SlideShare uma empresa Scribd logo
1 de 57
Baixar para ler offline
Laser	
  sintering	
  
carmelo.demaria@centropiaggio.unipi.it	
  
+	
   Answer	
  19/11/2015	
  
+	
   Answer	
  19/11/2015	
  
+	
   Sintering	
  process	
  
+	
   Sintering	
  process	
  
•  bonding	
  of	
  the	
  metal,	
  ceramic	
  or	
  plas7c	
  powders	
  
together	
  when	
  heated	
  to	
  temperatures	
  in	
  excess	
  of	
  
approximately	
  half	
  the	
  absolute	
  mel@ng	
  
temperature.	
  
•  In	
  the	
  industry,	
  sintering	
  is	
  mainly	
  used	
  for	
  metal	
  
and	
  ceramic	
  parts	
  (Powder	
  Metallurgy).	
  
•  A@er	
  pressing	
  (compac7on)	
  of	
  the	
  powder	
  inside	
  
mold	
  for	
  deforming	
  into	
  high	
  densi7es,	
  while	
  
providing	
  the	
  shape	
  and	
  dimensional	
  control,	
  the	
  
compacted	
  parts	
  are	
  then	
  sintered	
  for	
  achieving	
  
bonding	
  of	
  the	
  powders	
  metallurgically.	
  	
  
+	
   Sintering	
  in	
  addi@ve	
  manufaturing	
  
•  Sintering	
  process	
  used	
  in	
  addi7ve	
  manufacturing	
  
differs	
  from	
  the	
  Powder	
  Metallurgy,	
  such	
  as:	
  
–  Plas7c	
  based	
  powders,	
  in	
  addi7on	
  to	
  metal	
  powders	
  
–  Local	
  sintering,	
  not	
  overall	
  sintering	
  
–  Very	
  short	
  sintering	
  period	
  
•  Laser	
  (heat	
  source)	
  is	
  exposed	
  to	
  sec7ons	
  to	
  be	
  	
  
sintered	
  for	
  a	
  very	
  short	
  7me.	
  Hard	
  to	
  achive	
  an	
  
ideal	
  sintering.	
  
•  In	
  some	
  applica7ons,	
  for	
  achieving	
  the	
  ideal	
  
sintering,	
  the	
  finished	
  parts	
  are	
  heated	
  in	
  a	
  separate	
  
sintering	
  oven.	
  
+	
   Sintering	
  in	
  Metallurgy	
  vs	
  AM	
  	
  
HEAT	
  
PRESSURE	
  
TIME	
  
HEAT	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  (SLS)	
  	
  
•  Invented	
  by	
  Carl	
  Deckard	
  during	
  his	
  PhD.	
  studies	
  in	
  
Texas	
  University	
  in	
  1987.	
  
•  Offers	
  the	
  key	
  advantage	
  of	
  making	
  func7onal	
  parts	
  
in	
  essen7ally	
  final	
  materials.	
  	
  
•  The	
  system	
  is	
  mechanically	
  more	
  complex	
  than	
  
stereolithography	
  and	
  most	
  other	
  technologies.	
  	
  
•  A	
  variety	
  of	
  thermoplas7c	
  materials	
  such	
  as	
  nylon,	
  
glass	
  filled	
  nylon,	
  polyamide	
  and	
  polystyrene	
  are	
  
available.	
  The	
  method	
  has	
  also	
  been	
  extended	
  to	
  
provide	
  direct	
  fabrica7on	
  of	
  metal	
  and	
  ceramic	
  
objects	
  and	
  tools.	
  
+	
   SLS samples
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Selec@ve-­‐Laser-­‐Sintering	
  
Figure	
  20.7	
  	
  Schema7c	
  illustra7on	
  of	
  the	
  selec7ve-­‐laser-­‐sintering	
  process.	
  	
  Source:	
  	
  A@er	
  C.	
  Deckard	
  and	
  P.	
  F.	
  McClure.	
  
Manufacturing,	
  Engineering	
  &	
  Technology,	
  Fi@h	
  Edi7on,	
  by	
  Serope	
  Kalpakjian	
  and	
  Steven	
  R.	
  Schmid.	
  
ISBN	
  0-­‐13-­‐148965-­‐8.	
  ©	
  2006	
  Pearson	
  Educa7on,	
  Inc.,	
  Upper	
  Saddle	
  River,	
  NJ.	
  	
  All	
  rights	
  reserved.	
  
	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
  
Process:	
  
1)	
  Laser	
  beam	
  is	
  traced	
  over	
  
the	
  surface	
  the	
  7ghtly	
  
compacted	
  powder	
  to	
  
selec7vely	
  melt	
  and	
  bond	
  it	
  to	
  
form	
  a	
  layer	
  of	
  the	
  object.	
  
	
  
Selec@ve	
  Laser	
  Sintering	
  	
  
+	
  
Process:	
  
2)	
  Plaeorm	
  is	
  lovered	
  down	
  
one	
  object	
  layer	
  thickness	
  to	
  
accommodate	
  the	
  new	
  layer	
  
of	
  powder	
  
	
  
Selec@ve	
  Laser	
  Sintering	
  	
  
+	
  
Process:	
  
3)	
  A	
  new	
  layer	
  of	
  powder	
  is	
  
coated	
  on	
  the	
  surface	
  of	
  the	
  
build	
  chamber.	
  
Selec@ve	
  Laser	
  Sintering	
  	
  
+	
  
Process:	
  
4)	
  The	
  powder	
  is	
  supplied	
  
from	
  the	
  powder	
  bins	
  to	
  the	
  
recoater.	
  
This	
  process	
  is	
  repeated	
  un7l	
  
the	
  en7re	
  object	
  is	
  
fabricated.	
  
Selec@ve	
  Laser	
  Sintering	
  	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  	
  
•  The	
  fabrica7on	
  chamber	
  is	
  maintained	
  at	
  a	
  
temperature	
  just	
  below	
  the	
  mel7ng	
  point	
  of	
  the	
  
powder	
  	
  
•  Heat	
  from	
  the	
  laser	
  need	
  only	
  elevate	
  the	
  
temperature	
  slightly	
  to	
  cause	
  sintering.	
  This	
  greatly	
  
speeds	
  up	
  the	
  process;	
  
•  No	
  supports	
  are	
  required	
  with	
  this	
  method	
  since	
  
overhangs	
  and	
  undercuts	
  are	
  supported	
  by	
  the	
  solid	
  
powder	
  bed;	
  
•  Surface	
  finishes	
  and	
  accuracy	
  are	
  not	
  quite	
  as	
  good	
  
as	
  with	
  stereolithography,	
  but	
  material	
  proper7es	
  
can	
  be	
  quite	
  close	
  to	
  those	
  of	
  the	
  intrinsic	
  materials	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
+	
   Materials	
  
•  Polymers	
  	
  
–  nylon,	
  ABS,	
  PVC,	
  and	
  polystyrene,	
  	
  
–  nylon/polycarbonate	
  powders	
  are	
  health	
  hazards	
  
(dangerous	
  to	
  breathe).	
  	
