SlideShare uma empresa Scribd logo
1 de 45
Baixar para ler offline
Simple New Keynesian Model 
       without Capital
      Lawrence J. Christiano
Outline
• Formulate the nonlinear equilibrium conditions of the 
  model.

   – Need actual nonlinear conditions to study Ramsey‐optimal 
     policy, even if we want to use linearization methods to 
     study Ramsey. 
      • Ramsey will be used to define ‘output gap’ in positive model of the 
        economy, in which monetary policy is governed by the Taylor rule.
      • Later, when discussing ‘timeless perspective’, will discuss use of 
        Ramsey‐optimal policy in actual, real‐time implementation of 
        monetary policy.  
   – Need nonlinear equations if we were to study higher order 
     perturbation solutions.


• Study properties of the NK model with Taylor rule, 
  using Dynare.
Clarida‐Gali‐Gertler Model
• Households maximize:
                               1
  E0 ∑
                              N
            logC t − exp t  t      ,  t   t−1    ,   ~iid,
                              1                        t     t
     t0


• Subject to:
           Pt C t  B t1 ≤ Wt N t  R t−1 B t  T t

• Intratemporal first order condition:
                   C t exp t N t  Wt
                                  
                                      Pt
Household Intertemporal FONC
• Condition:
                           u c,t1    Rt
                   1  E t u c,t
                                   1   t1
  – or, for when we do linearize later: 
            1  E t C t      Rt
                     C t1 1   t1
               E t explogR t  − log1   t1  − Δc t1 
              ≃  explogR t  − E t  t1 − E t Δc t1 , c t ≡ logC t 

  – take log of both sides:
  0  log  r t − E t  t1 − E t Δc t1 , r t  logR t 
  – or
        c t  − log − r t − E t  t1   c t1
Final Good Firms
• Buy                     at prices       and sell      for  Pt
      Yi,t , i ∈ 0, 1             P i,t          Yt
• Take all prices as given (competitive)
• Profits:
                                      1
                         P t Yt −  P i,t Yi,t di
                                      0

• Production function:
                                                  

                                 0 Yi,t
                                  1       −1    −1
                       Yt                 
                                                       di,   1,


• First order condition:    
                        P i,t   −                           1
                                                            1−
                                                                      1

           Yi,t  Yt                            → P t   P i,t di
                                                                     1−
                        Pt                                   0
Intermediate Good Firms
• Each ith good produced by a single monopoly 
  producer. 
• Demand curve:
                                     P i,t   −
                         Yi,t  Yt   Pt
• Technology:
                   Yi,t  expa t N i,t , Δa t  Δa t−1   a ,
                                                              t

• Calvo Price‐setting Friction
                     ̃
                     P t with probability 1 − 
         P i,t                                     ,
                     P i,t   with probability 
Marginal Cost

                                    dCost
                                                  1 − Wt /P t
real marginal cost        st     dwor ker
                                                
                                   dOutput           expa t 
                                   dwor ker


                            −1 in efficient setting
                              
                                                                   
                                  1 −        C t exp t N t
                       
                                         expa t 
The Intermediate Firm’s Decisions
• ith firm is required to satisfy whatever 
  demand shows up at its posted price.

• It’s only real decision is to adjust price 
  whenever the opportunity arises.
Intermediate Good Firm
• Present discounted value of firm profits:
                                                                    period tj profits sent to household

         marginal value of dividends to householdu c,tj /P tj     revenues            total cost
                                 
Et ∑ j                           tj                              Pi,tj Yi,tj − P tj s tj Yi,tj
  j0


               1−
• Each of the         firms that can optimize price 
           ̃
  choose      to optimize
          Pt


           in selecting price, firm only cares about
           future states in which it can’t reoptimize
   
                             
Et ∑ j                        j                                           ̃
                                                                      tj Pt Yi,tj − Ptj s tj Yi,tj .
  j0
Intermediate Good Firm Problem
• Substitute out the demand curve:
             
                E t ∑ j  tj Pt Yi,tj − P tj s tj Yi,tj 
                                   ̃
                     j0
                     
               E t ∑ j  tj Ytj P P 1− − P tj s tj P − .
                                        tj
                                            ̃t                 ̃t
                     j0
                                ̃
• Differentiate with respect to     : 
                                Pt
       
  E t ∑ j  tj Ytj P 1 − P t   Ptj s tj P−−1   0,
                          tj
                                     ̃ −                ̃t
       j0

• or
                
                                                   ̃
                                                  Pt −  s
             E t ∑     j
                                tj Ytj P 1                        0.
                                            tj
                                                  P tj  − 1 tj
               j0
Intermediate Good Firm Problem
 • Objective: 
             
                     u ′ C tj                      ̃
                                                     Pt −  s
         E t ∑ j              Ytj P1                                 0.
                         P tj          tj
                                                     Ptj  − 1 tj
             j0
                    
                                             ̃
                                            Pt −  s
            → E t ∑        j
                                   P                              0.
                                    tj
                                            P tj  − 1 tj
                   j0
 • or 
                                        
                             E t ∑ j X t,j  − p t X t,j −
                                                     ̃                s tj       0,
                                                                    −1
                                    j0




     ̃
     Pt , X 
                                    1
                          tj  tj−1  t1
                         ̄ ̄              ̄       ,j≥1
̃
pt                                                      , X t,j  X t1,j−1 1 , j  0
     Pt    t,j
                                   1, j  0.                                 t1
                                                                             ̄
Intermediate Good Firm Problem
         ̃
• Want       in:
        pt


             
       E t ∑ j0  j X t,j  − p t X t,j −
                                    ̃               
                                                   −1
                                                         s tj   0



• Solution:
                           
                    E t ∑ j0  j X t,j  −    
                                                        s
                                                   −1 tj
            ̃
            pt                                                  Kt
                        Et ∑    j0
                                     j X t,j  1−            Ft


• But, still need expressions for  Kt , Ft .

