enhance performance—
carbohydrate consumption during exer-       and energy goals.                          are highly prevalent, the fact remains
cise lasting greater than 60 minutes, five      The type of carbohydrate consumed       that very few improve performance
reported improved metabolic response,       also affects post-exercise glycogen syn-   (117-119) and some may cause concern.
and seven of 12 studies reported im-        thesis. When comparing simple sugars,        In the United States, the Dietary
provements in athletic performance. Ev-     glucose and sucrose appear equally ef-     Supplements and Health Education
idence is inconclusive regarding the ad-    fective when consumed at a rate of 1.0     Act of 1994 allows supplement man-
dition of protein to carbohydrate during    to 1.5 g/kg body weight for 2 hours;       ufacturers to make health claims re-
exercise on athletic performance. Seven     fructose alone is less effective (113).    garding the effect of products on body
studies based on consumption of pre-        With regard to whole foods, consump-       structure or function, but not thera-
exercise meals in addition to carbohy-      tion of carbohydrate with a high glyce-    peutic claims to “diagnose, mitigate,
drate consumption during exercise sug-      mic index results in higher muscle gly-    treat, cure, or prevent” a specific dis-
gest enhanced athletic performance.         cogen levels 24 hours after glycogen-      ease or medical condition (117,120).
Evidence Grade II Fair (www.                depleting exercise as compared with        As long as a special supplement label
adaevidencelibrary.com/conclusion.cfm?      the same amount of carbohydrates pro-      indicates the active ingredients and
conclusion_statement_id 250453).            vided as foods with a low glycemic in-     the entire ingredients list is provided,
                                            dex (114). Application of these findings    claims for enhanced performance can
                                            must be considered in conjunction with     be made, valid or not. The Act, how-
Recovery                                    the athlete’s overall diet. When isoca-    ever, made the US Food and Drug
The timing and composition of the           loric amounts of carbohydrates or car-     Administration responsible for evalu-
post competition or postexercise meal       bohydrates plus protein and fat are        ating and enforcing safety. In 2003,
or snack depend on the length and           provided following endurance (115) or      the Food and Drug Administration
intensity of the exercise session (eg,      resistance exercise (116), glycogen syn-   Task Force on Consumer Health In-
whether glycogen depletion occurred),       thesis rates are similar. Including pro-   formation for Better Nutrition pro-
and when the next intense workout           tein in a postexercise meal may provide    posed a new system for evaluating
will occur. For example, most athletes      needed amino acids for muscle protein      health claims that uses an evidence-


520   March 2009 Volume 109 Number 3
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento
Revisión nutricion y rendimiento

Mais conteúdo relacionado

Mais procurados

FW275 Sports Nutrition
FW275 Sports NutritionFW275 Sports Nutrition
FW275 Sports NutritionMatt Sanders
 
Supplements in sport
Supplements in sportSupplements in sport
Supplements in sportbnagol
 
Nu fsp chapter 6 protein
Nu fsp chapter 6   proteinNu fsp chapter 6   protein
Nu fsp chapter 6 proteinhuynhdavid
 
Nutrition in Sport Teri Lichtenstein June 2010
Nutrition in Sport Teri Lichtenstein June 2010Nutrition in Sport Teri Lichtenstein June 2010
Nutrition in Sport Teri Lichtenstein June 2010Terilichtenstein
 
Sports nutrition
Sports nutritionSports nutrition
Sports nutritionegyfellow
 
Sports Nutrition for Health Professionals
Sports Nutrition for Health ProfessionalsSports Nutrition for Health Professionals
Sports Nutrition for Health ProfessionalsBrian Levins
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISEwajihahwafa
 
An Introduction To Basic Sports Nutrition
An Introduction To Basic Sports Nutrition An Introduction To Basic Sports Nutrition
An Introduction To Basic Sports Nutrition Simon Byrne
 
Carbohydrates in Sports
Carbohydrates in SportsCarbohydrates in Sports
Carbohydrates in Sportswajihahwafa
 
Pre game meal & carbs loading
Pre game meal & carbs loadingPre game meal & carbs loading
Pre game meal & carbs loadingDr Usha (Physio)
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISEwajihahwafa
 
Sports Nutrition
Sports NutritionSports Nutrition
Sports Nutritionselbie
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISEwajihahwafa
 
meal planning for endurance athletes
meal planning for endurance athletesmeal planning for endurance athletes
meal planning for endurance athletesMizan Hocky
 
Eating for Performance (Nutrition for Runners)
Eating for Performance (Nutrition for Runners)Eating for Performance (Nutrition for Runners)
Eating for Performance (Nutrition for Runners)kamaaina
 
Performance Nutrition Considerations for Service Members and Veterans
Performance Nutrition Considerations for Service Members and VeteransPerformance Nutrition Considerations for Service Members and Veterans
Performance Nutrition Considerations for Service Members and Veteransmilfamln
 

Mais procurados (20)

FW275 Sports Nutrition
FW275 Sports NutritionFW275 Sports Nutrition
FW275 Sports Nutrition
 
Supplements in sport
Supplements in sportSupplements in sport
Supplements in sport
 
Nu fsp chapter 6 protein
Nu fsp chapter 6   proteinNu fsp chapter 6   protein
Nu fsp chapter 6 protein
 
Nutrition in Sport Teri Lichtenstein June 2010
Nutrition in Sport Teri Lichtenstein June 2010Nutrition in Sport Teri Lichtenstein June 2010
Nutrition in Sport Teri Lichtenstein June 2010
 
Nutrition and performance
Nutrition and performanceNutrition and performance
Nutrition and performance
 
CARBOHYDRATE
CARBOHYDRATE CARBOHYDRATE
CARBOHYDRATE
 
Sports nutrition
Sports nutritionSports nutrition
Sports nutrition
 
Sports Nutrition for Health Professionals
Sports Nutrition for Health ProfessionalsSports Nutrition for Health Professionals
Sports Nutrition for Health Professionals
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
 
An Introduction To Basic Sports Nutrition
An Introduction To Basic Sports Nutrition An Introduction To Basic Sports Nutrition
An Introduction To Basic Sports Nutrition
 
Carbohydrates in Sports
Carbohydrates in SportsCarbohydrates in Sports
Carbohydrates in Sports
 
Pre game meal & carbs loading
Pre game meal & carbs loadingPre game meal & carbs loading
Pre game meal & carbs loading
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
 
Sports Nutrition
Sports NutritionSports Nutrition
Sports Nutrition
 
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISENDD30503: NUTRITION FOR SPORTS AND EXERCISE
NDD30503: NUTRITION FOR SPORTS AND EXERCISE
 
Sports Supplements
Sports SupplementsSports Supplements
Sports Supplements
 
meal planning for endurance athletes
meal planning for endurance athletesmeal planning for endurance athletes
meal planning for endurance athletes
 
Sports Nutrition
Sports NutritionSports Nutrition
Sports Nutrition
 
Eating for Performance (Nutrition for Runners)
Eating for Performance (Nutrition for Runners)Eating for Performance (Nutrition for Runners)
Eating for Performance (Nutrition for Runners)
 
Performance Nutrition Considerations for Service Members and Veterans
Performance Nutrition Considerations for Service Members and VeteransPerformance Nutrition Considerations for Service Members and Veterans
Performance Nutrition Considerations for Service Members and Veterans
 

Semelhante a Revisión nutricion y rendimiento

Aminoacids integration and adaptive advantages in special population of athletes
Aminoacids integration and adaptive advantages in special population of athletesAminoacids integration and adaptive advantages in special population of athletes
Aminoacids integration and adaptive advantages in special population of athletesFabio Piccini
 
Athletes nutrition
Athletes nutritionAthletes nutrition
Athletes nutritionRenad88
 
3646 Unit 1.pptx
3646 Unit 1.pptx3646 Unit 1.pptx
3646 Unit 1.pptxsaif673414
 
vegetarian-and-vegan-diets-for-athletes.pptx
vegetarian-and-vegan-diets-for-athletes.pptxvegetarian-and-vegan-diets-for-athletes.pptx
vegetarian-and-vegan-diets-for-athletes.pptxnajeeb66
 
Different diets tmblr
Different diets tmblrDifferent diets tmblr
Different diets tmblrjmaaspe
 
Sports Food and Nutrition
Sports Food and NutritionSports Food and Nutrition
Sports Food and NutritionHritikaSolanki
 
Caren Biddulph Sports Nutrition - Sydney Expo Presentation
Caren Biddulph Sports Nutrition - Sydney Expo PresentationCaren Biddulph Sports Nutrition - Sydney Expo Presentation
Caren Biddulph Sports Nutrition - Sydney Expo Presentationthe AIPT
 
Dietary supplements for sports athletes
Dietary supplements for sports athletesDietary supplements for sports athletes
Dietary supplements for sports athletesPalak Agrawal
 
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...Austin Publishing Group
 
Vitamins and supplements for athletes
Vitamins and supplements for athletesVitamins and supplements for athletes
Vitamins and supplements for athletesljsh1
 
Protein supplements research
Protein supplements researchProtein supplements research
Protein supplements researchNadine Massaad
 
Core 2 Factors Affecting Performance Nutrition
Core 2 Factors Affecting Performance NutritionCore 2 Factors Affecting Performance Nutrition
Core 2 Factors Affecting Performance Nutritionmacca60
 

Semelhante a Revisión nutricion y rendimiento (20)

Aminoacids integration and adaptive advantages in special population of athletes
Aminoacids integration and adaptive advantages in special population of athletesAminoacids integration and adaptive advantages in special population of athletes
Aminoacids integration and adaptive advantages in special population of athletes
 
Athletes nutrition
Athletes nutritionAthletes nutrition
Athletes nutrition
 
3646 Unit 1.pptx
3646 Unit 1.pptx3646 Unit 1.pptx
3646 Unit 1.pptx
 
vegetarian-and-vegan-diets-for-athletes.pptx
vegetarian-and-vegan-diets-for-athletes.pptxvegetarian-and-vegan-diets-for-athletes.pptx
vegetarian-and-vegan-diets-for-athletes.pptx
 
Sport Nutrition & Science
Sport Nutrition & ScienceSport Nutrition & Science
Sport Nutrition & Science
 
Different diets tmblr
Different diets tmblrDifferent diets tmblr
Different diets tmblr
 
Sports Food and Nutrition
Sports Food and NutritionSports Food and Nutrition
Sports Food and Nutrition
 
Caren Biddulph Sports Nutrition - Sydney Expo Presentation
Caren Biddulph Sports Nutrition - Sydney Expo PresentationCaren Biddulph Sports Nutrition - Sydney Expo Presentation
Caren Biddulph Sports Nutrition - Sydney Expo Presentation
 
Dietary supplements
Dietary supplementsDietary supplements
Dietary supplements
 
Dietary supplements for sports athletes
Dietary supplements for sports athletesDietary supplements for sports athletes
Dietary supplements for sports athletes
 
Dance nutrition
Dance nutritionDance nutrition
Dance nutrition
 
Dance nutrition
Dance nutritionDance nutrition
Dance nutrition
 
Nutrition for athletes
Nutrition for athletesNutrition for athletes
Nutrition for athletes
 
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...
Nutrition, Sports, and Covid-19 Lockdown Impact on Young Competitive Artistic...
 