  	
  
–  glass-­‐filled	
  or	
  with	
  other	
  fillers	
  
–  metals	
  encapsulated	
  in	
  plas7c.	
  	
  	
  
•  Metals	
  	
  
–  low	
  mel7ng	
  metal	
  alloys	
  of	
  nickel	
  bronze,	
  
steel,	
  7tanium,	
  alloy	
  mixtures,	
  and	
  composites	
  	
  
•  Green	
  sand	
  (for	
  sand	
  cas7ng).	
  
+	
   Plas@c	
  Laser	
  Sintering	
  
•  For	
  direct	
  manufacture	
  of	
  styling	
  models,	
  func7onal	
  
prototypes,	
  pakerns	
  for	
  plaster,	
  investment	
  and	
  vacuum	
  
cas7ng,	
  for	
  end	
  products	
  and	
  spare	
  parts.	
  
• 	
  Volvo	
  Steering	
  Wheel	
  	
  
• 	
  Engine	
  Block	
  Pakern	
  
• 	
  Plaster	
  Invest.	
  Pakern	
  
+	
   Plas@c	
  Laser	
  Sintering	
  
Granulometry	
  
and	
  roundness	
  
+	
   Metal	
  Laser	
  Sintering	
  
•  For	
  direct	
  produc7on	
  of	
  tooling,	
  including	
  for	
  plas7c	
  
injec7on	
  molding,	
  metal	
  die	
  cas7ng,	
  sheet	
  metal	
  forming	
  
as	
  well	
  as	
  metal	
  parts,	
  directly	
  from	
  steel	
  based	
  and	
  other	
  
metal	
  powders.	
  
• 	
  A	
  gear	
  for	
  Volvo	
  Corp.	
  
• 	
  Die	
  Cast	
  Parts	
  (500	
  Al	
  
parts	
  produced)	
  
• 	
  Motor	
  Housing	
  
+	
   Some	
  available	
  metals	
  
+	
   Some	
  available	
  metals	
  
•  Grana	
  molto	
  fine	
  e	
  distribuzione	
  omogenea	
  dei	
  
componen7	
  stechiometrici	
  
•  Rispeko	
  norme	
  ISO	
  e	
  ASTM	
  per	
  la	
  composizione	
  chimica	
  
•  Proprietà	
  meccaniche	
  similie	
  e	
  superiori	
  a	
  prodoo	
  
equivalen7	
  da	
  barra,	
  fusione	
  e	
  forgiatura	
  a	
  freddo	
  (fonte	
  
EOS)	
  
•  Le	
  carakeris7che	
  metallurgiche	
  sono	
  migliori	
  della	
  
fusione	
  a	
  “cera	
  persa”	
  (Investment	
  cas7ng).	
  Infao	
  nella	
  
microfusione	
  laser	
  seleova	
  si	
  arriva	
  a	
  fusione	
  completa	
  
e	
  risolidificazione	
  in	
  tempi	
  brevissimi	
  (frazioni	
  di	
  
secondo)	
  e	
  non	
  si	
  dà	
  tempo	
  al	
  “grano”	
  di	
  accrescere	
  
(cosa	
  che	
  avviene	
  nell’investment	
  cas7ng)	
  
+	
   Some	
  avaliable	
  metals	
  
+	
   Some	
  avaliable	
  metals	
  
+	
   Sand	
  Laser	
  Sintering	
  
•  Laser	
  Sintering	
  System	
  for	
  direct,	
  boxless	
  
manufacture	
  of	
  sand	
  cores	
  and	
  moulds	
  for	
  
metal	
  cas7ng.	
  	
   • V6-­‐24	
  Valve	
  Cylinder	
  
Head.	
  
• 	
  Impeller	
  
• 	
  Steering	
  Block	
  for	
  a	
  car	
  
+	
   DTM	
  Sintersta@on	
  2500	
  
Volume	
  di	
  lavoro	
   380	
  	
  X	
  330	
  x	
  460	
  mm	
  
Laser	
   CO2	
  
Potenza	
   50	
  /	
  100	
  W	
  
Spot	
   0.42	
  mm	
  
Velocità	
  di	
  scansione	
   5000	
  mm/sec	
  
Precisione	
  di	
  posizionamento	
   0.05	
  mm	
  
Spessore	
  layer	
   0.1	
  mm	
  
+	
   	
  METU	
  SYSTEM	
  
General Properties
Plastic Laser Sintering System
X,Y Axes Alternating Scanning
Technical Specifications
Work Envelope:
-X Axis: 340 mm
-Y Axis : 340 mm
-Z Axis : 600 mm
Layer Forming Thickness:
0.15mm +/-0.05 mm
Max Laser Power: 50 W
Z Axis Production Speed: 30 mm / saat
Max Scanning Speed: 5 m/s
n  EOS	
  EOSINT	
  P380	
  Rapid	
  Prototyping	
  System	
  
+	
   Eosint	
  P360	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
Advantages:	
  
•  Cheap	
  and	
  no	
  harmed	
  healthy	
  material,	
  
•  Large	
  selec7on	
  of	
  used	
  materials,	
  
•  Is	
  not	
  needed	
  supported	
  construc7on,	
  
•  Decreasing	
  of	
  destruc7on	
  possibility	
  of	
  
inside	
  stresses.	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
Disadvantages:	
  
•  Roughness	
  surface	
  a@er	
  final	
  modifica7on	
  it	
  
means	
  „stairs“	
  effect,	
  
•  Porosity	
  of	
  components,	
  
•  Different	
  intensity	
  in	
  various	
  parts	
  of	
  generated	
  
components,	
  
•  Material	
  transforma7ons	
  are	
  needing	
  cleaning	
  of	
  
the	
  produc7on	
  device	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
•  Process	
  is	
  wall	
  thickness	
  dependent.	
  (not	
  suitable	
  
for	
  massive	
  parts)	
  
•  Process	
  involving	
  internal	
  stresses	
  in	
  the	
  parts	
  need	
  
addi7onal	
  annealing	
  
•  Process	
  requiring	
  strong	
  supports	
  for	
  parts	
  fasten	
  
during	
  the	
  manufacturing	
  (not	
  only	
  for	
  heat	
  
transfer)	
  
•  Need	
  to	
  use	
  build	
  plates	
  of	
  the	
  same	
  material	
  than	
  
the	
  powder	
  used	
  in	
  the	
  machine	
  (e.g.:	
  more	
  
expensive	
  for	
  7tanium	
  powder)	
  
