SlideShare uma empresa Scribd logo
1 de 26
Multiplexing
Introduction
The long-haul circuit-switching telecommunications network was
originally designed to handle voice traffic
A key characteristic of circuit-switching networks is that resources
within the network are dedicated to a particular call. For voice
connections, resulting circuit will enjoy a high percentage of
utilization.
However, as the circuit-switching network began to be used
increasingly for data connections, two shortcomings became
apparent:
 In a typical user host data connection (e.g., personal computer user
logged on to a database server), much of the time the line is idle. Thus,
with data connections, a circuit-switching approach is inefficient.
 In a circuit-switching network, the connection provides for transmission
at constant data rate. Thus, each of the two devices that are connected
must transmit and receive at the same data rate as the other; this limits
the utility of the network in interconnecting a variety of host computers
and terminals.
Solving the problem
To understand how packet switching addresses these
problems, let us briefly summarize packet-switching
operation.
Data are transmitted in short packets. A typical upper
bound on packet length is 1000 octets (bytes).
 If a source has a longer message to send, the message
is broken up into a series of packets
Each packet contains a portion of the user's data plus
some control information.
The control information, at a minimum, includes the
information that the network requires in order to be able
to route the packet through the network
At each node en route, the packet is received, stored
briefly, and passed on to the next node.
The Approach
This approach has a number of advantages over circuit
switching:
Line efficiency is greater, as a single node-to-node link
can be dynamically shared by many packets over time.
The packets are queued up and transmitted as rapidly as
possible over the link.
By contrast, with circuit switching, time on a node-to-
node link is pre-allocated using synchronous TDM.
Much of the time, link may be idle because a portion of
its time is dedicated to a connection which is idle.
Packet-switch network can perform data-rate conversion.
Two stations of different data rates can exchange
packets because each connects to its node at its proper
data rate.
The Approach II
When traffic becomes heavy on a circuit-switching
network, the network refuses to accept additional
connection requests (Blocked) Until load decreases.
On a packet-switching network, packets are still
accepted, but delivery delay increases.
Priorities can be used.
It can transmit the higher-priority packets first. These
packets will therefore experience less delay than
lower-priority packets.
Switching Technique
 A station has a message to send through a packet-switching
network that is of length greater than the maximum packet
size.
 It therefore breaks the message up into packets and sends
these packets, one at a time, to the network.
 A question arises as to how the network will handle this stream
of packets as it attempts to route them through the network
and deliver them to the intended destination
 There are two approaches that are used in contemporary
networks:
 datagram &
 Virtual circuit
Datagram approach
Each packet is treated independently, with no reference to packets
that have gone before.
Some implication of this approach.
When the data is sent over the network it might be possible that the
data packets if broken take different route to its destination
They totally dependent upon the forwarding node for routing the
packets
Possibly the data packet which was last may reach the destination
first.
It is possible for a packet to be destroyed in the network (if a packet
switching node crashes momentarily)
if packets get lost, the destination node has no way to know that one
of the packets in the sequence has been lost.
it is up to receiver to detect loss of a packet and recovers it.
Virtual circuitsIn the virtual-circuit approach, a preplanned route is established
before any packets are sent
It first sends a special control packet, referred to as a Call-Request
packet
Nodes decides to route the request and all subsequent packets to other
nodes
If Station is prepared to accept the connection, it sends Call-Accept
packet back to station via nodes
Stations can then exchange data over the route that has been
established.
As route is fixed for the duration of the logical connection, it is
somewhat similar to a circuit-switching network, and is referred to as
a virtual circuit
Each packet also contains a virtual-circuit identifier and data
Eventually, one of the stations terminates the connection
with a Clear-Request packet
At any time, each station can have more than one virtual circuit to any
other station and can have virtual circuits to more than one station.
Advantages of datagram
In datagram approach the call setup phase is avoided
Datagram delivery will be quicker.
It is more primitive and more flexible
Good with Congestion control-
 Unlike virtual circuits, packets follow a predefined route, it is
difficult to adapt to congestion
Datagram delivery is inherently more reliable
Alternate route that bypasses congestion and failure
A datagram-style of operation is common in inter-
networks
Characteristic of the virtual-circuit
In virtual-circuit (VC) a route between stations is set
up prior to data transfer
That does not mean its a dedicated path
packet is still buffered at each node, and queued for
output over a line
With virtual circuits, the node does not make a
routing decision for transferring each packet
Advantages of VC
If two stations wish to exchange data over an
extended period of time
network may provide services related to the virtual
circuit, including sequencing and error control
because all packets follow the same route, they arrive
in the original order
If dara arrives with an error, node can request a
retransmission of that packet from previous node
Packet size
One important issue is the packet size to be sent on
network
There is a significant relationship between packet size
and transmission time
Packet size
•In this Fig, it is assumed
that there is a virtual
circuit from station
X through nodes a and b
to station Y.
•The message comprises
30 octets, of and each
packet contains 3 octets
of control information
•Placed at beginning of
each packet and is
referred to as a header.
Packet sizeIf the sent packet consists of 33 octets (3 of header plus 30 of data), then
 Packet is first transmitted from station X to node a (Figure a).
 When the entire packet is received, it can then be transmitted from a to b.
 When the entire packet is received at node b, it is transferred to station Y.
 The total transmission time at the nodes is 99 octet-times
(33 octets X 3 packet transmissions = 99 Octet-times).
So if we break up the message into more packets (Packet + Control info)
So because of overlapping in transmission, the total transmission time of 2