Nutrition and caloric_balance
Nutrition and caloric_balanceNutrition and caloric_balance
Nutrition and caloric_balance
 
Nutrition
NutritionNutrition
Nutrition
 
Vitamins and supplements for athletes
Vitamins and supplements for athletesVitamins and supplements for athletes
Vitamins and supplements for athletes
 
Protein supplements research
Protein supplements researchProtein supplements research
Protein supplements research
 
Nutrition for athletes
Nutrition for athletes Nutrition for athletes
Nutrition for athletes
 
Core 2 Factors Affecting Performance Nutrition
Core 2 Factors Affecting Performance NutritionCore 2 Factors Affecting Performance Nutrition
Core 2 Factors Affecting Performance Nutrition
 

Mais de Universidad de Chile

Inserto información diploma-11-blog
Inserto información diploma-11-blogInserto información diploma-11-blog
Inserto información diploma-11-blogUniversidad de Chile
 
C:\Fakepath\Teorias Del Envejecimiento
C:\Fakepath\Teorias Del EnvejecimientoC:\Fakepath\Teorias Del Envejecimiento
C:\Fakepath\Teorias Del EnvejecimientoUniversidad de Chile
 
C:\Fakepath\Biologia Del Envejecimiento
C:\Fakepath\Biologia Del EnvejecimientoC:\Fakepath\Biologia Del Envejecimiento
C:\Fakepath\Biologia Del EnvejecimientoUniversidad de Chile
 
C:\Fakepath\Movilidad Equilibrio Y Caidas Bibliografia
C:\Fakepath\Movilidad Equilibrio Y Caidas BibliografiaC:\Fakepath\Movilidad Equilibrio Y Caidas Bibliografia
C:\Fakepath\Movilidad Equilibrio Y Caidas BibliografiaUniversidad de Chile
 
C:\Fakepath\Valoracionfunciona Lrevpdf6
C:\Fakepath\Valoracionfunciona Lrevpdf6C:\Fakepath\Valoracionfunciona Lrevpdf6
C:\Fakepath\Valoracionfunciona Lrevpdf6Universidad de Chile
 
C:\Fakepath\Bqe Hormonas Jul 10 Pdf
C:\Fakepath\Bqe Hormonas Jul 10 PdfC:\Fakepath\Bqe Hormonas Jul 10 Pdf
C:\Fakepath\Bqe Hormonas Jul 10 PdfUniversidad de Chile
 
C:\Fakepath\Bqe O2 En La Act F%E Dsica 24 Jun 10 Pdf
C:\Fakepath\Bqe  O2 En La Act  F%E Dsica 24 Jun 10 PdfC:\Fakepath\Bqe  O2 En La Act  F%E Dsica 24 Jun 10 Pdf
C:\Fakepath\Bqe O2 En La Act F%E Dsica 24 Jun 10 PdfUniversidad de Chile
 
C:\Fakepath\Metabolismo De LíPidos Y ProteíNas
C:\Fakepath\Metabolismo De LíPidos Y ProteíNasC:\Fakepath\Metabolismo De LíPidos Y ProteíNas
C:\Fakepath\Metabolismo De LíPidos Y ProteíNasUniversidad de Chile
 
C:\Fakepath\Clase VíA De Las Pentosas 2010 Js
C:\Fakepath\Clase VíA De Las Pentosas 2010 JsC:\Fakepath\Clase VíA De Las Pentosas 2010 Js
C:\Fakepath\Clase VíA De Las Pentosas 2010 JsUniversidad de Chile
 
C:\Fakepath\Clase EstréS Oxidativo Y Radicales Libres
C:\Fakepath\Clase EstréS Oxidativo Y Radicales LibresC:\Fakepath\Clase EstréS Oxidativo Y Radicales Libres
C:\Fakepath\Clase EstréS Oxidativo Y Radicales LibresUniversidad de Chile
 

Mais de Universidad de Chile (20)

Electroterapia y dolor de cuello
Electroterapia y dolor de cuelloElectroterapia y dolor de cuello
Electroterapia y dolor de cuello
 
Btl 5000 fisioterapia manual
Btl 5000 fisioterapia manualBtl 5000 fisioterapia manual
Btl 5000 fisioterapia manual
 
Emg glúteo medio
Emg glúteo medioEmg glúteo medio
Emg glúteo medio
 
Feb2013 rr-selkowitz
Feb2013 rr-selkowitzFeb2013 rr-selkowitz
Feb2013 rr-selkowitz
 
Inserto información diploma-11-blog
Inserto información diploma-11-blogInserto información diploma-11-blog
Inserto información diploma-11-blog
 
Inserto diploma-2011
Inserto diploma-2011Inserto diploma-2011
Inserto diploma-2011
 
Notas 2ª prueba ecf 2010
Notas 2ª prueba ecf 2010Notas 2ª prueba ecf 2010
Notas 2ª prueba ecf 2010
 
Notas BQE y FEJ 29 jul-10
Notas BQE y FEJ 29 jul-10Notas BQE y FEJ 29 jul-10
Notas BQE y FEJ 29 jul-10
 
C:\Fakepath\Teorias Del Envejecimiento
C:\Fakepath\Teorias Del EnvejecimientoC:\Fakepath\Teorias Del Envejecimiento
C:\Fakepath\Teorias Del Envejecimiento
 
C:\Fakepath\Biologia Del Envejecimiento
C:\Fakepath\Biologia Del EnvejecimientoC:\Fakepath\Biologia Del Envejecimiento
C:\Fakepath\Biologia Del Envejecimiento
 
C:\Fakepath\Movilidad Equilibrio Y Caidas Bibliografia
C:\Fakepath\Movilidad Equilibrio Y Caidas BibliografiaC:\Fakepath\Movilidad Equilibrio Y Caidas Bibliografia
C:\Fakepath\Movilidad Equilibrio Y Caidas Bibliografia
 
C:\Fakepath\Tm 6 Minutos
C:\Fakepath\Tm 6 MinutosC:\Fakepath\Tm 6 Minutos
C:\Fakepath\Tm 6 Minutos
 
C:\Fakepath\Valoracionfunciona Lrevpdf6
C:\Fakepath\Valoracionfunciona Lrevpdf6C:\Fakepath\Valoracionfunciona Lrevpdf6
C:\Fakepath\Valoracionfunciona Lrevpdf6
 
C:\Fakepath\Ecf Adolescentes
C:\Fakepath\Ecf AdolescentesC:\Fakepath\Ecf Adolescentes
C:\Fakepath\Ecf Adolescentes
 
C:\Fakepath\Bqe Hormonas Jul 10 Pdf
C:\Fakepath\Bqe Hormonas Jul 10 PdfC:\Fakepath\Bqe Hormonas Jul 10 Pdf
C:\Fakepath\Bqe Hormonas Jul 10 Pdf
 
C:\Fakepath\Bqe O2 En La Act F%E Dsica 24 Jun 10 Pdf
C:\Fakepath\Bqe  O2 En La Act  F%E Dsica 24 Jun 10 PdfC:\Fakepath\Bqe  O2 En La Act  F%E Dsica 24 Jun 10 Pdf
C:\Fakepath\Bqe O2 En La Act F%E Dsica 24 Jun 10 Pdf
 
C:\Fakepath\Bqe Heme Jul 10 Pdf
C:\Fakepath\Bqe Heme Jul 10 PdfC:\Fakepath\Bqe Heme Jul 10 Pdf
C:\Fakepath\Bqe Heme Jul 10 Pdf
 
C:\Fakepath\Metabolismo De LíPidos Y ProteíNas
C:\Fakepath\Metabolismo De LíPidos Y ProteíNasC:\Fakepath\Metabolismo De LíPidos Y ProteíNas
C:\Fakepath\Metabolismo De LíPidos Y ProteíNas
 
C:\Fakepath\Clase VíA De Las Pentosas 2010 Js
C:\Fakepath\Clase VíA De Las Pentosas 2010 JsC:\Fakepath\Clase VíA De Las Pentosas 2010 Js
C:\Fakepath\Clase VíA De Las Pentosas 2010 Js
 
C:\Fakepath\Clase EstréS Oxidativo Y Radicales Libres
C:\Fakepath\Clase EstréS Oxidativo Y Radicales LibresC:\Fakepath\Clase EstréS Oxidativo Y Radicales Libres
C:\Fakepath\Clase EstréS Oxidativo Y Radicales Libres
 