•  Cuong	
  tool	
  necessary	
  (eg:	
  a	
  saw)	
  in	
  order	
  to	
  release	
  
the	
  parts	
  from	
  the	
  build	
  plate	
  
+	
   Selec@ve	
  Laser	
  Sintering	
  
•  Surface	
  finishing	
  technologies	
  
– Tumbling	
  
– Blas7ng	
  
– Chemical	
  and/or	
  electrochemical	
  polishing	
  
– Abrasive	
  Flow	
  Machining	
  (AFM)	
  
– Thermal	
  Energy	
  Method	
  (TEM)	
  
– Robo7c	
  and	
  CNC	
  polishing	
  
– Laser	
  Polishing	
  /	
  Abla7on	
  
– Electron-­‐beam	
  polishing	
  (EBEST)	
  
+	
   Future	
  trends	
  
•  Increase	
  of	
  working	
  volume	
  with	
  several	
  
laser	
  heads	
  	
  
•  Automa7c	
  recovery	
  of	
  unbounded	
  powder	
  
•  Repea7bility	
  of	
  the	
  process	
  
ELECTRON BEAM MELTING	
  
EBM	
  
+	
   Electron	
  Beam	
  Mel@ng	
  (EBM)	
  
•  Electron	
  Beam	
  Mel7ng	
  (EBM)	
  is	
  a	
  type	
  of	
  rapid	
  
prototyping	
  for	
  metal	
  parts.	
  The	
  technology	
  
manufactures	
  parts	
  by	
  mel7ng	
  metal	
  powder	
  
layer	
  per	
  layer	
  with	
  an	
  electron	
  beam	
  in	
  a	
  high	
  
vacuum.	
  Unlike	
  some	
  metal	
  sintering	
  techniques,	
  
the	
  parts	
  are	
  fully	
  solid,	
  void-­‐free,	
  and	
  extremely	
  
strong.	
  	
  
•  EBM	
  is	
  also	
  referred	
  to	
  as	
  Electron	
  Beam	
  
Machining.	
  
•  High	
  speed	
  electrons	
  .5-­‐.8	
  7mes	
  the	
  speed	
  of	
  light	
  
are	
  bombarded	
  on	
  the	
  surface	
  of	
  the	
  work	
  
material	
  genera7ng	
  enough	
  heat	
  to	
  melt	
  the	
  
surface	
  of	
  the	
  part	
  and	
  cause	
  the	
  material	
  to	
  
locally	
  vaporize.	
  	
  
•  EBM	
  does	
  require	
  a	
  vacuum,	
  meaning	
  that	
  the	
  
workpiece	
  is	
  limited	
  in	
  size	
  to	
  the	
  vacuum	
  used.	
  
The	
  surface	
  finish	
  on	
  the	
  part	
  is	
  much	
  beker	
  than	
  
that	
  of	
  other	
  manufacturing	
  processes.	
  
•  EBM	
  can	
  be	
  used	
  on	
  metals,	
  non-­‐metals,	
  
ceramics,	
  and	
  composites.	
  
+	
   Electron Beam Melting (EBM)
•  Dispensed	
  metal	
  powder	
  in	
  
layers	
  
•  Cross-­‐sec7on	
  molten	
  	
  in	
  a	
  high	
  
vacuum	
  with	
  a	
  focused	
  
electron	
  beam	
  
•  Process	
  repeated	
  un7l	
  part	
  is	
  
completed	
  
•  Stainless	
  steel,	
  Titanium,	
  
Tungsten	
  parts	
  
•  Ideal	
  for	
  medical	
  implants	
  and	
  
injec7on	
  molds	
  
•  S7ll	
  very	
  expensive	
  process	
  
+	
   Examples of EBM
+	
   EMB	
  benefit	
  
•  High	
  produc7vity	
  
•  Suitable	
  for	
  very	
  massive	
  parts	
  
•  No	
  residual	
  internal	
  stress	
  (constant	
  680-­‐720°C	
  build	
  
temperature)	
  
•  Less	
  supports	
  are	
  needed	
  for	
  manufacturing	
  of	
  parts	
  
•  Possibility	
  to	
  stack	
  parts	
  on	
  top	
  of	
  each	
  other	
  (mass	
  
produc7on)	
  
•  Sintered	
  powder	
  =	
  good	
  for	
  thermal	
  conduc7vity	
  =	
  less	
  
supports	
  
•  Process	
  under	
  vacuum	
  (no	
  gaz	
  contamina7ons)	
  
•  Very	
  fine	
  microstructures	
  (Ti6Al4V),	
  very	
  good	
  
mechanical	
  and	
  fa7gue	
  results	
  (Ti6Al4V)	
  
	
  
+	
   EBM	
  drawbacks	
  
•  Powder	
  is	
  sintered	
  -­‐>	
  tricky	
  to	
  remove	
  (e.g.	
  
interior	
  channels)	
  
•  Long	
  dead	
  7me	
  between	
  2	
  produc7ons	
  (8	
  
hours	
  for	
  cooling	
  –	
  A2,	
  A2X,	
  A2XX	
  systems)	
  
•  Tricky	
  to	
  work	
  with	
  fine	
  powder	
  
•  Expensive	
  maintenance	
  contract	
  
+	
   Comparison	
  
Generalities: Metal Additive Manufacturing
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Metallic powder deposited in a
powder bed
• Electron Beam
• Vacuum
• Build temperature: 680-720°C
• Metallic powder deposited in
a powder bed
• Laser Beam
• Argon flow along Ox direction
• Build temperature: 200°C
25.11.13 8© sirris | www.sirris.be | info@sirris.be |
+	
   Comparison	
  Technology comparison – EBM – LBM
LBM EBM
Size (mm) 250 x 250 x 350*¹ 210 x 210 x 350*²
Layer thickness (µm) 30 - 60 50
Min wall thickness (mm) 0.2 0.6
Accuracy (mm) +/- 0.1 +/- 0.3
Build rate (cm³/h) 5 - 20 80
Surface roughness (µm) 5 - 15 20 - 30
Geometry limitations Supports needed
everywhere (thermal,
anchorage)
Less supports but powder
is sintered
Materials Stainless steel, tool steel,
titanium, aluminum,…
Only conductive materials
(Ti6Al4V, CrCo,…)
CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be |
16
*1 SLM Solutions 250HL
*2 Arcam A2
+	
   Comparison	
  
+	
   Comparison	
  
0
2
4
6
8
10
productivity
3D complexity
maximum size
AccuracySurface finish
mech prop -
density
material range
EBM (Arcam)
LBM (SLM Solutions
Technology comparison – EBM – LBM
CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be |
17
*1 SLM Solutions 250HL
*2 Arcam A2
+	
   European	
  Market	
  2011	
  
LASER	
  ENGINEERED	
  NET	
  SHAPING	
  
Lens	
  
+	
   Laser	
  Engineered	
  Net	
  Shaping	
  
+	
   Laser	
  Engineered	
  Net	
  Shaping	
  
•  In development (Sandia Labs, Optomec)
•  Fully Dense Metal parts with good
metallurgical properties
•  Laser melts metal powder
•  Powder delivered coaxially with laser
•  Inert gas protects weld pool
•  Near net shape with some finish
machining
hkp://home.ak.net/~castleisland/sgc.htm	
  	
  
+	
   Laser	
  Engineered	
  Net	
  Shaping	
  
•  In	
  addi7on	
  to	
  7tanium,	
  a	
  variety	
  of	
  materials	
  can	
  be	
  
used	
  such	
  as	
  stainless	
  steel,	
  copper,	
  aluminum	
  etc.	
  