packets drops to 72 octet-times, for 5 packets it drop to total of 63
However, this process of using more and smaller packets eventually results
in increased, rather than reduced, delay as in Fig d;
This is because each packet contains a fixed amount of header, and more
packets means more of these headers.
We did not consider processing and queuing delays at each node.
Extremely small packet size (53 octets) can result in an efficient network
design.
Comparison of Circuit Switching
& Packet Switching
Performance
 A simple comparison of circuit switching and the two forms of packet
switching are provided in next slides.
 The figure shows transmission of a message across four nodes. from a
source attached to node 1 to a destination attached to node 4.
In that figure, we are concerned with three types of delay:
 Propagation delay. The time it takes a signal to propagate from one node
to the next. This time is generally negligible in ms
 Transmission time. The time it takes for a transmitter to send out a block
of data. For example, it takes 1 s to transmit a 10,000-bit block of data on a
10-kbps line.
 Node delay. The time it takes for a node to perform the necessary
processing as it switches data.
However, actual performance depends on a host of factors, including
the size of the network, its topology, the pattern of load, and the
characteristics of typical exchanges.
Circuit switch
In circuit switching, there is a of delay in
message before it is sent.
First, a call request signal is sent through the
network in order to set up a connection to
the destination.
A processing delay is faced at each node
during the call request
This time is spent at each node setting up the
route of the connection.
On the return, this processing is not needed
because the connection is already set up
Once set up, the message is sent as a single
block, with no noticeable delay at the
switching nodes.
Virtual Circuit
Virtual-circuit packet similar to circuit switching.
A virtual circuit is requested using a call-request
packet, which incurs a delay at each node.
The virtual circuit is accepted with a call-accept
packet.
In contrast to the circuit-switching case, the call
acceptance also experiences node delays, even
though the virtual circuit route is now established
the reason is that this packet is queued at each
node and must wait its turn for retransmission.
On establishment of virtual circuit message is
transmitted in packets.
This phase can be no faster than circuit switching,
Some delay are present at each node in the path;
worse, this delay is variable and will increase with
increased load.
Datagram packet switching
Datagram packet switching does not require a
call setup.
Thus for short messages it is faster than virtual-
circuit packet switching and perhaps circuit
switching.
However, because each individual datagram is
routed independently, the
processing for each datagram at each node may
be longer than for virtual-circuit packets.
Thus, for long messages, the virtual-circuit
technique may be superior.
Transparency of circuit switching
Circuit switching is essentially a transparent service.
Once a connection is established, a constant data rate is provided to
the connected stations
But not the case with packet switching, which typically introduces
variable
delay, so that data arrive in a choppy manner.
With datagram packet switching, data may arrive in a different order
than they were transmitted.
An additional consequence of transparency is that there is no
overhead required to accommodate circuit switching.
Once a connection is established, the analog or digital data are passed
through, as is, from source to destination.
For packet switching, analog data must be converted to digital before
transmission and each packet includes overhead bits, such as the
destination address.
External and internal operation
Depends upon the characteristics of packet switching
weather it is using data-grams or virtual circuits.
There are two dimensions of these characteristics.
At the interface between a station and network node
Network may provide
 Connection-oriented
 Connectionless service
Connection-oriented service
A station performs a call request to set up a logical connection to
another station
All packets presented to the network are identified as belonging to
a particular logical connection and are numbered sequentially
The logical connection is usually referred to as a virtual circuit and
the connection-oriented service is referred to as an external virtual
circuit service
Where as the external service is distinct from the concept of
internal virtual circuit operation a good example is X.25
X.25 - This standard is almost universally used for interfacing to
packet-switching networks and is employed for packet switching in
ISDN.
Connectionless
With connectionless service, the network only agrees
to handle packets independently, and may not deliver
them in order or reliably, known as an external
datagram service
This concept is distinct from that of internal
datagram operation.
Internally the network may actually construct a fixed
route between endpoints (virtual circuit), or it may
not (datagram).
Design decisions
These internal and external design decisions need not match
External virtual circuit, internal virtual circuit.
 The user requested virtual circuit, a dedicated route through the network.
All packets follow that same route.
External virtual circuit, internal datagram.
 Packets are handled separately. Thus, different packets for the same
external virtual circuit may take different routes. Which are buffered at the
destination node, in proper order.
External datagram, internal datagram.
 Each packet is treated independently from both the user's and the
network's point of view.
External datagram, internal virtual circuit.
 The external user does not see any connections, as it simply sends packets
one at a time. The network, however, sets up a logical connection between
stations for packet delivery and may leave such connections in place for an
extended period, so as to satisfy estimated future needs
Choice
Which one to choose in virtual circuits and data-grams out of both
internal and external.
This will depend on the specific design objectives for the
communication network and the cost factors that prevail.
 The datagram service, allows efficient use of the network as no call setup
and no need to hold up packets while a packet in error is retransmitted.
 This latter feature is desirable in some real-time applications.
 The virtual-circuit service can provide end-to-end sequencing and error
control; this service is attractive for supporting connection-oriented
applications such as file transfer and remote-terminal access.
Virtual-circuit service is much more common than the datagram
service.
The reliability and convenience of a connection-oriented service is
seen as more attractive than the benefits of the datagram service.