Revisión nutricion y rendimiento

  • 1. from the association Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance ABSTRACT This American Dietetic Association (ADA) position paper uses ADA’s It is the position of the American Die- Evidence Analysis Process and information from ADA’s Evidence Analysis tetic Association, Dietitians of Canada, Library. Similar information is also available from Dietitians of Canada’s and the American College of Sports Practice-based Evidence in Nutrition. The use of an evidence-based ap- Medicine that physical activity, ath- proach provides important added benefits to earlier review methods. The letic performance, and recovery from major advantage of the approach is the more rigorous standardization of exercise are enhanced by optimal review criteria, which minimizes the likelihood of reviewer bias and in- nutrition. These organizations rec- creases the ease with which disparate articles may be compared. For a ommend appropriate selection of detailed description of the methods used in the evidence analysis process, foods and fluids, timing of intake, access ADA’s Evidence Analysis Process at http://adaeal.com/eaprocess/. and supplement choices for optimal Conclusion Statements are assigned a grade by an expert work group health and exercise performance. based on the systematic analysis and evaluation of the supporting research This updated position paper couples evidence. Grade I Good, Grade II Fair, Grade III Limited, Grade IV a rigorous, systematic, evidence- Expert Opinion Only, and Grade V Grade Is Not Assignable (because there based analysis of nutrition and is no evidence to support or refute the conclusion). performance-specific literature with Evidence-based information for this and other topics can be found at current scientific data related to www.adaevidencelibrary.com and www.dieteticsatwork.com/pen and sub- energy needs, assessment of body scriptions for non-ADA members are available for purchase at https:// composition, strategies for weight www.adaevidencelibrary.com/store.cfm. Subscriptions for Dietitians of change, nutrient and fluid needs, Canada and non-Dietitians of Canada members are available for Practice- special nutrient needs during train- based Evidence in Nutrition at http://www.dieteticsatwork.com/pen_order. ing and competition, the use of asp. supplements and ergogenic aids, nu- trition recommendations for vege- tarian athletes, and the roles and maintain blood glucose concentra- genic aids are poorly enforced, they responsibilities of sports dietitians. tion during exercise, maximize exer- should be used with caution, and Energy and macronutrient needs, cise performance, and improve re- only after careful product evalua- especially carbohydrate and protein, covery time. Athletes should be well tion for safety, efficacy, potency, and must be met during times of high hydrated before exercise and drink legality. A qualified sports dietitian physical activity to maintain body enough fluid during and after exer- and in particular in the United weight, replenish glycogen stores, cise to balance fluid losses. Sports States, a Board Certified Specialist and provide adequate protein to beverages containing carbohydrates in Sports Dietetics, should provide build and repair tissue. Fat intake and electrolytes may be consumed individualized nutrition direction should be sufficient to provide the before, during, and after exercise to and advice subsequent to a compre- essential fatty acids and fat-soluble help maintain blood glucose concen- hensive nutrition assessment. vitamins, as well as contribute tration, provide fuel for muscles, J Am Diet Assoc. 2009;109:509-527. energy for weight maintenance. Al- and decrease risk of dehydration though exercise performance can be and hyponatremia. Vitamin and affected by body weight and compo- mineral supplements are not needed POSITION STATEMENT sition, these physical measures if adequate energy to maintain body should not be a criterion for sports weight is consumed from a variety It is the position of the American Die- performance and daily weigh-ins of foods. However, athletes who re- tetic Association, Dietitians of Can- are discouraged. Adequate food and strict energy intake, use severe ada, and the American College of fluid should be consumed before, weight-loss practices, eliminate one Sports Medicine that physical activ- during, and after exercise to help or more food groups from their diet, ity, athletic performance, and recovery or consume unbalanced diets with from exercise are enhanced by optimal low micronutrient density, may re- nutrition. These organizations recom- 0002-8223/09/10903-0017$36.00/0 quire supplements. Because regula- mend appropriate selection of food doi: 10.1016/j.jada.2009.01.005 tions specific to nutritional ergo- and fluids, timing of intake, and sup- © 2009 by the American Dietetic Association Journal of the AMERICAN DIETETIC ASSOCIATION 509
  • 2. plement choices for optimal health does not benefit performance. Fat, weight during the first 30 minutes and exercise performance. which is a source of energy, fat-sol- and again every 2 hours for 4 to 6 uble vitamins, and essential fatty hours will be adequate to replace gly- T he following key points summa- acids, is important in the diets of cogen stores. Protein consumed after rize the current energy, nutrient, athletes. High-fat diets are not rec- exercise will provide amino acids for and fluid recommendations for ommended for athletes. building and repair of muscle tissue. active adults and competitive ath- ● Athletes who restrict energy intake ● In general, no vitamin and mineral letes. These general recommenda- or use severe weight-loss practices, supplements are required if an ath- tions can be adjusted by sports nutri- eliminate one or more food groups lete is consuming adequate energy tion experts to accommodate the from their diet, or consume high- or from a variety of foods to maintain unique concerns of individual ath- low-carbohydrate diets of low mi- body weight. Supplementation rec- letes regarding health, sports, nutri- cronutrient density are at greatest ommendations unrelated to exercise, ent needs, food preferences, and body risk of micronutrient deficiencies. such as folic acid for women of child- weight and body composition goals. Athletes should consume diets that bearing potential, should be followed. provide at least the Recommended A multivitamin/mineral supplement ● Athletes need to consume adequate Dietary Allowance (RDA) for all mi- may be appropriate if an athlete is energy during periods of high-in- cronutrients. dieting, habitually eliminating foods tensity and/or long-duration train- ● Dehydration (water deficit in excess or food groups, is ill or recovering ing to maintain body weight and of 2% to 3% body mass) decreases from injury, or has a specific micro- health and maximize training ef- exercise performance; thus, ade- nutrient deficiency. Single-nutrient fects. Low energy intakes can result quate fluid intake before, during, supplements may be appropriate for in loss of muscle mass; menstrual and after exercise is important for a specific medical or nutritional rea- dysfunction; loss of or failure to health and optimal performance. son (eg, iron supplements to correct gain bone density; an increased risk The goal of drinking is to prevent iron deficiency anemia). of fatigue, injury, and illness; and a dehydration from occurring during ● Athletes should be counseled re- prolonged recovery process. exercise and individuals should not garding the appropriate use of ergo- ● Body weight and composition should drink in excess of sweating rate. Af- genic aids. Such products should not be the sole criterion for participa- ter exercise, the athlete should only be used after careful evalua- tion in sports; daily weigh-ins are dis- drink adequate fluids to replace tion for safety, efficacy, potency, couraged. Optimal body fat levels de- sweat losses during exercise, ap- and legality. pend upon the sex, age, and heredity proximately 16 to 24 oz (450 to 675 ● Vegetarian athletes may be at risk of the athlete, and may be sport-spe- mL) fluid for every pound (0.5 kg) of for low intakes of energy, protein, cific. Body fat assessment techniques body weight lost during exercise. fat, and key micronutrients such as have inherent variability and limita- ● Before exercise, a meal or snack iron, calcium, vitamin D, riboflavin, tions. Preferably, weight loss (fat should provide sufficient fluid to zinc, and vitamin B-12. Consulta- loss) should take place during the off- maintain hydration, be relatively tion with a sports dietitian is rec- season or begin before the competi- low in fat and fiber to facilitate gas- ommended to avoid these nutrition tive season and involve a qualified tric emptying and minimize gastro- problems. sports dietitian. intestinal distress, be relatively ● Carbohydrate recommendations for high in carbohydrate to maximize athletes range from 6 to 10 g/kg (2.7 maintenance of blood glucose, be EVIDENCE-BASED ANALYSIS to 4.5 g/lb) body weight per day. moderate in protein, be composed of Studies used in the development of Carbohydrates maintain blood glu- familiar foods, and be well tolerated this position paper were identified cose levels during exercise and re- by the athlete. from the PubMed database main- place muscle glycogen. The amount ● During exercise, primary goals for tained by the National Library of required depends upon the athlete’s nutrient consumption are to replace Medicine and CENTRAL database, as total daily energy expenditure, type fluid losses and provide carbohy- well as through research articles and of sport, sex, and environmental drates (approximately 30 to 60 g per literature reviews. Five topic-specific conditions. hour) for maintenance of blood glu- questions were identified for evi- ● Protein recommendations for endur- cose levels. These nutrition guide- dence-based analysis (Figure 1) and ance and strength-trained athletes lines are especially important for en- incorporated into this position, updat- range from 1.2 to 1.7 g/kg (0.5 to 0.8 durance events lasting longer than ing the prior position on nutrition and g/lb) body weight per day. These rec- an hour when an athlete has not con- performance (1). Search terms used ommended protein intakes can gen- sumed adequate food or fluid before were athlete, performance, power, erally be met through diet alone, exercise, or if an athlete is exercising strength, endurance, or competition without the use of protein or amino in an extreme environment (eg, heat, and macronutrient, meal, carbohy- acid supplements. Energy intake suf- cold, or high altitude). drate, fat, protein, or energy. For the ficient to maintain body weight is ● After exercise, dietary goals are to purpose of this analysis, inclusion cri- necessary for optimal protein use provide adequate fluids, electrolytes, teria were adults aged 18 to 40 years; and performance. energy, and carbohydrates to replace all sport settings; and trained ath- ● Fat intake should range from 20% muscle glycogen and ensure rapid re- letes, athletes in training, or individ- to 35% of total energy intake. Con- covery. A carbohydrate intake of uals regularly exercising. Since the suming 20% of energy from fat 1.0 to 1.5 g/kg (0.5 to 0.7 g/lb) body grading system used provides allow- 510 March 2009 Volume 109 Number 3