•  Materials	
  composi7on	
  can	
  be	
  changed	
  dynamically	
  
and	
  con7nuously,	
  leading	
  to	
  objects	
  with	
  proper7es	
  
that	
  might	
  be	
  mutually	
  exclusive	
  using	
  classical	
  
fabrica7on	
  methods.	
  
•  Has	
  the	
  ability	
  to	
  fabricate	
  fully-­‐dense	
  metal	
  parts	
  
with	
  good	
  metallurgical	
  proper7es	
  at	
  reasonable	
  
speeds;	
  
•  Objects	
  fabricated	
  are	
  near	
  net	
  shape,	
  but	
  generally	
  
will	
  require	
  finish	
  machining.	
  
+	
  
Before	
  and	
  a@er	
  finish	
  machining	
  
Laser	
  Engineered	
  Net	
  Shaping	
  
+	
  
	
  	
  	
  120x120x120	
  cm	
  LENS	
  Machine	
  
Laser	
  Engineered	
  Net	
  Shaping	
  
+	
   LENS	
  (Other	
  names)	
  
Copyright TWI Ltd and Lloyd's Register Group Services Ltd 2015rvices Ltd 2015
ring technology
n
(SLM)
Nozzle powder delivery
Laser Metal Deposition (LMD)
Capability	
  of	
  in	
  situ	
  repair	
  

Mais conteúdo relacionado

Mais procurados

selective laser machining in additive manufacturing
selective laser machining in additive manufacturingselective laser machining in additive manufacturing
selective laser machining in additive manufacturingSashi Kumar Nandyala
 
Rapid prototyping
Rapid prototypingRapid prototyping
Rapid prototypingWael_helal
 
Stereolithography latest
Stereolithography latestStereolithography latest
Stereolithography latestyuvarajeil
 
Laminated object manufacturing
Laminated object manufacturing Laminated object manufacturing
Laminated object manufacturing MANI SINGH
 
Additive MANAUFACTURING
Additive MANAUFACTURINGAdditive MANAUFACTURING
Additive MANAUFACTURINGDaniel raj
 
RAPID TOOLING.pptx
RAPID TOOLING.pptxRAPID TOOLING.pptx
RAPID TOOLING.pptxmktuty
 
selective laser sintering;a rapid prototyping technology
selective laser sintering;a rapid prototyping technologyselective laser sintering;a rapid prototyping technology
selective laser sintering;a rapid prototyping technologySuraj Samota
 
Additive manufacturing file formats or 3D file formats
Additive manufacturing file formats or 3D file formatsAdditive manufacturing file formats or 3D file formats
Additive manufacturing file formats or 3D file formatsAmolGilorkar
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing processaman1312
 
Additive Manufacturing
Additive ManufacturingAdditive Manufacturing
Additive ManufacturingSourabh Sonker
 
Part Orientation & Support Structures
Part Orientation & Support StructuresPart Orientation & Support Structures
Part Orientation & Support StructuresNirmalRaja3
 
SHAPE DEPOSITION MANUFACTURING
SHAPE DEPOSITION MANUFACTURINGSHAPE DEPOSITION MANUFACTURING
SHAPE DEPOSITION MANUFACTURINGShivanand Vanjire
 

Mais procurados (20)

Additive manufacturing ppt
Additive manufacturing pptAdditive manufacturing ppt
Additive manufacturing ppt
 
Selective laser sintering
Selective laser sinteringSelective laser sintering
Selective laser sintering
 
selective laser machining in additive manufacturing
selective laser machining in additive manufacturingselective laser machining in additive manufacturing
selective laser machining in additive manufacturing
 
FUSED DEPOSITION MODELING
FUSED DEPOSITION MODELINGFUSED DEPOSITION MODELING
FUSED DEPOSITION MODELING
 
Rapid prototyping
Rapid prototypingRapid prototyping
Rapid prototyping
 
Stereolithography latest
Stereolithography latestStereolithography latest
Stereolithography latest
 
Additive manufacturing
Additive manufacturingAdditive manufacturing
Additive manufacturing
 
Poly jet ppt
Poly jet pptPoly jet ppt
Poly jet ppt
 
additive manufacturing
additive manufacturingadditive manufacturing
additive manufacturing
 
Laminated object manufacturing
Laminated object manufacturing Laminated object manufacturing
Laminated object manufacturing
 
Additive MANAUFACTURING
Additive MANAUFACTURINGAdditive MANAUFACTURING
Additive MANAUFACTURING
 
Rapid tooling (rt)
Rapid tooling (rt)Rapid tooling (rt)
Rapid tooling (rt)
 
RAPID TOOLING.pptx
RAPID TOOLING.pptxRAPID TOOLING.pptx
RAPID TOOLING.pptx
 
selective laser sintering;a rapid prototyping technology
selective laser sintering;a rapid prototyping technologyselective laser sintering;a rapid prototyping technology
selective laser sintering;a rapid prototyping technology
 
Additive manufacturing file formats or 3D file formats
Additive manufacturing file formats or 3D file formatsAdditive manufacturing file formats or 3D file formats
Additive manufacturing file formats or 3D file formats
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing process
 
Additive Manufacturing
Additive ManufacturingAdditive Manufacturing
Additive Manufacturing
 
Part Orientation & Support Structures
Part Orientation & Support StructuresPart Orientation & Support Structures
Part Orientation & Support Structures
 
SHAPE DEPOSITION MANUFACTURING
SHAPE DEPOSITION MANUFACTURINGSHAPE DEPOSITION MANUFACTURING
SHAPE DEPOSITION MANUFACTURING
 
Rapid Prototyping
Rapid PrototypingRapid Prototyping
Rapid Prototyping
 

Destaque

1sirrisstateoftheartengel-140519033927-phpapp01
1sirrisstateoftheartengel-140519033927-phpapp011sirrisstateoftheartengel-140519033927-phpapp01
1sirrisstateoftheartengel-140519033927-phpapp01Carsten Engel
 
Working with metals in 3D printing
Working with metals in 3D printingWorking with metals in 3D printing
Working with metals in 3D printingDesign World
 
SINTERFLEX - Carbon Control in PM Sintering
SINTERFLEX - Carbon Control in PM SinteringSINTERFLEX - Carbon Control in PM Sintering
SINTERFLEX - Carbon Control in PM SinteringAkin Malas
 
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...Sirris
 
RP Machine & Materials
RP Machine & MaterialsRP Machine & Materials
RP Machine & MaterialsRichard Jones
 
Inside3 d printing_chuckalexander
Inside3 d printing_chuckalexanderInside3 d printing_chuckalexander
Inside3 d printing_chuckalexanderMediabistro
 
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...Machine Tool Systems Inc.
 