Kt  E t ∑ j X t,j  −      s tj
                                −1
          j0
                          
                                                                     −
     s t  E t ∑ j−1 1 X t1,j−1                                    s tj
    −1                       t1
                             ̄                                            −1
                          j1
                                            
                                      −
        s t  E t 1                    ∑ j X −               s
       −1             t1
                      ̄                              t1,j          − 1 t1j
                                            j0
                       E t by LIME                       
                                                   −
        s t   E t E                     1           ∑ j X −              s
       −1               t1
                                            t1
                                           ̄                       t1,j
                                                                                 − 1 t1j
                                                         j0
                                                              exactly K t1 !
                                                   
                                      −
        s t  E t 1                     E t1 ∑ j X −                 s
       −1             t1
                      ̄                                     t1,j
                                                                             − 1 t1j
                                                   j0
                                      −
     s t  E t 1                       Kt1
    −1             t1
                   ̄
• From previous slide:
                                               −
           Kt   s t  E t 1                     Kt1 .
               −1             t1
                              ̄

• Substituting out for marginal cost:
                               dCost/dlabor

         s t   1 −  Wt /P t
       −1     −1       dOutput/dlabor

                               expa t 

                                   Wt
                                  Pt
                                        by household optimization

                                                       
                    1 −             exp t N t C t
                                                                   .
                  −1                     expa t 
In Sum
• solution:

                         
                 E t ∑ j0  j X t,j  −    
                                                     s
                                                −1 tj
         ̃
         pt                                              Kt ,
                      E t ∑ j0  j X t,j   1−        Ft

• Where:
                                         
                      exp t N t C t                              −
   Kt  1 −  t                      E t 1                          Kt1 .
                  −1   expa t                t1
                                               ̄

                
                                                                  1−
     F t ≡ E t ∑ X t,j 
                          j       1−
                                         1  E t         1           F t1
                                                           t1
                                                          ̄
                j0
To Characterize Equilibrium
• Have equations characterizing optimization by 
  firms and households.
• Still need:
                                               P i,t , 0 ≤ i ≤ 1
  – Expression for all the prices. Prices,                          , 
    will all be different because of the price setting 
    frictions.
  – Relationship between aggregate employment and 
    aggregate output not simple because of price 
    distortions:
                  Y t ≠ e a t N t , in general
Going for Prices
 • Aggregate price relationship                                             Calvo insight:
                                                                            This is just a simple
                             1
                                                                            function of last period’s
        0 P 1− di
          1                 1−
Pt          i,t                                                            aggregate price because
                                                                            non-optimizers chosen at
                                                                            random.
                                                                                                        1

        firms that reoptimize price P 1− di  firms that don’t reoptimize price P 1− di
                                                                                                       1−
                                      i,t                                             i,t



       all reoptimizers choose same price                                                                                  1
                    
                                                  ̃ 1−  
                                            1 − P t                                                 P i,t
                                                                                                             1−
                                                                                                                     di
                                                                                                                          1−

                                                                   firms that don’t reoptimize price



 • In principle, to solve the model need all the 
   prices, P t , P i,t , 0 ≤ i ≤ 1
       – Fortunately, that won’t be necessary. 
̃
Expression for     in terms of aggregate 
               pt
               inflation 
 • Conclude that this relationship holds between 
   prices:                                                 1
              P t  1 −       ̃ 1−
                             P t       
                                                1−
                                             P t−1       1−
                                                                .

    – Only two variables here!
 • Divide by      :
              Pt
                                                                 1
                               1−                  1−
              1             ̃
                      1 − p t            1                 1−

                                              t
                                              ̄
 • Rearrange:
                                                 1
                                      −1
                             1−     t
                                    ̄           1−
                      ̃
                      pt 
                               1−
Relation Between Aggregate 
    Output and Aggregate Inputs
• Technically, there is no ‘aggregate production 
  function’ in this model
  – If you know how many people are working, N, and 
    the state of technology, a, you don’t have enough 
    information to know what Y is.
  – Price frictions imply that resources will not be 
    efficiently allocated among different inputs.
     • Implies Y low for given a and N. How low?
     • Tak Yun (JME) gave a simple answer.
Tak Yun Algebra
                                                   labor market clearing
     Y∗    0 Yi,t di
             1
                                 0 At N i,t di
                                   1
                                                             
                                                                          At N t
      t




             demand curve                          −
                 
                           Yt 
                                    1   P i,t
                                                        di
                                    0   Pt


                     0 P i,t  −di
                       1
           Yt P 
                 t

                                                                     Calvo insight

        Y t P  P ∗  −
               t    t


                                            −1
• Where:         P∗
                  t    ≡    0
                              1
                                  P − di
                                    i,t
                                            
                                                             ̃t
                                                    1 − P −  P ∗  − 
                                                                        t−1
                                                                                     −1
                                                                                     
Relationship Between Agg Inputs 
         and Agg Output
• Rewriting previous equation:
                                          
                                  P∗
                        Yt        t
                                              Y∗
                                               t
                                  Pt


                             p ∗ e at N t ,
                                t

• ‘efficiency distortion’:

                      ≤1
             p∗
              t   :
                       1 P i,t  P j,t , all i, j
Collecting Equilibrium Conditions
• Price setting:
                                    
        K t  1 −    exp t N t C t  E t   K (1)
                                                  ̄ t1 t1
                      −1     At

                      F t  1  E t  −1 F t1 (2)
                                      ̄ t1

• Intermediate good firm optimality and 
  restriction across prices:
                                        ̃
                                       p t by restriction across prices
              ̃
             p t by firm optimality
                                                    −1
                                                                    1

                    Kt                     1−      t
                                                   ̄               1−
                                                                          (3)
                    Ft                       1−
Equilibrium Conditions
• Law of motion of (Tak Yun) distortion:
                                                          −1
                                −1
                         1−   t
                              ̄         −1
                                                    
                                                     ̄t
      p∗      1 −                               ∗          (4)
       t
                           1−                     p t−1

• Household Intertemporal Condition:
                   1  E t 1 R t (5)
                   Ct      C t1  t1
                                 ̄
• Aggregate inputs and output:
                     C t  p ∗ e a t N t (6)
                             t

• 6 equations, 8 unknowns:
             , C t , p ∗ , N t ,  t , K t , F t , R t
                        t         ̄
• System under determined!
Underdetermined System
• Not surprising: we added a variable, the 
  nominal rate of interest.

• Also, we’re counting subsidy as among the 
  unknowns.

• Have two extra policy variables.

• One way to pin them down: compute optimal 
  policy.
Ramsey‐Optimal Policy
• 6 equations in 8 unknowns…..
  – Many configurations of the 8 unknowns that 
    satisfy the 6 equations.
  – Look for the best configurations (Ramsey optimal)
     • Value of tax subsidy and of R represent optimal policy


• Finding the Ramsey optimal setting of the 6 
  variables involves solving a simple Lagrangian 
  optimization problem.
Ramsey Problem
                           
                                                                 N 1
            max                    E 0 ∑  t  logC t − exp t  t
,p ∗ ,C t ,N t ,Rt , t ,F t ,K t
    t                ̄                                           1
                          t0




  1t    1 − Et  Rt
          Ct    C t1  t1
                      ̄
                                                         
                                                −1
           1 −               1 −  t 
                                   ̄                    −1
                                                                 
                                                                 ̄
  2t               1 −                                    ∗t
           p∗
            t                   1−                            p t−1
  3t 1  E t  −1 F t1 − F t 
                ̄ t1
                    C t exp t N 
  4t   1 −                   t
                                      E t   K t1 − K t
                                             ̄ t1
                −1       e at

                                   1
                1−     −1
                       ̄t         1−
  5t F t                              − Kt
                 1−
  6t C t − p ∗ e a t N t 
                t
Solving the Ramsey Problem 
            (surprisingly easy in this case)
   • First, substitute out consumption everywhere
                                     