  • 3. mary fuel used for high intensity, short Topic Question duration activities such as the clean and jerk in weight lifting, or fast break ● Energy balance and What is the relationship between energy balance/imbalance, in basketball. body composition body composition, and/or weight management and The anaerobic glycolytic pathway athletic performance? uses muscle glycogen and glucose ● Training What is the evidence to support a particular meal timing, that are rapidly metabolized anaero- energy intake, and macronutrient intake for optimal bically through the glycolytic cascade. athletic performance during training? This pathway supports events lasting ● Competition What is the evidence to support a particular meal timing, 60 to 180 seconds. Approximately energy intake, and macronutrient intake for optimal 25% to 35% of total muscle glycogen athletic performance during competition during the 24 stores are used during a single 30- hours before competition? second sprint or resistance exercise What is the evidence to support a particular meal timing, bout. Neither the phosphagen nor the energy intake, and macronutrient intake for optimal glycolytic pathway can sustain the athletic performance during competition? rapid provision of energy to allow ● Recovery What is the evidence to support a particular meal timing, muscles to contract at a very high energy intake, and macronutrient intake for optimal rate for events lasting greater than athletic performance during recovery? 2 to 3 minutes. The oxidative pathway fuels events Figure 1. Specific topics and the respective questions used for the evidence analysis sections of lasting longer than 2 to 3 minutes. the American Dietetic Association, Dietitians of Canada, and American College of Sports Medicine The major substrates include muscle position on nutrition and athletic performance. and liver glycogen, intramuscular, blood, and adipose tissue triglycer- ances for consideration of study de- Conclusion statements were formu- ides, and negligible amounts of amino sign, the evidence-based analysis was lated summarizing the strength of evi- acids from muscle, blood, liver, and not limited to randomized controlled dence with respect to each question the gut. Examples of events for which trials. Study design preferences were (Figure 1). The strength of the evidence the major fuel pathway is the oxida- randomized controlled trials or clini- was graded using the following ele- tive pathway include a 1,500-meter cal controlled studies; large nonran- ments: quality, consistency across run, marathon, half-marathon, and domized observational studies; and studies, quantity, and generalizability. endurance cycling or 500 meter cohort, case-control studies. All sam- A more detailed description of the swimming events. As oxygen becomes ple sizes were included and study methodology used for this evidence- more available to the working muscle, drop out rate could not exceed 20%. based analysis may be found on the the body uses more of the aerobic (ox- The publication range for the evi- American Dietetic Association Web site idative) pathways and less of the an- dence-based analysis spanned 1995- at www.eatright.org/cps/rde/xchg/ada/ aerobic (phosphagen and glycolytic) 2006. If an author was included on hs.xsl/8099_ENU_HTML.htm. pathways. Only the aerobic pathway more than one review article or pri- can produce large amounts of ATP mary research article which were over time via the Kreb’s cycle and similar in content, the most recent ENERGY METABOLISM the electron transport system. The paper was accepted and earlier ver- Energy expenditure must equal en- greater dependence upon aerobic sions rejected. However, when an au- ergy intake to achieve energy bal- pathways does not occur abruptly, thor was included on more than one ance. The energy systems used during nor is one pathway ever relied on review article or primary research ar- exercise for muscular work include exclusively. The intensity, duration, ticle for which content differed, then the phosphagen and glycolytic (both frequency, type of activity, sex, and both reviews could be accepted for anaerobic) and the oxidative (aerobic) fitness level of the individual, as analysis. pathways. The phosphagen system is well as prior nutrient intake and en- The following exclusion criteria used for events lasting no longer than ergy stores, determine when the were applied to all identified studies: a few seconds and of high intensity. crossover from primarily aerobic to Adenosine triphosphate (ATP) and cre- anaerobic pathways occurs (2). ● adults older than age 40 years, atine phosphate provide the readily young adults younger than age 18 available energy present within the years, infants, children, and adoles- muscle. The amount of ATP present in Conversion of Energy Sources Over Time cents; skeletal muscles ( 5 mmol/kg wet Approximately 50% to 60% of energy ● settings not related to sports; weight) is not sufficient to provide a during 1 to 4 hours of continuous ex- ● nonathletes; continuous supply of energy, especially ercise at 70% of maximal oxygen ca- ● critical illness and other diseases at high exercise intensities. Creatine pacity is derived from carbohydrates and conditions; phosphate is an ATP reserve in muscle and the rest from free fatty acid oxi- ● drop out rates 20%; that can be readily converted to sustain dation (3). A greater proportion of en- ● publication before 1995; activity for 3 to 5 minutes (2). The ergy comes from oxidation of free ● studies by same author that were amount of creatine phosphate available fatty acids, primarily those from mus- similar in content; and in skeletal muscle is 4 times greater cle triglycerides as intensity of the ● articles not in English. than ATP, and therefore, is the pri- exercise decreases (3). Training does March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 511
  • 4. not alter the total amount of energy expended but rather the proportion of Adult man energy derived from carbohydrates 662 9.53 (age in years) PAa [15.91 (weight in kilograms) 539.6 (height in meters)]. and fat (3). As a result of aerobic Adult woman training, the energy derived from fat 354 6.91 (age in years) PA [9.36 (weight in kilograms) 726 (height in meters)] increases and from carbohydrates de- creases. A trained individual uses a PA level greater percentage of fat than an un- 1.0-1.39 Sedentary, typical daily living activities (eg, household tasks, walking to bus). trained person does at the same work- 1.4-1.59 Low active, typical daily living activities plus 30-60 minutes of daily moderate load (2). Long-chain fatty aids derived activity (eg, walking at 5-7 km/h). from stored muscle triglycerides are 1.6-1.89 Active, typical daily living activities plus 60 minutes of daily moderate the preferred fuel for aerobic exercise activity. for individuals involved in mild- to 1.9-2.5 Very active, typical daily activities plus at least 60 minutes of daily moderate moderate-intensity exercise (4). activity plus an additional 60 minutes of vigorous activity or 120 minutes of moderate activity. ENERGY REQUIREMENTS Figure 2. The Dietary Reference Intake (DRI) method for estimating energy requirement for Meeting energy needs is a nutrition adults. Adapted from reference 17. aPA physical activity. priority for athletes. Optimum athletic performance is promoted by adequate particularly of the micronutrients ing metabolic rate. The two prediction energy intake. This section provides in- and may result in metabolic dysfunc- equations considered to most closely formation necessary to determine en- tions associated with nutrient defi- estimate energy expenditure are the ergy balance for an individual. Energy ciencies as well as lowered resting Cunningham equation (18) and the balance occurs when energy intake (the metabolic rate. The newer concept of Harris-Benedict equation (19). Be- sum of energy from foods, fluids, and energy availability, defined as dietary cause the Cunningham equation re- supplement products) equals energy intake minus exercise energy expen- quires that lean body mass be known, expenditure or the sum of energy ex- diture normalized to fat-free mass sports dietitians typically use the pended as basal metabolic rate; the (FFM), is the amount of energy avail- Harris-Benedict equation. To esti- thermic effect of food; and the thermic able to the body to perform all other mate total energy expenditure, basal effect of activity, which is the energy functions after exercise training ex- metabolic rate or resting metabolic expended in planned physical activity penditure is subtracted. Many re- rate is then multiplied by the appro- and nonexercise activity thermogenesis searchers have suggested that 30 priate activity factor of 1.8 to 2.3 (rep- (5). Spontaneous physical activity is kcal/kg FFM/day might be the lower resenting moderate to very heavy also included in the thermic effect of threshold of energy availability for physical activity levels, respectively). activity. women (12-15). Numeric guidelines such as these (8) Athletes need to consume enough Estimation of energy needs of ath- only provide an approximation of the energy to maintain appropriate letes and active individuals can be average energy needs of an individual weight and body composition while done using a variety of methods. The athlete. An alternative method for es- training for a sport (6). Although Dietary Guidelines for Americans timating exercise energy expenditure usual energy intakes for many in- 2005 (16) and the Dietary Reference is to use metabolic equivalents re- tensely training female athletes Intakes (15,17) provide energy recom- corded over a 24-hour period (20). Any might match those of male athletes mendations for men and women who of these methods can be used to esti- per kilogram body weight, some fe- are slightly to very active that are mate energy expenditure for the de- male athletes may consume less en- based on predictive equations devel- termination of energy intake require- ergy than they expend. Low energy oped using the doubly labeled water ments and provide a sports dietitian intake (eg, 1,800 to 2,000 kcal/day) technique, which can also be used to with a basis to guide an athlete or for female athletes is a major nutri- estimate energy needs of athletes active individual in meeting their en- tional concern because a persistent (Figure 2). ergy needs. state of negative energy balance can Energy expenditure for different lead to weight loss and disruption of types of exercise is dependent upon endocrine function (7-10). the duration, frequency, and inten- BODY COMPOSITION Inadequate energy intake relative sity of the exercise, the sex of the ath- Body composition and body weight to energy expenditure compromises lete, and prior nutritional status. He- are two of the many factors that con- performance and negates the benefits redity, age, body size, and FFM also tribute to optimal exercise perfor- of training. With limited energy in- influence energy expenditure. The mance. Taken together, these two fac- take, fat and lean tissue will be used more energy used in activity, the tors may affect an athlete’s potential for fuel by the body. Loss of lean tis- more energy needed to achieve energy for success for a given sport. Body sue mass results in the loss of balance. weight can influence an athlete’s strength and endurance, as well as Typical laboratory facilities are speed, endurance, and power, compromised immune, endocrine, usually not equipped to determine to- whereas body composition can affect and musculoskeletal function (11). In tal energy expenditure. Therefore, an athlete’s strength, agility, and ap- addition, chronically low energy in- predictive equations are often used to pearance. A lean body (ie, one with take results in poor nutrient intake, estimate basal metabolic rate or rest- greater muscle/fat ratio) is often ad- 512 March 2009 Volume 109 Number 3