CastForm PS Plastic - SLS Systems - Material properties (EN)
CastForm PS Plastic - SLS Systems - Material properties (EN)CastForm PS Plastic - SLS Systems - Material properties (EN)
CastForm PS Plastic - SLS Systems - Material properties (EN)Quoc Tuan Duong, ing.
 
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...Machine Tool Systems Inc.
 
Bell Helicopter makes production grade flight certified hardware via Selectiv...
Bell Helicopter makes production grade flight certified hardware via Selectiv...Bell Helicopter makes production grade flight certified hardware via Selectiv...
Bell Helicopter makes production grade flight certified hardware via Selectiv...Machine Tool Systems Inc.
 
SLS Design Guide for Quickparts 3D printing services (EN)
SLS Design Guide for Quickparts 3D printing services (EN)SLS Design Guide for Quickparts 3D printing services (EN)
SLS Design Guide for Quickparts 3D printing services (EN)Quoc Tuan Duong, ing.
 
Laser Sintering (UID - K10805 CPU KOTA)
Laser Sintering (UID - K10805 CPU KOTA)Laser Sintering (UID - K10805 CPU KOTA)
Laser Sintering (UID - K10805 CPU KOTA)jagjeetsingh123456789
 
prakash agrawal rapid tooling presentation
prakash agrawal   rapid tooling presentationprakash agrawal   rapid tooling presentation
prakash agrawal rapid tooling presentationAkash Maurya
 
Laser sintering(vishnu sharma)
Laser sintering(vishnu sharma)Laser sintering(vishnu sharma)
Laser sintering(vishnu sharma)vishnucool
 
Aerial refueling
Aerial refuelingAerial refueling
Aerial refuelinghindujudaic
 
lecture-solid state sintering
lecture-solid state sinteringlecture-solid state sintering
lecture-solid state sinteringashking235
 

Destaque (19)

1sirrisstateoftheartengel-140519033927-phpapp01
1sirrisstateoftheartengel-140519033927-phpapp011sirrisstateoftheartengel-140519033927-phpapp01
1sirrisstateoftheartengel-140519033927-phpapp01
 
Working with metals in 3D printing
Working with metals in 3D printingWorking with metals in 3D printing
Working with metals in 3D printing
 
Spray metal tooling
Spray metal toolingSpray metal tooling
Spray metal tooling
 
SINTERFLEX - Carbon Control in PM Sintering
SINTERFLEX - Carbon Control in PM SinteringSINTERFLEX - Carbon Control in PM Sintering
SINTERFLEX - Carbon Control in PM Sintering
 
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...
Sirris_am in aviation and aerospace_arcam additive manufacturing with ebm - t...
 
micro laser sintering
micro laser sinteringmicro laser sintering
micro laser sintering
 
RP Machine & Materials
RP Machine & MaterialsRP Machine & Materials
RP Machine & Materials
 
Inside3 d printing_chuckalexander
Inside3 d printing_chuckalexanderInside3 d printing_chuckalexander
Inside3 d printing_chuckalexander
 
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...
Cranial Implant manufactured with Laser Sintering using EOS Additive Manufact...
 
CastForm PS Plastic - SLS Systems - Material properties (EN)
CastForm PS Plastic - SLS Systems - Material properties (EN)CastForm PS Plastic - SLS Systems - Material properties (EN)
CastForm PS Plastic - SLS Systems - Material properties (EN)
 
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...
EADS Innovation Works Aerospace Brackets - Direct Metal Laser Sintering with ...
 
Bell Helicopter makes production grade flight certified hardware via Selectiv...
Bell Helicopter makes production grade flight certified hardware via Selectiv...Bell Helicopter makes production grade flight certified hardware via Selectiv...
Bell Helicopter makes production grade flight certified hardware via Selectiv...
 
SLS Design Guide for Quickparts 3D printing services (EN)
SLS Design Guide for Quickparts 3D printing services (EN)SLS Design Guide for Quickparts 3D printing services (EN)
SLS Design Guide for Quickparts 3D printing services (EN)
 
Laser Sintering (UID - K10805 CPU KOTA)
Laser Sintering (UID - K10805 CPU KOTA)Laser Sintering (UID - K10805 CPU KOTA)
Laser Sintering (UID - K10805 CPU KOTA)
 
2015 10-07 - additive manufacturing intro
2015 10-07 - additive manufacturing intro2015 10-07 - additive manufacturing intro
2015 10-07 - additive manufacturing intro
 
prakash agrawal rapid tooling presentation
prakash agrawal   rapid tooling presentationprakash agrawal   rapid tooling presentation
prakash agrawal rapid tooling presentation
 
Laser sintering(vishnu sharma)
Laser sintering(vishnu sharma)Laser sintering(vishnu sharma)
Laser sintering(vishnu sharma)
 
Aerial refueling
Aerial refuelingAerial refueling
Aerial refueling
 
lecture-solid state sintering
lecture-solid state sinteringlecture-solid state sintering
lecture-solid state sintering
 

Semelhante a 2015 11-26 - sls, ebm, lens

Electron Beam Melting.pptx
 Electron Beam Melting.pptx Electron Beam Melting.pptx
Electron Beam Melting.pptxMONEERTHAMEER
 
SELECTIVE LASER SINTERING
SELECTIVE LASER SINTERINGSELECTIVE LASER SINTERING
SELECTIVE LASER SINTERINGJagannath12345
 
Laser cladding
Laser claddingLaser cladding
Laser claddingMLNBhargav
 
Rapid prototyping( additive manufacturing)
Rapid prototyping( additive manufacturing)Rapid prototyping( additive manufacturing)
Rapid prototyping( additive manufacturing)ROLWYN CARDOZA
 
2014 California State Research Symposium Presentation
2014 California State Research Symposium Presentation 2014 California State Research Symposium Presentation
2014 California State Research Symposium Presentation Sumedha Weerasuriya
 
Semi solid metal forming
Semi solid metal formingSemi solid metal forming
Semi solid metal formingsundar sivam
 
Surface Treatment, Coating, Cleaning
Surface Treatment, Coating, CleaningSurface Treatment, Coating, Cleaning
Surface Treatment, Coating, CleaningAkanksha Mishra
 
Class29 nontraditional+machining
Class29 nontraditional+machiningClass29 nontraditional+machining
Class29 nontraditional+machiningglmech61
 