                                                                                   N 1
                      max                   E 0 ∑  t  logN t  logp ∗ − exp t  t
              ,p ∗ ,N t ,Rt , t ,F t ,K t
                  t           ̄
                                                                      t
                                                                                   1
                                    t0

 defines R               1 − Et       e at    Rt
                1t    ∗
                       pt Nt    p t1 e N t1  t1
                                  ∗    a t1  ̄
                                                                   
                                                           −1
                        1 −               1 −  t 
                                                ̄                 −1
                                                                           
                                                                           ̄
                2t              1 −                                 ∗t
                        p∗
                         t                   1−                         p t−1
defines F
                              ̄ −1
                3t 1  E t  t1 F t1 − F t 
defines tax     4t 1 −   exp t N 1 p ∗  E t   K t1 − K t
                                                          ̄ t1
                                 −1                t t
                                              1
                             1−    −1
                                   ̄t        1−
                5t F t                           − Kt 
 defines K                    1−
Solving the Ramsey Problem, cnt’d 
• Simplified problem:
                                 
                                                                           N 1
                 max E 0 ∑   logN t t
                                                       logp ∗   − exp t  t
                 t ,p ∗ ,N t
                ̄ t
                                                            t
                                                                           1
                                 t0


                                                                        
                                                                 −1
                                1 −                1 −  t 
                                                         ̄             −1
                                                                                
                                                                                ̄
                  2t                     1 −                             ∗t         
                                p∗
                                 t                    1−                     p t−1

• First order conditions with respect to p ∗ ,  t , N t
                                           t ̄
                                                                         1
                                                     p ∗  −1         −1
  p ∗   2,t1     2t ,  t 
                  ̄ t1        ̄                        t−1
                                                                              , N t  exp −  t
    t
                                                1−     p ∗  −1
                                                             t−1
                                                                                           1


• Substituting the solution for inflation into law 
  of motion for price distortion: 
                                                                                1
                                 p∗
                                  t     1 −          p ∗  −1
                                                              t−1
                                                                              −1
                                                                                      .
Solution to Ramsey Problem
Eventually, price distortions
eliminated, regardless of shocks
                                                                              1
                                p ∗  1 −   p t−1  −1
                                  t
                                                    ∗                       −1


  When price distortions              p∗
  gone, so is inflation.         t  t−1
                                ̄
                                      p∗t

                              N t  exp −          t
  Efficient (‘first best’)                     1
  allocations in real
  economy                    1−  −1  
                              C t  p ∗ e at N t .
                                      t
      Consumption corresponds to efficient
      allocations in real economy, eventually when price distortions gone
Eventually, Optimal (Ramsey) Equilibrium and 
                Efficient Allocations in Real Economy Coincide
                                        Convergence of price distortion


         0.98



         0.96



         0.94


                                           0. 75,   10
         0.92
p-star




          0.9

                                                                            1
         0.88                  p∗
                                t    1 −           p ∗  −1
                                                            t−1
                                                                          −1



         0.86



         0.84



         0.82



          0.8
                2    4     6        8              10           12                14   16   18   20
• The Ramsey allocations are eventually the 
  best allocations in the economy without price 
  frictions (i.e., ‘first best allocations’)

• Refer to the Ramsey allocations as the ‘natural 
  allocations’….
  – Natural consumption, natural rate of interest, etc.
Equations of the NK Model Under the 
Optimal Policy (‘Natural Equilibrium’)
• Output and employment is (eventually)

      y∗  at −    1 t , n∗  − 1 t
       t
                  1      t
                                1
• Intertemporal Euler equation after taking logs 
  and ignoring variance adjustment term:
  y ∗  −r ∗ − E t  ∗ − rr  E t y ∗ , rr  − log
    t       t         t1             t1


• Inflation in Ramsey equilibrium is (eventually) 
  zero.
Solving for Natural Rate of Interest
• Intertemporal euler equation in natural 
  equilibrium:
        ∗                           y∗
          yt                                            t1


   at −     1
           1
                  t  −r ∗ − rr  E t
                           t                 a t1 −     1
                                                        1
                                                               t1
• Back out the natural rate:

               r ∗  rr  Δa t 
                 t
                                     1
                                    1
                                           1 −  t
• Shocks:
            t   t−1    , Δa t  Δa t−1   t
                            t
Next, Put Turn to the NK Model 
       with Taylor Rule
Taylor Rule

• Taylor rule: designed, so that in steady state, 
                      1
                       ̄
  inflation is zero (             )

• Employment subsidy extinguishes monopoly 
  power in steady state: 
                 1 −    1
                        −1
NK IS Curve
  • Euler equation in two equilibria:

Taylor rule equilibrium: y t  −r t − E t  t1 − rr  E t y t1


    Natural equilibrium: y ∗  −r ∗ − rr  E t y ∗
                           t       t               t1



  • Subtract:                                              Output gap



             x t  −r t − E t  t1 − r ∗   E t x t1
                                         t
Output in NK Equilibrium
• Agg output relation:

                                            0 if P i,t  P j,t for all i, j
yt    logp ∗
            t    nt  at ,   logp ∗
                                   t                                          .
                                           ≤0           otherwise

• To first order approximation, 

                ̂t     ̂ t−1
                p ∗ ≈ p ∗  0   t , → p ∗ ≈ 1
                                 ̄          t
Price Setting Equations
• Log‐linearly expand the price setting equations 
  about steady state.                     1
                                                   1− −1
                                                      ̄t
                                                                      − Kt  0
                                                                1−
1       ̄ −1
     E t  t1 F t1    − Ft  0           Ft      1−
                                  
                  C t exp t N t
     1 −     −1      eat
                                              ̄
                                       E t  t1 K t1 − K t  0

• Log‐linearly expand about steady state:
                       1−1−                  
              t 
              ̄                       1  x t   t1
                                                     ̄

• See http://faculty.wcas.northwestern.edu/~lchrist/course/solving_handout.pdf
Taylor Rule
 • Policy rule



r t  r t−1  1 − rr     t   x x t   u t , , x t ≡ y t − y ∗
                                                                        t
Equations of Actual Equilibrium
          Closed by Adding Policy Rule 

                       E t  t1  x t −  t  0 (Phillips curve)


      − r t − E t  t1 − r ∗   E t x t1 − x t  0 (IS equation)
                             t



r t−1  1 −    t  1 −  x x t − r t  0 (policy rule)


           r ∗ − Δa t −    1 1 −  t  0 (definition of natural rate)
             t
                           1
Solving the Model
                  Δa t                    0                Δa t−1                    t
        st                                                                  
                   t                    0                    t−1                   
                                                                                       t

        s t  Ps t−1   t
     0 0 0              t1                 −1                          0      0            t
    1
       1 0 0           x t1                  0              −1         −
                                                                          1       1
                                                                                              xt
                                    
    0 0 0 0             r t1            1 −   1 −  x            −1      0            rt
    0 0 0 0             r∗
                         t1                   0               0           0      1            rr ∗
                                                                                                  t


    0 0 0 0           t−1               0 0 0                            0                0
    0 0 0 0             x t−1            0 0 0                            0                0
                                                       s t1                                       st
    0 0  0             r t−1            0 0 0                            0                0
    0 0 0 0             r∗
                         t−1             0 0 0                        − −  1 − 
                                                                              1




                   E t  0 z t1   1 z t   2 z t−1   0 s t1   1 s t   0
Solving the Model
      E t  0 z t1   1 z t   2 z t−1   0 s t1   1 s t   0


                                            s t − Ps t−1 −  t  0.