  • 5. vantageous in sports where speed is ter weighing, dual-energy x-ray ab- Kinanthropometry techniques (26) as involved. sorptiometry and air displacement efforts are underway to standardize Athletic performance cannot be ac- plethysmography are Level II tech- measures worldwide. The US Olympic curately predicted based solely on niques, and skinfold measurements Committee advocates using the sum of body weight and composition given and bioelectrical impedance analysis seven skinfolds (millimeters) based on that many factors affect body compo- (BIA) are Level III techniques. Level International Society for Advances in sition (21). Some sports dictate that II and Level III techniques are used Kinanthropometry landmarks, mark- athletes make changes in body weight in practice by sports dietitians. ing skinfold sites on the body, reporting and composition that may not be best Underwater weighing, once consid- duplicate measures, and communicat- for the individual athlete. Athletes ered the criterion standard, is no longer ing the results as a range, rather than who participate in weight-class common. dual-energy x-ray absorpti- percentage body fat. sports—such as wrestling or light- ometry, originally developed to assess BIA is based on the principle that weight rowing—may be required to bone mineral density, can be used for an electrical signal is more easily con- lose or gain weight to qualify for a body composition analysis (21). Al- ducted through lean tissue than fat or specific weight category. Athletes who though dual-energy x-ray absorptiom- bone (22). Fat mass is estimated by participate in body conscious sports etry is fairly accurate, quick, and non- subtracting the BIA determined esti- such as dance, gymnastics, figure invasive, the cost of and access to the mate of FFM from total body mass. skating, or diving, may be pressured instrument limits its utility in practice. Whole body resistance to the flow to lose weight and body fat to have a Air displacement plethysmography of an electrical current conducted lean physique, although their current (BodPod, Life Measurement, Inc, Con- through the body by electrodes placed weight for health and performance is cord, CA) is also used to determine on wrists and ankles can provide appropriate. With extreme energy re- body composition by body density (22), fairly accurate estimates of total body strictions, losses of both muscle and and body fat percentage is calculated water and FFM (22). BIA is depen- fat mass may adversely influence an using the Siri (23) or Brozek and col- dent on a number of factors that can athlete’s performance. leagues (24) equations. Although this cause error in the measurement and Individualized assessment of an method provides valid and reliable as- must be taken into account to obtain a athlete’s body composition and body sessment of body composition, it may fairly accurate estimate. Hydration weight or body image may be advan- underestimate body fat in adults and status is the most important factor tageous for improvement of athletic children by 2% to 3% (25). that may alter the estimated percent- performance. Age, sex, genetics, and Two of the most commonly used age body fat. The prediction accuracy the requirements of the sport are fac- Level III methods are skinfold mea- of BIA is similar to skinfold assess- tors that influence an individual ath- surements and BIA. In addition to ments but BIA may be preferable be- lete’s body composition. An optimal measures of body weight, height, cause it does not require the technical competitive body weight and relative wrist and girth circumferences, skin- skill associated with skinfold mea- body fatness should be determined fold measurements are routinely used surements (27). Currently, upper and when an athlete is healthy and per- by sports dietitians to assess body lower body impedance devices have forming at his or her best. composition. Usually, seven skinfold been developed but have not been Methodology and equipment to per- sites are used, including abdominal, evaluated in an athletic population. form body composition assessments biceps, front thigh, medial calf, sub- must be accessible and cost effective. scapular, supraspinale, and triceps. Not all of the following methods meet The standard techniques and defini- Body Composition and Sports these criteria for the practitioner. In tions of each of these sites are pro- Performance addition, athletes and coaches should vided by Heymsfield and colleagues Body fat percentage of athletes varies know that there are errors associated and Marfell-Jones and colleagues depending on the sex of the athlete with all body composition techniques (22). Prediction equations using skin- and the sport. The estimated minimal and that it is not appropriate to set a fold measurements to determine body level of body fat compatible with specific body fat percentage goal for fat content are numerous (22). Ap- health is 5% for men and 12% for an individual athlete. Rather, a range proximately 50% to 70% of the vari- women (22); however, optimal body of target percentages of body fat val- ance in body density is accounted for fat percentages for an individual ath- ues should be recommended. by this measurement. In addition, lete may be much higher than these population differences limit the abil- minimums and should be determined ity to interchange the prediction on an individual basis. The Interna- Assessment Methodology equations, standardization of skinfold tional Society for Advances in Kinan- Three levels of assessment tech- sites varies, and skinfold measure- thropometry sum of seven skinfolds niques are used to assess body com- ment techniques vary from investiga- indicates that the range of values for position (22). Direct assessment tor to investigator. Even the skinfold the athletic population is 30 to 60 mm based on analysis of cadavers, al- caliper is a source of variability (22). for men and 40 to 90 mm for women though not used in clinical practice, is Despite the inherent problems of (26). Body composition analysis designated as a Level 1 technique. skinfold measurement, this technique should not be used as a criterion for The other two technique levels are remains a method of choice because it selection of athletes for athletic indirect assessments (Level II) and is convenient and inexpensive. The teams. Weight management inter- doubly indirect assessments (Level US Olympic Committee is using the ventions should be thoughtfully de- III). Hydrodensitometry, or underwa- International Society for Advances in signed to avoid detrimental outcomes March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 513
  • 6. Setting and monitoring goals ● Set realistic weight and body composition goals. Ask the athlete: What is the maximum weight that you would find acceptable? What was the lowest weight you maintained without constant dieting? How did you derive your goal weight? At what weight and body composition do you perform best? ● Encourage less focus on the scale and more on healthful habits such as stress management and making good food choices. ● Monitor progress by measuring changes in exercise performance and energy level, the prevention of injuries, normal menstrual function, and general overall well-being. ● Help athletes to develop lifestyle changes that maintain a healthful weight for themselves—not for their sport, for their coach, for their friends, for their parents, or to prove a point. Suggestions for food intake ● Low energy intake will not sustain athletic training. Instead, decreases in energy intake of 10% to 20% of normal intake will lead to weight loss without the athlete feeling deprived or overly hungry. Strategies such as substituting lower-fat foods for whole-fat foods, reducing intake of energy-dense snacks, portion awareness, and doing activities other than eating when not hungry can be useful. ● If appropriate, athletes can reduce fat intake but need to know that a lower-fat diet will not guarantee weight loss unless a negative energy balance (reduced energy intake and increased energy expenditure) is achieved. Fat intake should not be decreased below 15% of total energy intake because some fat is essential for good health. ● Emphasize increased intake of whole grains and cereals, and legumes. ● Five or more daily servings of fruits and vegetables provide nutrients and fiber. ● Dieting athletes should not skimp on protein and need to maintain adequate calcium intakes. Accordingly, use of low-fat dairy products and lean meats, fish, and poultry is suggested. ● A variety of fluids— especially water—should be consumed throughout the day, including before, during, and after exercise. Dehydration as a means of reaching a body-weight goal is contraindicated. Other weight management strategies ● Advise athletes against skipping meals (especially breakfast) and allowing themselves to become overly hungry. They should be prepared for times when they might get hungry, including keeping nutritious snacks available for those times. ● Athletes should not deprive themselves of favorite foods or set unrealistic dietary rules or guidelines. Instead, dietary goals should be flexible and achievable. Athletes should remember that all foods can fit into a healthful lifestyle. Developing list of “good” and “bad” foods is discouraged. ● Help athletes identify their own dietary weaknesses and plan strategies for dealing with them. ● Remind athletes that they are making lifelong dietary changes to sustain a healthful weight and optimal nutritional status rather than going on a short-term diet. Figure 3. Weight management strategies for athletes. (Adapted from: Manore MM. Chronic dieting in active women: What are the health consequences? Women’s Health Issues. 1996;6:332-341. Copyright 1996, with permission from Elsevier.) with specific regard for performance, in the 2005 Dietary Guidelines (16) and not be sufficient to maintain optimal as well as body composition (ie, loss of Eating Well with Canada’s Food Guide carbohydrate stores (4 to 5 g/kg or 1.8 lean body mass). See Figure 3 for (28). Although high-carbohydrate diets to 2.3 g/lb) in a 60-kg (132 lb) athlete. practical guidelines for weight man- (more than 60% of energy intake) have agement of athletes. been advocated in the past, caution is Protein recommended in using specific percent- Conclusion Statement. Four studies have Protein metabolism during and fol- ages as a basis for meal plans for ath- lowing exercise is affected by sex, age, reported inconclusive findings related to letes. For example, when energy intake the effects of energy and protein restric- intensity, duration, and type of exer- is 4,000 to 5,000 kcal/day, even a diet cise, energy intake, and carbohydrate tion on athletic performance, but carbo- containing 50% of energy from carbo- hydrate restriction has been shown to be availability. More detailed reviews of hydrate will provide 500 to 600 g car- these factors and their relationship to detrimental. For weight class athletes, bohydrate (or approximately 7 to 8 g/kg protein metabolism and needs of ac- two studies show that weight loss preced- [3.2 to 3.6 g/lb] for a 70-kg [154 lb] ath- tive individuals can be found else- ing athletic competition may have no sig- lete), an amount sufficient to maintain where (30,31). The current RDA is 0.8 nificant effect on measures of perfor- mance, depending on refeeding protocol. muscle glycogen stores from day to day g/kg body weight and the Acceptable Evidence Grade III Limited (www. (29). Similarly, if protein intake for this Macronutrient Distribution Range for adaevidencelibrary.com/conclusion.cfm? plan was 10% of energy intake, abso- protein intake for adults older than conclusion_statement_id 250448). lute protein intake (100 to 125 g/day) age 18 years is 10% to 35% of total could exceed the recommended protein energy (15). Because there is not a intake for athletes (1.2 to 1.7 g/kg/day strong body of evidence documenting MACRONUTRIENT REQUIREMENTS FOR or 84 to 119 g in a 70-kg athlete). Con- that additional dietary protein is EXERCISE versely, when energy intake is less needed by healthy adults who under- Athletes do not need a diet substan- than 2,000 kcal/day, a diet providing take endurance or resistance exer- tially different from that recommended 60% of energy from carbohydrate may cise, the current Dietary Reference 514 March 2009 Volume 109 Number 3
  • 7. Intakes for protein and amino acids supplementation with individual pathways where micronutrients are does not specifically recognize the amino acids (37,38) more recent work required, and exercise training may unique needs of routinely active in- has shown that intact, high-quality result in muscle biochemical adapta- dividuals and competitive athletes. proteins such as whey, casein, or soy tions that increase micronutrient However, recommending protein in- are effectively used for the mainte- needs. Routine exercise may also in- takes in excess of the RDA to main- nance, repair, and synthesis of skele- crease the turnover and loss of these tain optimum physical performance is tal muscle proteins in response to micronutrients from the body. As a commonly done in practice. training (39). Protein or amino acids result, greater intakes of micronutri- Endurance Athletes. An increase in pro- consumed in close proximity to ents may be required to cover in- tein oxidation during endurance exer- strength and endurance exercise can creased needs for building, repair, cise, coupled with nitrogen balance enhance maintenance of, and net and maintenance of lean body mass in studies, provides the basis for recom- gains in, skeletal muscle (39,40). Be- athletes (46). mending increased protein intakes for cause protein or amino acid supple- The most common vitamins and recovery from intense endurance train- mentation has not been shown to pos- minerals found to be of concern in ing (32). Nitrogen balance studies itively influence athletic performance athletes’ diets are calcium and vita- suggest that dietary protein intake (41,42), recommendations regarding min D, the B vitamins, iron, zinc, necessary to support nitrogen balance protein supplementation are conser- magnesium, as well as some antioxi- in endurance athletes ranges from 1.2 vative and directed primarily at opti- dants such as vitamins C and E, beta to 1.4 g/kg/day (29-31). These recom- mizing the training response to and carotene, and selenium (46-50). Ath- mendations remain unchanged even the recovery period following exer- letes at greatest risk for poor micro- though recent studies have shown cise. From a practical perspective, it nutrient status are those who restrict that protein turnover may become is important to conduct a thorough energy intake or have severe weight more efficient in response to endur- nutrition assessment specific to an loss practices, who eliminate one or ance exercise training (29,32). Ultra- athlete’s goals before recommending more of the food groups from their endurance athletes who engage in protein powders and amino acid sup- diet, or who consume unbalanced and continuous activity for several hours plements to athletes. low micronutrient-dense diets. These or consecutive days of intermittent athletes may benefit from a daily exercise should also consume protein multivitamin/mineral supplement. Fat Use of vitamin and mineral supple- at, or slightly above 1.2 to 1.4 g/kg/ Fat is a necessary component of a nor- ments does not improve performance day (32). Energy balance, or the con- mal diet, providing energy and essen- in individuals consuming nutrition- sumption of adequate energy, partic- tial elements of cell membranes and ally adequate diets (46-48,50). ularly carbohydrates, to meet those expended, is important to protein me- associated nutrients such as vitamins tabolism so that amino acids are A, D, and E. The Acceptable Macro- nutrient Distribution Range for fat is B Vitamins: Thiamin, Riboflavin, Niacin, B-6, spared for protein synthesis and not Pantothenic Acid, Biotin, Folate, and B-12 oxidized to assist in meeting energy 20% to 35% of energy intake (17). The 2005 Dietary Guidelines (16) and Adequate intake of B vitamins is im- needs (33,34). In addition, discussion Eating Well with Canada’s Food portant to ensure optimum energy continues as to whether sex differ- Guide (28) make recommendations production and the building and re- ences in protein-related metabolic re- that the proportion of energy from pair of muscle tissue (48,51). The B- sponses to exercise exist (35,36). fatty acids be 10% saturated, 10% complex vitamins have two major Strength Athletes. Resistance exercise polyunsaturated, and 10% monoun- functions directly related to exercise. may necessitate protein intake in ex- saturated and include sources of es- Thiamin, riboflavin, niacin, pyridox- cess of the RDA, as well as that needed sential fatty acids. Athletes should ine (B-6), pantothenic acid, and biotin for endurance exercise, because addi- follow these general recommenda- are involved in energy production tional protein, essential amino acids in tions. Careful evaluation of studies during exercise (46,51), whereas fo- particular, is needed along with suffi- suggesting a positive effect of con- late and B-12 are required for the pro- cient energy to support muscle growth suming diets for which fat provides duction of red blood cells, for protein (30,31). This is particularly true in the 70% of energy intake on athletic synthesis, and in tissue repair and early phase of strength training when performance (43,44) does not support maintenance including the central the most significant gains in muscle this concept (45). nervous system. Of the B vitamins, size occurs. The amount of protein riboflavin, pyridoxine, folate and B-12 needed to maintain muscle mass may are frequently low in female athletes’ be lower for individuals who routinely VITAMINS AND MINERALS diets, especially those who are vege- resistance train due to more efficient Micronutrients play an important tarian or have disordered eating pat- protein utilization (30,31). Recom- role in energy production, hemoglobin terns (47,48). mended protein intakes for strength- synthesis, maintenance of bone Limited research has been con- trained athletes range from approxi- health, adequate immune function, ducted to examine whether exercise mately 1.2 to 1.7 g/kg/day (30,32). and protection of body against oxida- increases the need for the B-complex Protein and Amino Acid Supplements. tive damage. They assist with synthe- vitamins (46,48). Some data suggest High-protein diets have been popular sis and repair of muscle tissue during that exercise may increase the need throughout history. Although earlier recovery from exercise and injury. Ex- for these vitamins as much as twice investigations in this area involved ercise stresses many of the metabolic the current recommended amount March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 515
  • 8. (48); however, these increased needs dant supplements enhance physical quate dietary calcium and vitamin D can generally be met with higher en- performance (49,50,64,66). Athletes at increase the risk of low bone-mineral ergy intakes. Although short-term greatest risk for poor antioxidant in- density and stress fractures. Female marginal deficiencies of B vitamins takes are those following a low-fat diet, athletes are at greatest risk for low have not been observed to affect per- restricting energy intakes, or limiting bone-mineral density if energy in- formance, severe deficiency of B-12, dietary intakes of fruits, vegetables, takes are low, dairy products and folate, or both may result in anemia and whole grains (29,66). other calcium-rich foods are inade- and reduced endurance performance The evidence that a combination quate or eliminated from the diet, and (46,47,52). Therefore, it is important of antioxidants or single antioxi- menstrual dysfunction is present that athletes consume adequate dants such as vitamin E may be (47,52,55,71-73). amounts of these micronutrients to helpful in reducing inflammation Supplementation with calcium and support their efforts for optimal per- and muscle soreness during recov- vitamin D should be determined after formance and health. ery from intense exercise remains nutrition assessment. Current recom- unclear (42,67). Although the ergo- mendations for athletes with disor- genic potential of vitamin E with dered eating, amenorrhea, and risk Vitamin D regard to physical performance has for early osteoporosis are 1,500 mg Vitamin D is required for adequate not been clearly documented, endur- elemental calcium and 400 to 800 IU calcium absorption, regulation of se- ance athletes may have a higher of vitamin D per day (50,72,73). rum calcium and phosphorus levels, need for this vitamin. Indeed, vita- Iron. Iron is required for the forma- and promotion of bone health. Vita- min E supplementation has been tion of oxygen-carrying proteins, he- min D also regulates the development shown to reduce lipid peroxidation moglobin and myoglobin, and for en- and homeostasis of the nervous sys- during aerobic/endurance exercise zymes involved in energy production tem and skeletal muscle (53-55). Ath- and have a limited effect with (50,74). Oxygen carrying capacity is letes who live at northern latitudes or strength training (66). There is essential for endurance exercise as who train primarily indoors through- some evidence that vitamin E may well as normal function of the ner- out the year, such as gymnasts and attenuate exercise-induced DNA damage and enhance recovery in vous, behavioral, and immune sys- figure skaters, are at risk for poor vi- certain active individuals; however, tems (64,74). Iron depletion (low iron tamin D status, especially if they do more research is needed (66). Ath- stores) is one of the most prevalent not consume foods fortified with vita- letes should be advised not to exceed nutrient deficiencies observed among min D (50,56,57). These athletes would benefit from supplementation the Tolerable Upper Intake Levels athletes, especially women (75). Iron with vitamin D at the Dietary Refer- for antioxidants because higher deficiency, with or without anemia, ence Intake level (5 g/day or 200 IU doses could be pro-oxidative with can impair muscle function and limit for ages 19 to 49 years) (54,56,58-61). potential negative effects (46,64,68). work capacity (47,58,75,76). Iron re- A growing number of experts advo- Vitamin C supplements do not ap- quirements for endurance athletes, es- cate that the RDA for vitamin D is not pear to have an ergogenic effect if the pecially distance runners, are in- adequate (53,62,63). diet provides adequate amounts of creased by approximately 70% (58,74). this nutrient. Because strenuous and Athletes who are vegetarian or regular prolonged exercise has been shown to blood donors should aim for an iron in- Antioxidants: Vitamins C and E, Beta increase the need for vitamin C, phys- take greater than their respective RDA Carotene, and Selenium ical performance can be compromised (ie, 18 mg and 8 mg, for women and The antioxidant nutrients, vitamins C with marginal vitamin C status or de- men, respectively) (58,75). and E, beta carotene, and selenium, ficiency. Athletes who participate in The high incidence of iron depletion play important roles in protecting cell habitual prolonged, strenuous exer- among athletes is usually attributed to membranes from oxidative damage. cise should consume 100 to 1,000 mg inadequate energy intake. Other fac- Because exercise can increase oxygen vitamin C daily (47,69,70). tors that can affect iron status include consumption by 10- to 15-fold, it has vegetarian diets that have poor iron been hypothesized that chronic exer- availability, periods of rapid growth, cise produces a constant “oxidative Minerals: Calcium, Iron, Zinc, and training at high altitudes, increased stress” on the muscles and other cells Magnesium iron losses in sweat, feces, urine, men- (49) leading to lipid peroxidation of The primary minerals low in the diets strual blood, intravascular hemolysis, membranes. Although acute exercise of athletes, especially female athletes, foot-strike hemolysis, regular blood do- may increase levels of lipid peroxide are calcium, iron, zinc, and magne- nation, or injury (50,75,77). Athletes, byproducts (64), habitual exercise has sium (47). Low intakes of these min- especially women, long-distance run- been shown to result in an augmented erals are often due to energy restric- ners, adolescents, and vegetarians antioxidant system and reduced lipid tion or avoidance of animal products should be screened periodically to as- peroxidation (50,65). Thus, a well- (55). sess and monitor iron status (75,77,78). trained athlete may have a more devel- Calcium. Calcium is especially impor- Because reversing iron deficiency oped endogenous antioxidant system tant for growth, maintenance, and re- anemia can require 3 to 6 months, it than a sedentary person. Whether ex- pair of bone tissue; maintenance of is advantageous to begin nutrition in- ercise increases the need for antioxi- blood calcium levels, regulation of tervention before iron deficiency ane- dant nutrients remains controversial. muscle contraction, nerve conduction, mia develops (47,75). Although de- There is little evidence that antioxi- and normal blood clotting. Inade- pleted iron stores (low serum ferritin) 516 March 2009 Volume 109 Number 3