Die material upload.pptx
Die material upload.pptxDie material upload.pptx
Die material upload.pptxNaomi Singh
 
Lecture # 02 Rapid Prototyping Techniques
Lecture # 02 Rapid Prototyping TechniquesLecture # 02 Rapid Prototyping Techniques
Lecture # 02 Rapid Prototyping TechniquesSolomon Tekeste
 
Cad cam in prosthodontics
Cad cam in prosthodontics Cad cam in prosthodontics
Cad cam in prosthodontics AniketShinde102
 
CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14SME_Engagement
 
What do you know about the eight additive manufacturing processes?
What do you know about the eight additive manufacturing processes?What do you know about the eight additive manufacturing processes?
What do you know about the eight additive manufacturing processes?Design World
 

Semelhante a 2015 11-26 - sls, ebm, lens (20)

Electron Beam Melting.pptx
 Electron Beam Melting.pptx Electron Beam Melting.pptx
Electron Beam Melting.pptx
 
SELECTIVE LASER SINTERING
SELECTIVE LASER SINTERINGSELECTIVE LASER SINTERING
SELECTIVE LASER SINTERING
 
Laser cladding
Laser claddingLaser cladding
Laser cladding
 
Tyndall LDS.pptx
Tyndall LDS.pptxTyndall LDS.pptx
Tyndall LDS.pptx
 
Rapid prototyping( additive manufacturing)
Rapid prototyping( additive manufacturing)Rapid prototyping( additive manufacturing)
Rapid prototyping( additive manufacturing)
 
2014 California State Research Symposium Presentation
2014 California State Research Symposium Presentation 2014 California State Research Symposium Presentation
2014 California State Research Symposium Presentation
 
Semi solid metal forming
Semi solid metal formingSemi solid metal forming
Semi solid metal forming
 
Recent advances in Metal Forming process
Recent advances in Metal Forming processRecent advances in Metal Forming process
Recent advances in Metal Forming process
 
Surface Treatment, Coating, Cleaning
Surface Treatment, Coating, CleaningSurface Treatment, Coating, Cleaning
Surface Treatment, Coating, Cleaning
 
Class29 nontraditional+machining
Class29 nontraditional+machiningClass29 nontraditional+machining
Class29 nontraditional+machining
 
Die material upload.pptx
Die material upload.pptxDie material upload.pptx
Die material upload.pptx
 
AM Module 2 pdf.pdf
AM Module 2 pdf.pdfAM Module 2 pdf.pdf
AM Module 2 pdf.pdf
 
Lecture # 02 Rapid Prototyping Techniques
Lecture # 02 Rapid Prototyping TechniquesLecture # 02 Rapid Prototyping Techniques
Lecture # 02 Rapid Prototyping Techniques
 
Intro --ucm 2
Intro --ucm 2Intro --ucm 2
Intro --ucm 2
 
Laser cladding
Laser claddingLaser cladding
Laser cladding
 
Cad cam in prosthodontics
Cad cam in prosthodontics Cad cam in prosthodontics
Cad cam in prosthodontics
 
Laser and laser cladding
Laser and laser claddingLaser and laser cladding
Laser and laser cladding
 
CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14
 
class29_nontraditional+machining.ppt
class29_nontraditional+machining.pptclass29_nontraditional+machining.ppt
class29_nontraditional+machining.ppt
 
What do you know about the eight additive manufacturing processes?
What do you know about the eight additive manufacturing processes?What do you know about the eight additive manufacturing processes?
What do you know about the eight additive manufacturing processes?
 

Mais de Biofabrication Group at University of Pisa (7)

2015 12-02 - stereolithography
2015 12-02 - stereolithography2015 12-02 - stereolithography
2015 12-02 - stereolithography
 
2015 11-12 - inkjet printing part2
2015 11-12 - inkjet printing part22015 11-12 - inkjet printing part2
2015 11-12 - inkjet printing part2
 
2015 11-11 - inkjet printing part1
2015 11-11 - inkjet printing part12015 11-11 - inkjet printing part1
2015 11-11 - inkjet printing part1
 
2015 10-22 - case study - open source fdm
2015 10-22 - case study - open source fdm2015 10-22 - case study - open source fdm
2015 10-22 - case study - open source fdm
 
2015 10-15 - fused deposition modelling
2015 10-15 - fused deposition modelling2015 10-15 - fused deposition modelling
2015 10-15 - fused deposition modelling
 
2015 10-07 - additive manufacturing software 2
2015 10-07 - additive manufacturing software 22015 10-07 - additive manufacturing software 2
2015 10-07 - additive manufacturing software 2
 
2015 10-08 - additive manufacturing software 1
2015 10-08 - additive manufacturing software  12015 10-08 - additive manufacturing software  1
2015 10-08 - additive manufacturing software 1
 

Último

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 

Último (20)