• Solution:
                          z t  Az t−1  Bs t

• As before:
                         0 A2   1 A   2 I  0,


           F   0   0 BP   1   0 A   1 B  0
 x  0,    1. 5,   0. 99,   1,   0. 2,   0. 75,   0,   0. 2,   0. 5.

                            Dynamic Response to a Technology Shock
                inflation                                 output gap                    nominal rate
                                                                              0.2
                                         0.15
 0.03                                                                        0.15            natural nominal rate
                                          0.1                                                actual nominal rate
 0.02                                                                         0.1

 0.01                                    0.05                                0.05


        0    2         4        6               0      2       4         6          0   2       4        6
            natural real rate                        log, technology                        output
  0.2

 0.15                                       1                                 1.2
                                                                                                 natural output
                                                                             1.15
  0.1                                                                                            actual output
                                          0.5                                 1.1
 0.05                                                                        1.05
                                            0                                   1
        0    2     4            6               0     2         4        6          0   2       4        6
             employment
  0.2

 0.15

  0.1
                                                    natural employment
 0.05                                               actual employment

    0
        0           5               10
Dynamic Response to a Preference Shock
                inflation                           output gap                        nominal rate
 0.1                                                                       0.25
0.08                                0.25                                    0.2
                                     0.2                                                           natural real rate
0.06                                                                       0.15
                                    0.15                                                           actual nominal rate
0.04                                                                        0.1
                                     0.1
0.02                                0.05                                   0.05

       0    2         4        6           0     2       4      6                 0   2       4          6
           natural real rate                   preference shock                           output
0.25                                   1
 0.2                                                                       -0.1
0.15                                                                       -0.2
                                     0.5
 0.1                                                                       -0.3                    natural output
                                                                                                   actual output
0.05                                                                       -0.4
                                       0                                   -0.5
       0    2     4            6           0    2         4       6               0   2       4          6
            employment


-0.1
-0.2                                                  natural employment
                                                      actual employment
-0.3
-0.4
-0.5
       0    2         4        6
Conclusion of NK Model Analysis
• We studied examples in which the Taylor rule 
  moves the interest rate in the right direction 
  in response to shocks.

• However, the move is not strong enough. Will 
  consider modifications of the Taylor rule using 
  Dynare.

Mais conteúdo relacionado

Mais procurados

100 things I know
100 things I know100 things I know
100 things I knowr-uribe
 
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...SSA KPI
 
Datamining 4th Adaboost
Datamining 4th AdaboostDatamining 4th Adaboost
Datamining 4th Adaboostsesejun
 
Portfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long RunPortfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long Runguasoni
 
Neural network Algos formulas
Neural network Algos formulasNeural network Algos formulas
Neural network Algos formulasZarnigar Altaf
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1Cdiscount
 
UT Austin - Portugal Lectures on Portfolio Choice
UT Austin - Portugal Lectures on Portfolio ChoiceUT Austin - Portugal Lectures on Portfolio Choice
UT Austin - Portugal Lectures on Portfolio Choiceguasoni
 
Optimal control of coupled PDE networks with automated code generation
Optimal control of coupled PDE networks with automated code generationOptimal control of coupled PDE networks with automated code generation
Optimal control of coupled PDE networks with automated code generationDelta Pi Systems
 
Paris2012 session3b
Paris2012 session3bParis2012 session3b
Paris2012 session3bCdiscount
 
Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011BigMC
 
Unit Circle - Trigonometry
Unit Circle - TrigonometryUnit Circle - Trigonometry
Unit Circle - TrigonometrySimon Borgert
 
Numerical solution of spatiotemporal models from ecology
Numerical solution of spatiotemporal models from ecologyNumerical solution of spatiotemporal models from ecology
Numerical solution of spatiotemporal models from ecologyKyrre Wahl Kongsgård
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibilityketan gajjar
 
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Eesti Pank
 

Mais procurados (18)

100 things I know
100 things I know100 things I know
100 things I know
 
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
 
Datamining 4th Adaboost
Datamining 4th AdaboostDatamining 4th Adaboost
Datamining 4th Adaboost
 
Portfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long RunPortfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long Run
 
Neural network Algos formulas
Neural network Algos formulasNeural network Algos formulas
Neural network Algos formulas
 
Fdtd
FdtdFdtd
Fdtd
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1
 
UT Austin - Portugal Lectures on Portfolio Choice
UT Austin - Portugal Lectures on Portfolio ChoiceUT Austin - Portugal Lectures on Portfolio Choice
UT Austin - Portugal Lectures on Portfolio Choice
 
Optimal control of coupled PDE networks with automated code generation
Optimal control of coupled PDE networks with automated code generationOptimal control of coupled PDE networks with automated code generation
Optimal control of coupled PDE networks with automated code generation
 
Paris2012 session3b
Paris2012 session3bParis2012 session3b
Paris2012 session3b
 
Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011
 
Unit Circle - Trigonometry
Unit Circle - TrigonometryUnit Circle - Trigonometry
Unit Circle - Trigonometry
 
Numerical solution of spatiotemporal models from ecology
Numerical solution of spatiotemporal models from ecologyNumerical solution of spatiotemporal models from ecology
Numerical solution of spatiotemporal models from ecology
 
WCSB 2012
WCSB 2012 WCSB 2012
WCSB 2012
 
Trig identities
Trig identitiesTrig identities
Trig identities
 
Biomathematics
BiomathematicsBiomathematics
Biomathematics
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
 

Destaque

Chapter 2 pertubation
Chapter 2 pertubationChapter 2 pertubation
Chapter 2 pertubationNBER
 
Lecture on solving1
Lecture on solving1Lecture on solving1
Lecture on solving1NBER
 
Chapter 3 projection
Chapter 3 projectionChapter 3 projection
Chapter 3 projectionNBER
 
Csvfrictions
CsvfrictionsCsvfrictions
CsvfrictionsNBER
 
Dynare exercise
Dynare exerciseDynare exercise
Dynare exerciseNBER
 
Applications: Prediction
Applications: PredictionApplications: Prediction
Applications: PredictionNBER
 
Econometrics of High-Dimensional Sparse Models
Econometrics of High-Dimensional Sparse ModelsEconometrics of High-Dimensional Sparse Models
Econometrics of High-Dimensional Sparse ModelsNBER
 