  • 9. are more prevalent in female ath- difficult to measure because clear as- adequate for maintaining normal po- letes, the incidence of iron deficiency sessment criteria have not been es- tassium status among athletes (32,83). anemia in athletes is similar to that tablished and plasma zinc concentra- of the nonathlete female population tions may not reflect changes in whole (50,75,77). Chronic iron deficiency, body zinc status (47,79). Decreases in HYDRATION with or without anemia, that results cardiorespiratory function, muscle Being well hydrated is an important from consistently poor iron intake can strength, and endurance have been consideration for optimal exercise negatively affect health, physical and noted with poor zinc status (47). The performance. Because dehydration mental performance, and warrants Tolerable Upper Intake Level for zinc increases the risk of potentially life- prompt medical intervention and is 40 mg (74). Athletes should be cau- threatening heat injury such as heat monitoring (76,78). tioned against single dose zinc sup- stroke, athletes should strive for eu- Some athletes may experience a plements because they often exceed hydration before, during, and after transient decrease in serum ferritin this amount and unnecessary zinc exercise. Dehydration (loss of 2% and hemoglobin at the initiation of supplementation may lead to low body weight) can compromise aerobic training due to hemodilution subse- high-density lipoprotein cholesterol exercise performance, particularly in quent to an increase in plasma vol- and nutrient imbalances by interfer- hot weather, and may impair mental/ ume known as “dilutional” or “sports ing with absorption of other nutrients cognitive performance (83). anemia” and may not respond to nu- such as iron and copper (47). Further- The American College of Sports trition intervention. These changes more, the benefits of zinc supplemen- Medicine’s Position Stand on Exercise appear to be a beneficial adaptation tation to physical performance have and Fluid Replacement (83) provides to aerobic training that do not nega- not been established. a comprehensive review of the re- tively affect performance (50). Magnesium. Magnesium plays a variety search and recommendations for In athletes who are iron deficient, of roles in cellular metabolism (eg, gly- maintaining hydration before, dur- iron supplementation not only im- colysis, fat, and protein metabolism), ing, and after exercise. In addition, proves blood biochemical measures and regulates membrane stability and the American College of Sports Med- and iron status but also increases neuromuscular, cardiovascular, im- icine has published position stands mune, and hormonal functions (47,55). specific to special environmental con- work capacity as evidenced by in- Magnesium deficiency impairs endur- ditions (84,85). The major points from creasing oxygen uptake, reducing ance performance by increasing oxygen these position stands are the basis for heart rate, and decreasing lactate requirements to complete submaximal the following recommendations. concentration during exercise (47). There is some evidence that athletes exercise. Athletes in weight-class and who are iron deficient but do not have body conscious sports such as wres- Fluid and Electrolyte Recommendations anemia may benefit from iron supple- tling, ballet, gymnastics, as well as ten- nis, have been reported to consume in- Before Exercise. At least 4 hours before mentation (50,75). Recent findings exercise, individuals should drink provide additional support for im- adequate dietary magnesium. Athletes should be educated about good food about 5 to 7 mL/kg body weight ( 2 to proved performance (eg, less skeletal 3 mL/lb) of water or a sport beverage. muscle fatigue) when iron supple- sources of magnesium. In athletes with low magnesium status, supplementa- This would allow enough time to op- mentation was prescribed as 100 mg timize hydration status and for excre- ferrous sulfate for 4-6 weeks (76). Im- tion might be beneficial (47). tion of any excess fluid as urine. Hy- proving work capacity and endur- perhydration with fluids that expand ance, increasing oxygen uptake, re- Sodium, Chloride, and Potassium the extra- and intracellular spaces duced lactate concentrations, and (eg, water and glycerol solutions) will Sodium is a critical electrolyte, partic- reduced muscle fatigue are benefits of greatly increase the risk of having to ularly for athletes with high sweat improved iron status (50). void during competition (83) and pro- losses (80-83). Many endurance ath- Zinc. Zinc plays a role in growth, letes will require much more than the vides no clear physiologic or perfor- building and repair of muscle tissue, Tolerable Upper Intake Level for so- mance advantage over euhydration. energy production, and immune sta- dium (2.3 g/day) and chloride (3.6 This practice should be discouraged tus. Diets low in animal protein, high g/day). Sports drinks containing so- (83). in fiber, and vegetarian diets, in par- dium (0.5 to 0.7 g/L) and potassium During Exercise. Athletes dissipate heat ticular, are associated with decreased (0.8 to 2.0 g/L), as well as carbohy- produced during physical activity by zinc intake (50,52). Zinc status has drate, are recommended for athletes radiation, conduction, convection, and been shown to directly affect thyroid especially in endurance events ( 2 by vaporization of water. In hot, dry hormone levels, basal metabolic rate, hours) (50,80,82,83). environments, evaporation accounts and protein use, which in turn can Potassium is important for fluid and for more than 80% of metabolic heat negatively affect health and physical electrolyte balance, nerve transmis- loss. Sweat rates for any given activity performance (50). Survey data indi- sion, and active transport mechanisms. will vary according to ambient temper- cate that a large number of North During intense exercise, plasma potas- ature, humidity, body weight, genetics, Americans have zinc intakes below sium concentrations tend to decline to a heat acclimatization state, and meta- recommended levels (74,75,79). Ath- lesser degree than sodium. A diet rich bolic efficiency. Depending on the sport letes, particularly women, are also at in a variety of fresh vegetables, fruits, and condition, sweat rates can range risk for zinc deficiency (79). The affect nuts and seeds, dairy foods, lean meats, from as little as 0.3 to as much as 2.4 of low zinc intakes on zinc status is and whole grains is usually considered liters per hour (83). In addition to wa- March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 517
  • 10. ter, sweat also contains substantial but Although some individuals begin ex- lytes lost during exercise. Rapid and variable amounts of sodium. The aver- ercise euhydrated and dehydrate over complete recovery from excessive de- age concentration of sodium in sweat an extended duration, athletes in hydration can be accomplished by approximates 1 g/L (50 mmol/L) (al- some sports might start training or drinking at least 16 to 24 oz (450 to though concentrations vary widely). competition in a dehydrated state be- 675 mL) of fluid for every pound (0.5 There are modest amounts of potas- cause the interval between exercise kg) of body weight lost during exer- sium and small amounts of minerals sessions is inadequate for full rehy- cise. Consuming rehydration bever- such as magnesium and chloride lost in dration (82). Another factor that may ages and salty foods at meals/snacks sweat. predispose an athlete to dehydration will help replace fluid and electrolyte The intent of drinking during exer- is making weight as a prerequisite for losses (83). cise is to avert a water deficit in ex- a specific sport or event. Hypohydra- cess of 2% of body weight. The tion, a practice of some athletes com- amount and rate of fluid replacement peting in weight class sports (eg, Special Environmental Conditions is dependent on an individual ath- wrestling, boxing, lightweight crew, Hot and Humid Environments. The risk lete’s sweat rate, exercise duration, and martial arts), can occur when for dehydration and heat injury in- and opportunities to drink (83). Read- athletes dehydrate themselves before creases dramatically in hot, humid ers are referred to the American Col- beginning a competitive event. Hypo- environments (84). When the ambient lege of Sports Medicine position stand hydration can develop by fluid restric- temperature exceeds body tempera- for specific recommendations related tion, certain exercise practices, di- ture, heat cannot be dissipated by ra- to body size, sweat rates, types of uretic use, or sauna exposure before diation. Moreover, the potential to work, and encouraged to individual- an event. In addition, fluid deficits dissipate heat by evaporation of ize hydration protocols when possible may span workouts for athletes who sweat is substantially reduced when (83). Routine measurement of pre- participate in multiple or prolonged the relative humidity is high. There is and postexercise body weights will daily sessions of exercise in the heat a very high risk of heat illness when assist practitioners in determining (84). temperature and humidity are both sweat rates and customizing fluid re- Hyponatremia (serum sodium con- high. If competitive events occur un- placement programs for individual centration 130 mEq/L [ 130 mmol/ der these conditions, it is necessary to athletes (83). L]) can result from prolonged, heavy take every precaution to assure that Consumption of beverages contain- sweating with failure to replace so- athletes are well hydrated, have am- ing electrolytes and carbohydrates dium, or excessive water intake. Hy- ple access to fluids, and are monitored can help sustain fluid and electrolyte ponatremia is more likely to develop for heat-related illness. balance and endurance exercise per- in novice marathoners who are not formance (83). The type, intensity, Cold Environments. It is possible for de- lean, run slowly, sweat less or con- hydration to occur in cool or cold and duration of exercise and environ- sume excess water before, during, or mental conditions will alter the need weather (85). Factors contributing to after an event (83). dehydration in cold environments in- for fluids and electrolytes. Fluids con- Skeletal muscle cramps are associ- taining sodium and potassium help clude respiratory fluid losses, as well ated with dehydration, electrolyte as sweat losses that occur when insu- replace sweat electrolyte losses, deficits, and muscle fatigue. Non– whereas sodium stimulates thirst and lated clothing is worn during intense heat acclimatized American football exercise. Dehydration can also occur fluid retention, and carbohydrates players commonly experience dehy- because of low rates of fluid ingestion. provide energy. Beverages containing dration and muscle cramping partic- If an athlete is chilled and available 6% to 8% carbohydrate are recom- ularly during formal preseason prac- fluids are cold, the incentive to drink mended for exercise events lasting tice sessions in late summer. Athletes may be reduced. Finally, removal of longer than 1 hour (83). participating in tennis matches, long multiple layers of clothing to urinate Fluid balance during exercise is not cycling races, late-season triathlons, may be inconvenient and difficult for always possible because maximal sweat rates exceed maximal gastric soccer, and beach volleyball are also some athletes, especially women, and emptying rates that in turn limit fluid susceptible to dehydration and mus- they may voluntarily limit fluid in- absorption and most often rates of cle cramping. Muscle cramps also oc- take (86). fluid ingestion by athletes during ex- cur in winter-sport athletes such as Altitude. Fluid losses beyond those as- ercise fall short of amounts that can cross-country skiers and ice-hockey sociated with any exercise performed be emptied from the stomach and ab- players. Muscle cramps are more may occur at altitudes 2,500 m sorbed by the gut. Gastric emptying is common in profuse sweaters who ex- (8,200 ft) consequent to mandatory maximized when the amount of fluid perience large sweat sodium losses diuresis and high respiratory water in the stomach is high and reduced (83). losses, accompanied by decreased ap- with hypertonic fluids or when carbo- After Exercise. Because many athletes petite. Respiratory water losses may hydrate concentration is 8%. do not consume enough fluids during be as high as 1,900 mL (1.9 L) per day Disturbances of fluid and electro- exercise to balance fluid losses, they in men and 850 mL (0.85 L) per day in lyte balance that can occur in athletes complete their exercise session dehy- women (87,88). Total fluid intake at include dehydration, hypohydration, drated to some extent. Given ade- high altitude approaches 3 to 4 L per and hyponatremia (83). Exercise-in- quate time, intake of normal meals day to promote optimal kidney func- duced dehydration develops because and beverages will restore hydration tion and maintain urine output of fluid losses that exceed fluid intake. status by replacing fluids and electro- 1.4 L in adults (87). 518 March 2009 Volume 109 Number 3