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

2015 11-26 - sls, ebm, lens

  • 2. +   Answer  19/11/2015  
  • 3. +   Answer  19/11/2015  
  • 4. +   Sintering  process  
  • 5. +   Sintering  process   •  bonding  of  the  metal,  ceramic  or  plas7c  powders   together  when  heated  to  temperatures  in  excess  of   approximately  half  the  absolute  mel@ng   temperature.   •  In  the  industry,  sintering  is  mainly  used  for  metal   and  ceramic  parts  (Powder  Metallurgy).   •  A@er  pressing  (compac7on)  of  the  powder  inside   mold  for  deforming  into  high  densi7es,  while   providing  the  shape  and  dimensional  control,  the   compacted  parts  are  then  sintered  for  achieving   bonding  of  the  powders  metallurgically.    
  • 6. +   Sintering  in  addi@ve  manufaturing   •  Sintering  process  used  in  addi7ve  manufacturing   differs  from  the  Powder  Metallurgy,  such  as:   –  Plas7c  based  powders,  in  addi7on  to  metal  powders   –  Local  sintering,  not  overall  sintering   –  Very  short  sintering  period   •  Laser  (heat  source)  is  exposed  to  sec7ons  to  be     sintered  for  a  very  short  7me.  Hard  to  achive  an   ideal  sintering.   •  In  some  applica7ons,  for  achieving  the  ideal   sintering,  the  finished  parts  are  heated  in  a  separate   sintering  oven.  
  • 7. +   Sintering  in  Metallurgy  vs  AM     HEAT   PRESSURE   TIME   HEAT  
  • 8. +   Selec@ve  Laser  Sintering  (SLS)     •  Invented  by  Carl  Deckard  during  his  PhD.  studies  in   Texas  University  in  1987.   •  Offers  the  key  advantage  of  making  func7onal  parts   in  essen7ally  final  materials.     •  The  system  is  mechanically  more  complex  than   stereolithography  and  most  other  technologies.     •  A  variety  of  thermoplas7c  materials  such  as  nylon,   glass  filled  nylon,  polyamide  and  polystyrene  are   available.  The  method  has  also  been  extended  to   provide  direct  fabrica7on  of  metal  and  ceramic   objects  and  tools.  
  • 9. +   SLS samples
  • 10. +   Selec@ve  Laser  Sintering  
  • 11. +   Selec@ve-­‐Laser-­‐Sintering   Figure  20.7    Schema7c  illustra7on  of  the  selec7ve-­‐laser-­‐sintering  process.    Source:    A@er  C.  Deckard  and  P.  F.  McClure.   Manufacturing,  Engineering  &  Technology,  Fi@h  Edi7on,  by  Serope  Kalpakjian  and  Steven  R.  Schmid.   ISBN  0-­‐13-­‐148965-­‐8.  ©  2006  Pearson  Educa7on,  Inc.,  Upper  Saddle  River,  NJ.    All  rights  reserved.    
  • 12. +   Selec@ve  Laser  Sintering  
  • 13. +   Selec@ve  Laser  Sintering  
  • 14. +   Selec@ve  Laser  Sintering  
  • 15. +   Process:   1)  Laser  beam  is  traced  over   the  surface  the  7ghtly   compacted  powder  to   selec7vely  melt  and  bond  it  to   form  a  layer  of  the  object.     Selec@ve  Laser  Sintering    
  • 16. +   Process:   2)  Plaeorm  is  lovered  down   one  object  layer  thickness  to   accommodate  the  new  layer   of  powder     Selec@ve  Laser  Sintering    
  • 17. +   Process:   3)  A  new  layer  of  powder  is   coated  on  the  surface  of  the   build  chamber.   Selec@ve  Laser  Sintering    
  • 18. +   Process:   4)  The  powder  is  supplied   from  the  powder  bins  to  the   recoater.   This  process  is  repeated  un7l   the  en7re  object  is   fabricated.   Selec@ve  Laser  Sintering    
  • 19. +   Selec@ve  Laser  Sintering     •  The  fabrica7on  chamber  is  maintained  at  a   temperature  just  below  the  mel7ng  point  of  the   powder     •  Heat  from  the  laser  need  only  elevate  the   temperature  slightly  to  cause  sintering.  This  greatly   speeds  up  the  process;   •  No  supports  are  required  with  this  method  since   overhangs  and  undercuts  are  supported  by  the  solid   powder  bed;   •  Surface  finishes  and  accuracy  are  not  quite  as  good   as  with  stereolithography,  but  material  proper7es   can  be  quite  close  to  those  of  the  intrinsic  materials  
  • 20. +   Selec@ve  Laser  Sintering  
  • 21. +   Selec@ve  Laser  Sintering  
  • 22. +   Selec@ve  Laser  Sintering  
  • 23. +   Materials   •  Polymers     –  nylon,  ABS,  PVC,  and  polystyrene,     –  nylon/polycarbonate  powders  are  health  hazards   (dangerous  to  breathe).       –  glass-­‐filled  or  with  other  fillers   –  metals  encapsulated  in  plas7c.       •  Metals     –  low  mel7ng  metal  alloys  of  nickel  bronze,   steel,  7tanium,  alloy  mixtures,  and  composites     •  Green  sand  (for  sand  cas7ng).  
  • 24. +   Plas@c  Laser  Sintering   •  For  direct  manufacture  of  styling  models,  func7onal   prototypes,  pakerns  for  plaster,  investment  and  vacuum   cas7ng,  for  end  products  and  spare  parts.   •   Volvo  Steering  Wheel     •   Engine  Block  Pakern   •   Plaster  Invest.  Pakern  
  • 25. +   Plas@c  Laser  Sintering   Granulometry   and  roundness  
  • 26. +   Metal  Laser  Sintering   •  For  direct  produc7on  of  tooling,  including  for  plas7c   injec7on  molding,  metal  die  cas7ng,  sheet  metal  forming   as  well  as  metal  parts,  directly  from  steel  based  and  other   metal  powders.   •   A  gear  for  Volvo  Corp.   •   Die  Cast  Parts  (500  Al   parts  produced)   •   Motor  Housing  
  • 27. +   Some  available  metals  
  • 28. +   Some  available  metals   •  Grana  molto  fine  e  distribuzione  omogenea  dei   componen7  stechiometrici   •  Rispeko  norme  ISO  e  ASTM  per  la  composizione  chimica   •  Proprietà  meccaniche  similie  e  superiori  a  prodoo   equivalen7  da  barra,  fusione  e  forgiatura  a  freddo  (fonte   EOS)   •  Le  carakeris7che  metallurgiche  sono  migliori  della   fusione  a  “cera  persa”  (Investment  cas7ng).  Infao  nella   microfusione  laser  seleova  si  arriva  a  fusione  completa   e  risolidificazione  in  tempi  brevissimi  (frazioni  di   secondo)  e  non  si  dà  tempo  al  “grano”  di  accrescere   (cosa  che  avviene  nell’investment  cas7ng)  
  • 29. +   Some  avaliable  metals  
  • 30. +   Some  avaliable  metals  
  • 31. +   Sand  Laser  Sintering   •  Laser  Sintering  System  for  direct,  boxless   manufacture  of  sand  cores  and  moulds  for   metal  cas7ng.     • V6-­‐24  Valve  Cylinder   Head.   •   Impeller   •   Steering  Block  for  a  car  
  • 32. +   DTM  Sintersta@on  2500   Volume  di  lavoro   380    X  330  x  460  mm   Laser   CO2   Potenza   50  /  100  W   Spot   0.42  mm   Velocità  di  scansione   5000  mm/sec   Precisione  di  posizionamento   0.05  mm   Spessore  layer   0.1  mm  
  • 33. +    METU  SYSTEM   General Properties Plastic Laser Sintering System X,Y Axes Alternating Scanning Technical Specifications Work Envelope: -X Axis: 340 mm -Y Axis : 340 mm -Z Axis : 600 mm Layer Forming Thickness: 0.15mm +/-0.05 mm Max Laser Power: 50 W Z Axis Production Speed: 30 mm / saat Max Scanning Speed: 5 m/s n  EOS  EOSINT  P380  Rapid  Prototyping  System  