Big Data Analysis
Big Data AnalysisBig Data Analysis
Big Data AnalysisNBER
 
High-Dimensional Methods: Examples for Inference on Structural Effects
High-Dimensional Methods: Examples for Inference on Structural EffectsHigh-Dimensional Methods: Examples for Inference on Structural Effects
High-Dimensional Methods: Examples for Inference on Structural EffectsNBER
 
Nuts and bolts
Nuts and boltsNuts and bolts
Nuts and boltsNBER
 

Destaque (10)

Chapter 2 pertubation
Chapter 2 pertubationChapter 2 pertubation
Chapter 2 pertubation
 
Lecture on solving1
Lecture on solving1Lecture on solving1
Lecture on solving1
 
Chapter 3 projection
Chapter 3 projectionChapter 3 projection
Chapter 3 projection
 
Csvfrictions
CsvfrictionsCsvfrictions
Csvfrictions
 
Dynare exercise
Dynare exerciseDynare exercise
Dynare exercise
 
Applications: Prediction
Applications: PredictionApplications: Prediction
Applications: Prediction
 
Econometrics of High-Dimensional Sparse Models
Econometrics of High-Dimensional Sparse ModelsEconometrics of High-Dimensional Sparse Models
Econometrics of High-Dimensional Sparse Models
 
Big Data Analysis
Big Data AnalysisBig Data Analysis
Big Data Analysis
 
High-Dimensional Methods: Examples for Inference on Structural Effects
High-Dimensional Methods: Examples for Inference on Structural EffectsHigh-Dimensional Methods: Examples for Inference on Structural Effects
High-Dimensional Methods: Examples for Inference on Structural Effects
 
Nuts and bolts
Nuts and boltsNuts and bolts
Nuts and bolts
 

Mais de NBER

FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATES
FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATESFISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATES
FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATESNBER
 
Business in the United States Who Owns it and How Much Tax They Pay
Business in the United States Who Owns it and How Much Tax They PayBusiness in the United States Who Owns it and How Much Tax They Pay
Business in the United States Who Owns it and How Much Tax They PayNBER
 
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...NBER
 
The Distributional E ffects of U.S. Clean Energy Tax Credits
The Distributional Effects of U.S. Clean Energy Tax CreditsThe Distributional Effects of U.S. Clean Energy Tax Credits
The Distributional E ffects of U.S. Clean Energy Tax CreditsNBER
 
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...NBER
 
Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1NBER
 
Nbe rcausalpredictionv111 lecture2
Nbe rcausalpredictionv111 lecture2Nbe rcausalpredictionv111 lecture2
Nbe rcausalpredictionv111 lecture2NBER
 
Nber slides11 lecture2
Nber slides11 lecture2Nber slides11 lecture2
Nber slides11 lecture2NBER
 
Recommenders, Topics, and Text
Recommenders, Topics, and TextRecommenders, Topics, and Text
Recommenders, Topics, and TextNBER
 
Machine Learning and Causal Inference
Machine Learning and Causal InferenceMachine Learning and Causal Inference
Machine Learning and Causal InferenceNBER
 
Introduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsIntroduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsNBER
 
Jackson nber-slides2014 lecture3
Jackson nber-slides2014 lecture3Jackson nber-slides2014 lecture3
Jackson nber-slides2014 lecture3NBER
 
Jackson nber-slides2014 lecture1
Jackson nber-slides2014 lecture1Jackson nber-slides2014 lecture1
Jackson nber-slides2014 lecture1NBER
 
Acemoglu lecture2
Acemoglu lecture2Acemoglu lecture2
Acemoglu lecture2NBER
 
Acemoglu lecture4
Acemoglu lecture4Acemoglu lecture4
Acemoglu lecture4NBER
 
The NBER Working Paper Series at 20,000 - Joshua Gans
The NBER Working Paper Series at 20,000 - Joshua GansThe NBER Working Paper Series at 20,000 - Joshua Gans
The NBER Working Paper Series at 20,000 - Joshua GansNBER
 
The NBER Working Paper Series at 20,000 - Claudia Goldin
The NBER Working Paper Series at 20,000 - Claudia GoldinThe NBER Working Paper Series at 20,000 - Claudia Goldin
The NBER Working Paper Series at 20,000 - Claudia GoldinNBER
 
The NBER Working Paper Series at 20,000 - James Poterba
The NBER Working Paper Series at 20,000 - James PoterbaThe NBER Working Paper Series at 20,000 - James Poterba
The NBER Working Paper Series at 20,000 - James PoterbaNBER
 
The NBER Working Paper Series at 20,000 - Scott Stern
The NBER Working Paper Series at 20,000 - Scott SternThe NBER Working Paper Series at 20,000 - Scott Stern
The NBER Working Paper Series at 20,000 - Scott SternNBER
 
The NBER Working Paper Series at 20,000 - Glenn Ellison
The NBER Working Paper Series at 20,000 - Glenn EllisonThe NBER Working Paper Series at 20,000 - Glenn Ellison
The NBER Working Paper Series at 20,000 - Glenn EllisonNBER
 

Mais de NBER (20)

FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATES
FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATESFISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATES
FISCAL STIMULUS IN ECONOMIC UNIONS: WHAT ROLE FOR STATES
 
Business in the United States Who Owns it and How Much Tax They Pay
Business in the United States Who Owns it and How Much Tax They PayBusiness in the United States Who Owns it and How Much Tax They Pay
Business in the United States Who Owns it and How Much Tax They Pay
 
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...
Redistribution through Minimum Wage Regulation: An Analysis of Program Linkag...
 
The Distributional E ffects of U.S. Clean Energy Tax Credits
The Distributional Effects of U.S. Clean Energy Tax CreditsThe Distributional Effects of U.S. Clean Energy Tax Credits
The Distributional E ffects of U.S. Clean Energy Tax Credits
 
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...
An Experimental Evaluation of Strategies to Increase Property Tax Compliance:...
 
Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1
 
Nbe rcausalpredictionv111 lecture2
Nbe rcausalpredictionv111 lecture2Nbe rcausalpredictionv111 lecture2
Nbe rcausalpredictionv111 lecture2
 
Nber slides11 lecture2
Nber slides11 lecture2Nber slides11 lecture2
Nber slides11 lecture2
 
Recommenders, Topics, and Text
Recommenders, Topics, and TextRecommenders, Topics, and Text
Recommenders, Topics, and Text
 
Machine Learning and Causal Inference
Machine Learning and Causal InferenceMachine Learning and Causal Inference
Machine Learning and Causal Inference
 
Introduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and AlgorithmsIntroduction to Supervised ML Concepts and Algorithms
Introduction to Supervised ML Concepts and Algorithms
 
Jackson nber-slides2014 lecture3
Jackson nber-slides2014 lecture3Jackson nber-slides2014 lecture3
Jackson nber-slides2014 lecture3
 
Jackson nber-slides2014 lecture1
Jackson nber-slides2014 lecture1Jackson nber-slides2014 lecture1
Jackson nber-slides2014 lecture1
 
Acemoglu lecture2
Acemoglu lecture2Acemoglu lecture2
Acemoglu lecture2
 
Acemoglu lecture4
Acemoglu lecture4Acemoglu lecture4
Acemoglu lecture4
 
The NBER Working Paper Series at 20,000 - Joshua Gans
The NBER Working Paper Series at 20,000 - Joshua GansThe NBER Working Paper Series at 20,000 - Joshua Gans
The NBER Working Paper Series at 20,000 - Joshua Gans
 
The NBER Working Paper Series at 20,000 - Claudia Goldin
The NBER Working Paper Series at 20,000 - Claudia GoldinThe NBER Working Paper Series at 20,000 - Claudia Goldin
The NBER Working Paper Series at 20,000 - Claudia Goldin
 
The NBER Working Paper Series at 20,000 - James Poterba
The NBER Working Paper Series at 20,000 - James PoterbaThe NBER Working Paper Series at 20,000 - James Poterba
The NBER Working Paper Series at 20,000 - James Poterba
 
The NBER Working Paper Series at 20,000 - Scott Stern
The NBER Working Paper Series at 20,000 - Scott SternThe NBER Working Paper Series at 20,000 - Scott Stern
The NBER Working Paper Series at 20,000 - Scott Stern
 
The NBER Working Paper Series at 20,000 - Glenn Ellison
The NBER Working Paper Series at 20,000 - Glenn EllisonThe NBER Working Paper Series at 20,000 - Glenn Ellison
The NBER Working Paper Series at 20,000 - Glenn Ellison
 

Último

RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756dollysharma2066
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Lviv Startup Club
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with CultureSeta Wicaksana
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityEric T. Tung
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Roland Driesen
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxpriyanshujha201
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 

Último (20)

RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pillsMifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 

Lecture on nk [compatibility mode]