  • 11. THE TRAINING DIET fore competition results in improved whether the glycemic index of carbo- The fundamental differences between muscle glycogen concentrations and/or hydrate in the pre-exercise meal af- an athlete’s diet and that of the gen- significant improvements in athletic per- fects performance (92,99-102). eral population are that athletes re- formance. Two studies reported no addi- Although the above guidelines are quire additional fluid to cover sweat tional performance benefits when con- sound and effective, the athlete’s in- losses and additional energy to fuel suming levels above 6 g carbohydrate/kg dividual needs must be emphasized. physical activity. As discussed ear- body weight. Two studies report sex dif- Some athletes consume and enjoy a lier, it is appropriate for much of the ferences; women may have less ability to substantial meal (eg, pancakes, juice, additional energy to be supplied as increase muscle glycogen concentrations and scrambled eggs) 2 to 4 hours be- carbohydrate. The proportional in- through increased carbohydrate con- fore exercise or competition; however, crease in energy requirements ap- sumption, especially when energy intake others may suffer severe gastrointes- pears to exceed the proportional in- is insufficient. One study based on the tinal distress following such a meal crease in needs for most other consumption of a high-fat diet ( 65% of and need to rely on liquid meals. Ath- nutrients. Accordingly, as energy re- energy) for 10 days followed by a high- letes should always ensure that they quirements increase, athletes should carbohydrate diet ( 65% of energy) for 3 know what works best for themselves first aim to consume the maximum days reported a significant improvement by experimenting with new foods and number of servings appropriate for in athletic performance. Nine studies re- beverages during practice sessions their needs from carbohydrate-based port no significant effects of macronutri- and planning ahead to ensure they food groups (ie, bread, cereals and ent composition on athletic performance will have access to these foods at the grains, legumes, milk/alternatives, during the training period and week appropriate time. vegetables, and fruits). Energy needs prior to competition. Evidence Grade Conclusion Statement. Nineteen studies for many athletes will exceed the II Fair (www.adaevidencelibrary.com/ investigating the consumption of a range amount of energy (kilocalories per conclusion.cfm?conclusion_statement_ of macronutrient composition during the id 250447). 24 hours before competition on athletic day) in the upper range of servings for these food groups. Conversely, ath- performance were evaluated. Of eight letes who are small and/or have lower studies, six reported no significant effect Pre-Exercise Meal of meal consumption 90 minutes to 4 energy needs will need to pay greater attention to making nutrient-dense Eating before exercise, as opposed to hours before trials on athletic perfor- food choices to obtain adequate carbo- exercising in the fasting state, has been mance. Six studies that focused on the hydrate, protein, essential fats, and shown to improve performance (89,90). consumption of food or beverage within micronutrients. The meal or snack consumed before the hour before competition reported no competition or an intense workout significant effects on athletic perfor- With regard to the timing of meals should prepare athletes for the upcom- mance, despite hyperglycemia, hyper- and snacks, common sense dictates ing activity, and leave the individual insulinemia, increased carbohydrate that food and fluid intake around neither hungry nor with undigested oxidation, and reduced free fatty acid workouts be determined on an indi- food in the stomach. Accordingly, the availability. Variations in research meth- vidual basis with consideration for an following general guidelines for meals odology on glycemic index of meals con- athlete’s gastrointestinal characteris- and snacks should be used: sufficient sumed prior to competition have led to tics as well as the duration and inten- fluid should be ingested to maintain inconclusive findings. Evidence Grade sity of the workout. For example, an hydration, foods should be relatively II Fair (www.adaevidencelibrary.com/ athlete might tolerate a snack con- low in fat and fiber to facilitate gastric conclusion.cfm?conclusion_statement_ sisting of milk and a sandwich 1 hour emptying and minimize gastrointesti- id 250452). before a low-intensity workout, but nal distress, high in carbohydrate to would be uncomfortable if the same maintain blood glucose and maximize meal was consumed before a very glycogen stores, moderate in protein, During Exercise hard effort. Athletes in heavy train- and familiar to the athlete. Current research supports the ben- ing or doing multiple daily workouts The size and timing of the pre-ex- efit of carbohydrate consumption in may need to eat more than three ercise meal are interrelated. Because amounts typically provided in sport meals and three snacks per day and most athletes do not like to compete drinks (6% to 8%) to endurance per- should consider every possible eating on a full stomach, smaller meals formance in events lasting 1 hour or occasion. These athletes should con- should be consumed in closer proxim- less (103-105), especially in athletes sider eating in close proximity to the ity to the event to allow for gastric who exercise in the morning after an end of a workout, having more than emptying, whereas larger meals can overnight fast when liver glycogen one afternoon snack, or eating a sub- be consumed when more time is avail- levels are decreased. Providing exog- stantial snack before bed. able before exercise or competition. enous carbohydrate during exercise Conclusion Statement. Twenty-three stud- Amounts of carbohydrate shown to helps maintain blood glucose levels ies investigating consumption of a range enhance performance have ranged and improve performance (106). of macronutrient composition during the from approximately 200 to 300 g car- For longer events, consuming 0.7 g training period on athletic performance bohydrate for meals consumed 3 to 4 carbohydrate/kg body weight per hour were evaluated. Nine studies have re- hours before exercise. Studies report (approximately 30 to 60 g per hour) has ported that the consumption of a high either no effect or beneficial effects of been shown unequivocally to extend carbohydrate diet ( 60% of energy) dur- pre-event feeding on performance (91- endurance performance (107,108). ing the training period and the week be- 98). Data are equivocal concerning Consuming carbohydrates during ex- March 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 519
  • 12. ercise is even more important in situ- will finish a marathon with depleted repair and promote a more anabolic ations when athletes have not carbo- glycogen stores, whereas glycogen hormonal profile (33). hydrate-loaded, not consumed pre- depletion would be less marked fol- Conclusion Statement. Twenty-five studies exercise meals, or restricted energy lowing a 90-minute training run. Be- investigating the consumption of a range intake for weight loss. Carbohydrate cause athletes competing in a mara- of macronutrient composition during the intake should begin shortly after the thon are not likely to perform another recovery period were evaluated. Nine onset of activity; consuming a given race or hard workout the same day, studies report that consumption of diets amount of carbohydrate as a bolus the timing and composition of the higher in carbohydrate ( 65% carbohy- after 2 hours of exercise is not as postexercise meal is less critical for drate or 0.8 to 1.0 g carbohydrate/kg body effective as consuming the same these athletes. Conversely, a triath- weight/hour) during the recovery period amount at 15 to 20 minute intervals lete participating in a 90-minute run increase plasma glucose and insulin con- throughout the 2 hours of activity in the morning and a 3-hour cycling centrations and increase muscle glyco- (109). The carbohydrate consumed workout in the afternoon needs to gen resynthesis. Provided that carbohy- should yield primarily glucose; fruc- maximize recovery between training drate intake is sufficient, four studies tose alone is not as effective and may sessions. The post workout meal as- show no significant benefit of addi- cause diarrhea, although mixtures of sumes considerable importance in tional protein intake and two studies glucose and fructose, other simple meeting this goal. show no significant effect of meal timing sugars and maltodextrins, appear ef- Timing of post-exercise carbohy- on muscle glycogen resynthesis during fective (107). If the same total amount drate intake affects glycogen synthe- the recovery period. Studies focusing on of carbohydrate and fluid is ingested, sis over the short term (110). Con- carbohydrate consumption during recov- the form of carbohydrate does not sumption of carbohydrates within 30 ery periods of 4 hours or more suggest seem to matter. Some athletes may minutes after exercise (1.0 to 1.5 g improvements in athletic performance. prefer to use a sport drink whereas carbohydrate/kg at 2-hour intervals Evidence Grade II Fair (www. others may prefer to consume a car- up to 6 hours is often recommended) adaevidencelibrary.com/conclusion.cfm? bohydrate snack or sports gel and results in higher glycogen levels post conclusion_statement_id 250451). consume water. As described else- exercise than when ingestion is de- where in this document, adequate layed for 2 hours (111). It is unneces- fluid intake is also essential for main- sary for athletes who rest one or more DIETARY SUPPLEMENTS AND ERGOGENIC taining endurance performance. days between intense training ses- AIDS Conclusion Statement. Thirty-six studies sions to practice nutrient timing The overwhelming number and in- investigating the consumption of a range with regard to glycogen replenish- creased availability of sports supple- of macronutrient composition during ment provided sufficient carbohy- ments presents an ongoing challenge competition on athletic performance drates are consumed during the 24- for the practitioner and the athlete to were evaluated. Seven studies based on hour period subsequent to the exercise keep up-to-date about the validity of carbohydrate consumption during exer- bout (112). Nevertheless, consuming a both the claims and scientific evidence. cise lasting less than 60 minutes show meal or snack in close proximity to the Although dietary supplements, as well conflicting results on athletic perfor- end of exercise may be important for nutritional ergogenic aids—nutritional mance. However, of 17 studies based on athletes to meet daily carbohydrate products that enhance performance— carbohydrate consumption during exer- and energy goals. are highly prevalent, the fact remains cise lasting greater than 60 minutes, five The type of carbohydrate consumed that very few improve performance reported improved metabolic response, also affects post-exercise glycogen syn- (117-119) and some may cause concern. and seven of 12 studies reported im- thesis. When comparing simple sugars, In the United States, the Dietary provements in athletic performance. Ev- glucose and sucrose appear equally ef- Supplements and Health Education idence is inconclusive regarding the ad- fective when consumed at a rate of 1.0 Act of 1994 allows supplement man- dition of protein to carbohydrate during to 1.5 g/kg body weight for 2 hours; ufacturers to make health claims re- exercise on athletic performance. Seven fructose alone is less effective (113). garding the effect of products on body studies based on consumption of pre- With regard to whole foods, consump- structure or function, but not thera- exercise meals in addition to carbohy- tion of carbohydrate with a high glyce- peutic claims to “diagnose, mitigate, drate consumption during exercise sug- mic index results in higher muscle gly- treat, cure, or prevent” a specific dis- gest enhanced athletic performance. cogen levels 24 hours after glycogen- ease or medical condition (117,120). Evidence Grade II Fair (www. depleting exercise as compared with As long as a special supplement label adaevidencelibrary.com/conclusion.cfm? the same amount of carbohydrates pro- indicates the active ingredients and conclusion_statement_id 250453). vided as foods with a low glycemic in- the entire ingredients list is provided, dex (114). Application of these findings claims for enhanced performance can must be considered in conjunction with be made, valid or not. The Act, how- Recovery the athlete’s overall diet. When isoca- ever, made the US Food and Drug The timing and composition of the loric amounts of carbohydrates or car- Administration responsible for evalu- post competition or postexercise meal bohydrates plus protein and fat are ating and enforcing safety. In 2003, or snack depend on the length and provided following endurance (115) or the Food and Drug Administration intensity of the exercise session (eg, resistance exercise (116), glycogen syn- Task Force on Consumer Health In- whether glycogen depletion occurred), thesis rates are similar. Including pro- formation for Better Nutrition pro- and when the next intense workout tein in a postexercise meal may provide posed a new system for evaluating will occur. For example, most athletes needed amino acids for muscle protein health claims that uses an evidence- 520 March 2009 Volume 109 Number 3