  • 34. +   Eosint  P360  
  • 35. +   Selec@ve  Laser  Sintering   Advantages:   •  Cheap  and  no  harmed  healthy  material,   •  Large  selec7on  of  used  materials,   •  Is  not  needed  supported  construc7on,   •  Decreasing  of  destruc7on  possibility  of   inside  stresses.  
  • 36. +   Selec@ve  Laser  Sintering   Disadvantages:   •  Roughness  surface  a@er  final  modifica7on  it   means  „stairs“  effect,   •  Porosity  of  components,   •  Different  intensity  in  various  parts  of  generated   components,   •  Material  transforma7ons  are  needing  cleaning  of   the  produc7on  device  
  • 37. +   Selec@ve  Laser  Sintering   •  Process  is  wall  thickness  dependent.  (not  suitable   for  massive  parts)   •  Process  involving  internal  stresses  in  the  parts  need   addi7onal  annealing   •  Process  requiring  strong  supports  for  parts  fasten   during  the  manufacturing  (not  only  for  heat   transfer)   •  Need  to  use  build  plates  of  the  same  material  than   the  powder  used  in  the  machine  (e.g.:  more   expensive  for  7tanium  powder)   •  Cuong  tool  necessary  (eg:  a  saw)  in  order  to  release   the  parts  from  the  build  plate  
  • 38. +   Selec@ve  Laser  Sintering   •  Surface  finishing  technologies   – Tumbling   – Blas7ng   – Chemical  and/or  electrochemical  polishing   – Abrasive  Flow  Machining  (AFM)   – Thermal  Energy  Method  (TEM)   – Robo7c  and  CNC  polishing   – Laser  Polishing  /  Abla7on   – Electron-­‐beam  polishing  (EBEST)  
  • 39. +   Future  trends   •  Increase  of  working  volume  with  several   laser  heads     •  Automa7c  recovery  of  unbounded  powder   •  Repea7bility  of  the  process  
  • 41. +   Electron  Beam  Mel@ng  (EBM)   •  Electron  Beam  Mel7ng  (EBM)  is  a  type  of  rapid   prototyping  for  metal  parts.  The  technology   manufactures  parts  by  mel7ng  metal  powder   layer  per  layer  with  an  electron  beam  in  a  high   vacuum.  Unlike  some  metal  sintering  techniques,   the  parts  are  fully  solid,  void-­‐free,  and  extremely   strong.     •  EBM  is  also  referred  to  as  Electron  Beam   Machining.   •  High  speed  electrons  .5-­‐.8  7mes  the  speed  of  light   are  bombarded  on  the  surface  of  the  work   material  genera7ng  enough  heat  to  melt  the   surface  of  the  part  and  cause  the  material  to   locally  vaporize.     •  EBM  does  require  a  vacuum,  meaning  that  the   workpiece  is  limited  in  size  to  the  vacuum  used.   The  surface  finish  on  the  part  is  much  beker  than   that  of  other  manufacturing  processes.   •  EBM  can  be  used  on  metals,  non-­‐metals,   ceramics,  and  composites.  
  • 42. +   Electron Beam Melting (EBM) •  Dispensed  metal  powder  in   layers   •  Cross-­‐sec7on  molten    in  a  high   vacuum  with  a  focused   electron  beam   •  Process  repeated  un7l  part  is   completed   •  Stainless  steel,  Titanium,   Tungsten  parts   •  Ideal  for  medical  implants  and   injec7on  molds   •  S7ll  very  expensive  process  
  • 43. +   Examples of EBM
  • 44. +   EMB  benefit   •  High  produc7vity   •  Suitable  for  very  massive  parts   •  No  residual  internal  stress  (constant  680-­‐720°C  build   temperature)   •  Less  supports  are  needed  for  manufacturing  of  parts   •  Possibility  to  stack  parts  on  top  of  each  other  (mass   produc7on)   •  Sintered  powder  =  good  for  thermal  conduc7vity  =  less   supports   •  Process  under  vacuum  (no  gaz  contamina7ons)   •  Very  fine  microstructures  (Ti6Al4V),  very  good   mechanical  and  fa7gue  results  (Ti6Al4V)    
  • 45. +   EBM  drawbacks   •  Powder  is  sintered  -­‐>  tricky  to  remove  (e.g.   interior  channels)   •  Long  dead  7me  between  2  produc7ons  (8   hours  for  cooling  –  A2,  A2X,  A2XX  systems)   •  Tricky  to  work  with  fine  powder   •  Expensive  maintenance  contract  
  • 46. +   Comparison   Generalities: Metal Additive Manufacturing Electron Beam Melting (EBM) Laser Beam Melting (LBM) • Metallic powder deposited in a powder bed • Electron Beam • Vacuum • Build temperature: 680-720°C • Metallic powder deposited in a powder bed • Laser Beam • Argon flow along Ox direction • Build temperature: 200°C 25.11.13 8© sirris | www.sirris.be | info@sirris.be |
  • 47. +   Comparison  Technology comparison – EBM – LBM LBM EBM Size (mm) 250 x 250 x 350*¹ 210 x 210 x 350*² Layer thickness (µm) 30 - 60 50 Min wall thickness (mm) 0.2 0.6 Accuracy (mm) +/- 0.1 +/- 0.3 Build rate (cm³/h) 5 - 20 80 Surface roughness (µm) 5 - 15 20 - 30 Geometry limitations Supports needed everywhere (thermal, anchorage) Less supports but powder is sintered Materials Stainless steel, tool steel, titanium, aluminum,… Only conductive materials (Ti6Al4V, CrCo,…) CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be | 16 *1 SLM Solutions 250HL *2 Arcam A2
  • 49. +   Comparison   0 2 4 6 8 10 productivity 3D complexity maximum size AccuracySurface finish mech prop - density material range EBM (Arcam) LBM (SLM Solutions Technology comparison – EBM – LBM CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be | 17 *1 SLM Solutions 250HL *2 Arcam A2
  • 50. +   European  Market  2011  
  • 51. LASER  ENGINEERED  NET  SHAPING   Lens  
  • 52. +   Laser  Engineered  Net  Shaping  
  • 53. +   Laser  Engineered  Net  Shaping   •  In development (Sandia Labs, Optomec) •  Fully Dense Metal parts with good metallurgical properties •  Laser melts metal powder •  Powder delivered coaxially with laser •  Inert gas protects weld pool •  Near net shape with some finish machining hkp://home.ak.net/~castleisland/sgc.htm    
  • 54. +   Laser  Engineered  Net  Shaping   •  In  addi7on  to  7tanium,  a  variety  of  materials  can  be   used  such  as  stainless  steel,  copper,  aluminum  etc.   •  Materials  composi7on  can  be  changed  dynamically   and  con7nuously,  leading  to  objects  with  proper7es   that  might  be  mutually  exclusive  using  classical   fabrica7on  methods.   •  Has  the  ability  to  fabricate  fully-­‐dense  metal  parts   with  good  metallurgical  proper7es  at  reasonable   speeds;   •  Objects  fabricated  are  near  net  shape,  but  generally   will  require  finish  machining.  
  • 55. +   Before  and  a@er  finish  machining   Laser  Engineered  Net  Shaping  
  • 56. +        120x120x120  cm  LENS  Machine   Laser  Engineered  Net  Shaping  
  • 57. +   LENS  (Other  names)   Copyright TWI Ltd and Lloyd's Register Group Services Ltd 2015rvices Ltd 2015 ring technology n (SLM) Nozzle powder delivery Laser Metal Deposition (LMD) Capability  of  in  situ  repair