  • 1. Simple New Keynesian Model  without Capital Lawrence J. Christiano
  • 2. Outline • Formulate the nonlinear equilibrium conditions of the  model. – Need actual nonlinear conditions to study Ramsey‐optimal  policy, even if we want to use linearization methods to  study Ramsey.  • Ramsey will be used to define ‘output gap’ in positive model of the  economy, in which monetary policy is governed by the Taylor rule. • Later, when discussing ‘timeless perspective’, will discuss use of  Ramsey‐optimal policy in actual, real‐time implementation of  monetary policy.   – Need nonlinear equations if we were to study higher order  perturbation solutions. • Study properties of the NK model with Taylor rule,  using Dynare.
  • 3. Clarida‐Gali‐Gertler Model • Households maximize:  1 E0 ∑ N logC t − exp t  t ,  t   t−1    ,   ~iid, 1 t t t0 • Subject to: Pt C t  B t1 ≤ Wt N t  R t−1 B t  T t • Intratemporal first order condition: C t exp t N t  Wt  Pt
  • 4. Household Intertemporal FONC • Condition: u c,t1 Rt 1  E t u c,t 1   t1 – or, for when we do linearize later:  1  E t C t Rt C t1 1   t1  E t explogR t  − log1   t1  − Δc t1  ≃  explogR t  − E t  t1 − E t Δc t1 , c t ≡ logC t  – take log of both sides: 0  log  r t − E t  t1 − E t Δc t1 , r t  logR t  – or c t  − log − r t − E t  t1   c t1
  • 5. Final Good Firms • Buy                     at prices       and sell      for  Pt Yi,t , i ∈ 0, 1 P i,t Yt • Take all prices as given (competitive) • Profits: 1 P t Yt −  P i,t Yi,t di 0 • Production function:   0 Yi,t 1 −1 −1 Yt   di,   1, • First order condition:     P i,t − 1 1− 1 Yi,t  Yt → P t   P i,t di 1− Pt 0
  • 6. Intermediate Good Firms • Each ith good produced by a single monopoly  producer.  • Demand curve: P i,t − Yi,t  Yt Pt • Technology: Yi,t  expa t N i,t , Δa t  Δa t−1   a , t • Calvo Price‐setting Friction ̃ P t with probability 1 −  P i,t  , P i,t with probability 
  • 7. Marginal Cost dCost 1 − Wt /P t real marginal cost  st  dwor ker  dOutput expa t  dwor ker  −1 in efficient setting   1 −  C t exp t N t  expa t 
  • 8. The Intermediate Firm’s Decisions • ith firm is required to satisfy whatever  demand shows up at its posted price. • It’s only real decision is to adjust price  whenever the opportunity arises.
  • 9. Intermediate Good Firm • Present discounted value of firm profits: period tj profits sent to household  marginal value of dividends to householdu c,tj /P tj revenues total cost  Et ∑ j  tj Pi,tj Yi,tj − P tj s tj Yi,tj j0 1− • Each of the         firms that can optimize price  ̃ choose      to optimize Pt in selecting price, firm only cares about future states in which it can’t reoptimize   Et ∑ j j ̃  tj Pt Yi,tj − Ptj s tj Yi,tj . j0
  • 10. Intermediate Good Firm Problem • Substitute out the demand curve:  E t ∑ j  tj Pt Yi,tj − P tj s tj Yi,tj  ̃ j0   E t ∑ j  tj Ytj P P 1− − P tj s tj P − . tj ̃t ̃t j0 ̃ • Differentiate with respect to     :  Pt  E t ∑ j  tj Ytj P 1 − P t   Ptj s tj P−−1   0, tj ̃ − ̃t j0 • or  ̃ Pt −  s E t ∑ j  tj Ytj P 1  0. tj P tj  − 1 tj j0
  • 11. Intermediate Good Firm Problem • Objective:   u ′ C tj  ̃ Pt −  s E t ∑ j Ytj P1  0. P tj tj Ptj  − 1 tj j0  ̃ Pt −  s → E t ∑ j P  0. tj P tj  − 1 tj j0 • or   E t ∑ j X t,j  − p t X t,j − ̃  s tj  0, −1 j0 ̃ Pt , X  1  tj  tj−1  t1 ̄ ̄ ̄ ,j≥1 ̃ pt  , X t,j  X t1,j−1 1 , j  0 Pt t,j 1, j  0.  t1 ̄
  • 12. Intermediate Good Firm Problem ̃ • Want       in: pt  E t ∑ j0  j X t,j  − p t X t,j − ̃  −1 s tj 0 • Solution:  E t ∑ j0  j X t,j  −  s −1 tj ̃ pt    Kt Et ∑ j0  j X t,j  1− Ft • But, still need expressions for  Kt , Ft .
  • 13.  Kt  E t ∑ j X t,j  −  s tj −1 j0  −   s t  E t ∑ j−1 1 X t1,j−1  s tj −1  t1 ̄ −1 j1  −   s t  E t 1 ∑ j X −  s −1  t1 ̄ t1,j  − 1 t1j j0 E t by LIME  −   s t   E t E 1 ∑ j X −  s −1 t1  t1 ̄ t1,j  − 1 t1j j0 exactly K t1 !  −   s t  E t 1 E t1 ∑ j X −  s −1  t1 ̄ t1,j  − 1 t1j j0 −   s t  E t 1 Kt1 −1  t1 ̄
  • 14. • From previous slide: − Kt   s t  E t 1 Kt1 . −1  t1 ̄ • Substituting out for marginal cost: dCost/dlabor  s t   1 −  Wt /P t −1 −1 dOutput/dlabor expa t  Wt  Pt by household optimization   1 −  exp t N t C t  . −1 expa t 
  • 15. In Sum • solution:  E t ∑ j0  j X t,j  −  s −1 tj ̃ pt    Kt , E t ∑ j0  j X t,j  1− Ft • Where:  exp t N t C t − Kt  1 −  t    E t 1 Kt1 . −1 expa t   t1 ̄  1− F t ≡ E t ∑ X t,j  j 1−  1  E t 1 F t1  t1 ̄ j0
  • 16. To Characterize Equilibrium • Have equations characterizing optimization by  firms and households. • Still need: P i,t , 0 ≤ i ≤ 1 – Expression for all the prices. Prices,                          ,  will all be different because of the price setting  frictions. – Relationship between aggregate employment and  aggregate output not simple because of price  distortions: Y t ≠ e a t N t , in general
  • 17. Going for Prices • Aggregate price relationship Calvo insight: This is just a simple 1 function of last period’s 0 P 1− di 1 1− Pt  i,t aggregate price because non-optimizers chosen at random. 1 firms that reoptimize price P 1− di  firms that don’t reoptimize price P 1− di 1−  i,t i,t all reoptimizers choose same price 1   ̃ 1−   1 − P t P i,t 1− di 1− firms that don’t reoptimize price • In principle, to solve the model need all the  prices, P t , P i,t , 0 ≤ i ≤ 1 – Fortunately, that won’t be necessary. 
  • 18. ̃ Expression for     in terms of aggregate  pt inflation  • Conclude that this relationship holds between  prices: 1 P t  1 − ̃ 1− P t  1− P t−1 1− . – Only two variables here! • Divide by      : Pt 1 1− 1− 1 ̃ 1 − p t  1 1− t ̄ • Rearrange: 1 −1 1−  t ̄ 1− ̃ pt  1−
  • 19. Relation Between Aggregate  Output and Aggregate Inputs • Technically, there is no ‘aggregate production  function’ in this model – If you know how many people are working, N, and  the state of technology, a, you don’t have enough  information to know what Y is. – Price frictions imply that resources will not be  efficiently allocated among different inputs. • Implies Y low for given a and N. How low? • Tak Yun (JME) gave a simple answer.
  • 20. Tak Yun Algebra labor market clearing Y∗  0 Yi,t di 1  0 At N i,t di 1   At N t t demand curve −   Yt  1 P i,t di 0 Pt 0 P i,t  −di 1  Yt P  t Calvo insight  Y t P  P ∗  − t t −1 • Where: P∗ t ≡ 0 1 P − di i,t  ̃t  1 − P −  P ∗  −  t−1 −1 
  • 21. Relationship Between Agg Inputs  and Agg Output • Rewriting previous equation:  P∗ Yt  t Y∗ t Pt  p ∗ e at N t , t • ‘efficiency distortion’: ≤1 p∗ t :  1 P i,t  P j,t , all i, j
  • 22. Collecting Equilibrium Conditions • Price setting:  K t  1 −   exp t N t C t  E t   K (1) ̄ t1 t1 −1 At F t  1  E t  −1 F t1 (2) ̄ t1 • Intermediate good firm optimality and  restriction across prices: ̃ p t by restriction across prices ̃ p t by firm optimality  −1 1 Kt 1−  t ̄ 1−  (3) Ft 1−
  • 23. Equilibrium Conditions • Law of motion of (Tak Yun) distortion:  −1 −1 1−  t ̄ −1   ̄t p∗  1 −   ∗ (4) t 1− p t−1 • Household Intertemporal Condition: 1  E t 1 R t (5) Ct C t1  t1 ̄ • Aggregate inputs and output: C t  p ∗ e a t N t (6) t • 6 equations, 8 unknowns: , C t , p ∗ , N t ,  t , K t , F t , R t t ̄ • System under determined!
  • 24. Underdetermined System • Not surprising: we added a variable, the  nominal rate of interest. • Also, we’re counting subsidy as among the  unknowns. • Have two extra policy variables. • One way to pin them down: compute optimal  policy.
  • 25. Ramsey‐Optimal Policy • 6 equations in 8 unknowns….. – Many configurations of the 8 unknowns that  satisfy the 6 equations. – Look for the best configurations (Ramsey optimal) • Value of tax subsidy and of R represent optimal policy • Finding the Ramsey optimal setting of the 6  variables involves solving a simple Lagrangian  optimization problem.
  • 26. Ramsey Problem  N 1 max E 0 ∑  t  logC t − exp t  t ,p ∗ ,C t ,N t ,Rt , t ,F t ,K t t ̄ 1 t0   1t 1 − Et  Rt Ct C t1  t1 ̄  −1 1 − 1 −  t  ̄ −1   ̄   2t 1 −   ∗t p∗ t 1− p t−1   3t 1  E t  −1 F t1 − F t  ̄ t1 C t exp t N    4t 1 −   t  E t   K t1 − K t ̄ t1 −1 e at 1 1−  −1 ̄t 1−   5t F t − Kt 1−   6t C t − p ∗ e a t N t  t
  • 27. Solving the Ramsey Problem  (surprisingly easy in this case) • First, substitute out consumption everywhere  N 1 max E 0 ∑  t  logN t  logp ∗ − exp t  t ,p ∗ ,N t ,Rt , t ,F t ,K t t ̄ t 1 t0 defines R 1 − Et e at  Rt   1t ∗ pt Nt p t1 e N t1  t1 ∗ a t1 ̄  −1 1 − 1 −  t  ̄ −1   ̄   2t 1 −   ∗t p∗ t 1− p t−1 defines F ̄ −1   3t 1  E t  t1 F t1 − F t  defines tax   4t 1 −   exp t N 1 p ∗  E t   K t1 − K t ̄ t1 −1 t t 1 1−  −1 ̄t 1−   5t F t − Kt  defines K 1−
  • 28. Solving the Ramsey Problem, cnt’d  • Simplified problem:  N 1 max E 0 ∑   logN t t logp ∗ − exp t  t  t ,p ∗ ,N t ̄ t t 1 t0  −1 1 − 1 −  t  ̄ −1   ̄   2t 1 −   ∗t  p∗ t 1− p t−1 • First order conditions with respect to p ∗ ,  t , N t t ̄ 1 p ∗  −1 −1 p ∗   2,t1     2t ,  t  ̄ t1 ̄ t−1 , N t  exp −  t t 1−   p ∗  −1 t−1 1 • Substituting the solution for inflation into law  of motion for price distortion:  1 p∗ t  1 −   p ∗  −1 t−1 −1 .
  • 29. Solution to Ramsey Problem Eventually, price distortions eliminated, regardless of shocks 1 p ∗  1 −   p t−1  −1 t ∗ −1 When price distortions p∗ gone, so is inflation.  t  t−1 ̄ p∗t N t  exp − t Efficient (‘first best’) 1 allocations in real economy 1−  −1  C t  p ∗ e at N t . t Consumption corresponds to efficient allocations in real economy, eventually when price distortions gone
  • 30. Eventually, Optimal (Ramsey) Equilibrium and  Efficient Allocations in Real Economy Coincide Convergence of price distortion 0.98 0.96 0.94   0. 75,   10 0.92 p-star 0.9 1 0.88 p∗ t  1 −   p ∗  −1 t−1 −1 0.86 0.84 0.82 0.8 2 4 6 8 10 12 14 16 18 20
  • 31. • The Ramsey allocations are eventually the  best allocations in the economy without price  frictions (i.e., ‘first best allocations’) • Refer to the Ramsey allocations as the ‘natural  allocations’…. – Natural consumption, natural rate of interest, etc.
  • 32. Equations of the NK Model Under the  Optimal Policy (‘Natural Equilibrium’) • Output and employment is (eventually) y∗  at − 1 t , n∗  − 1 t t 1 t 1 • Intertemporal Euler equation after taking logs  and ignoring variance adjustment term: y ∗  −r ∗ − E t  ∗ − rr  E t y ∗ , rr  − log t t t1 t1 • Inflation in Ramsey equilibrium is (eventually)  zero.
  • 33. Solving for Natural Rate of Interest • Intertemporal euler equation in natural  equilibrium: ∗ y∗ yt t1 at − 1 1  t  −r ∗ − rr  E t t a t1 − 1 1  t1 • Back out the natural rate: r ∗  rr  Δa t  t 1 1 1 −  t • Shocks:  t   t−1    , Δa t  Δa t−1   t t
  • 35. Taylor Rule • Taylor rule: designed, so that in steady state,  1 ̄ inflation is zero (             ) • Employment subsidy extinguishes monopoly  power in steady state:  1 −    1 −1
  • 36. NK IS Curve • Euler equation in two equilibria: Taylor rule equilibrium: y t  −r t − E t  t1 − rr  E t y t1 Natural equilibrium: y ∗  −r ∗ − rr  E t y ∗ t t t1 • Subtract: Output gap x t  −r t − E t  t1 − r ∗   E t x t1 t
  • 37. Output in NK Equilibrium • Agg output relation:  0 if P i,t  P j,t for all i, j yt  logp ∗ t  nt  at , logp ∗ t  . ≤0 otherwise • To first order approximation,  ̂t ̂ t−1 p ∗ ≈ p ∗  0   t , → p ∗ ≈ 1 ̄ t
  • 38. Price Setting Equations • Log‐linearly expand the price setting equations  about steady state. 1 1− −1 ̄t − Kt  0 1− 1 ̄ −1 E t  t1 F t1 − Ft  0 Ft 1−   C t exp t N t 1 −  −1 eat ̄  E t  t1 K t1 − K t  0 • Log‐linearly expand about steady state:  1−1−  t  ̄  1  x t   t1 ̄ • See http://faculty.wcas.northwestern.edu/~lchrist/course/solving_handout.pdf
  • 39. Taylor Rule • Policy rule r t  r t−1  1 − rr     t   x x t   u t , , x t ≡ y t − y ∗ t
  • 40. Equations of Actual Equilibrium Closed by Adding Policy Rule  E t  t1  x t −  t  0 (Phillips curve) − r t − E t  t1 − r ∗   E t x t1 − x t  0 (IS equation) t r t−1  1 −    t  1 −  x x t − r t  0 (policy rule) r ∗ − Δa t − 1 1 −  t  0 (definition of natural rate) t 1
  • 41. Solving the Model Δa t  0 Δa t−1 t st    t 0   t−1  t s t  Ps t−1   t  0 0 0  t1 −1  0 0 t 1  1 0 0 x t1 0 −1 − 1 1  xt  0 0 0 0 r t1 1 −   1 −  x −1 0 rt 0 0 0 0 r∗ t1 0 0 0 1 rr ∗ t 0 0 0 0  t−1 0 0 0 0 0 0 0 0 0 x t−1 0 0 0 0 0   s t1  st 0 0  0 r t−1 0 0 0 0 0 0 0 0 0 r∗ t−1 0 0 0 − −  1 −  1 E t  0 z t1   1 z t   2 z t−1   0 s t1   1 s t   0
  • 42. Solving the Model E t  0 z t1   1 z t   2 z t−1   0 s t1   1 s t   0 s t − Ps t−1 −  t  0. • Solution: z t  Az t−1  Bs t • As before:  0 A2   1 A   2 I  0, F   0   0 BP   1   0 A   1 B  0
  • 43.  x  0,    1. 5,   0. 99,   1,   0. 2,   0. 75,   0,   0. 2,   0. 5. Dynamic Response to a Technology Shock inflation output gap nominal rate 0.2 0.15 0.03 0.15 natural nominal rate 0.1 actual nominal rate 0.02 0.1 0.01 0.05 0.05 0 2 4 6 0 2 4 6 0 2 4 6 natural real rate log, technology output 0.2 0.15 1 1.2 natural output 1.15 0.1 actual output 0.5 1.1 0.05 1.05 0 1 0 2 4 6 0 2 4 6 0 2 4 6 employment 0.2 0.15 0.1 natural employment 0.05 actual employment 0 0 5 10
  • 44. Dynamic Response to a Preference Shock inflation output gap nominal rate 0.1 0.25 0.08 0.25 0.2 0.2 natural real rate 0.06 0.15 0.15 actual nominal rate 0.04 0.1 0.1 0.02 0.05 0.05 0 2 4 6 0 2 4 6 0 2 4 6 natural real rate preference shock output 0.25 1 0.2 -0.1 0.15 -0.2 0.5 0.1 -0.3 natural output actual output 0.05 -0.4 0 -0.5 0 2 4 6 0 2 4 6 0 2 4 6 employment -0.1 -0.2 natural employment actual employment -0.3 -0.4 -0.5 0 2 4 6
  • 45. Conclusion of NK Model Analysis • We studied examples in which the Taylor rule  moves the interest rate in the right direction  in response to shocks. • However, the move is not strong enough. Will  consider modifications of the Taylor rule using  Dynare.