Mais conteúdo relacionado

Mais procurados

Stream Control Transmission Protocol (SCTP) - Introduction
Stream Control Transmission Protocol (SCTP) - IntroductionStream Control Transmission Protocol (SCTP) - Introduction
Stream Control Transmission Protocol (SCTP) - IntroductionLaili Aidi
 
Security in mobile ad hoc networks
Security in mobile ad hoc networksSecurity in mobile ad hoc networks
Security in mobile ad hoc networksPiyush Mittal
 
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESSComputer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESSDr. SELVAGANESAN S
 
CCNP Switching Chapter 4
CCNP Switching Chapter 4CCNP Switching Chapter 4
CCNP Switching Chapter 4Chaing Ravuth
 
Computer Communication Networks-Wireless LAN
Computer Communication Networks-Wireless LANComputer Communication Networks-Wireless LAN
Computer Communication Networks-Wireless LANKrishna Nanda
 
Introduction to mobile ad hoc network (m.a.net)
Introduction to mobile ad hoc network (m.a.net)Introduction to mobile ad hoc network (m.a.net)
Introduction to mobile ad hoc network (m.a.net)Sohebuzzaman Khan
 
TCP-IP Reference Model
TCP-IP Reference ModelTCP-IP Reference Model
TCP-IP Reference ModelMukesh Tekwani
 
Network Fundamentals: Ch7 - Data Link Layer
Network Fundamentals: Ch7 - Data Link LayerNetwork Fundamentals: Ch7 - Data Link Layer
Network Fundamentals: Ch7 - Data Link LayerAbdelkhalik Mosa
 
01 Overview of Data Communication and Networking
01 Overview of Data Communication and Networking01 Overview of Data Communication and Networking
01 Overview of Data Communication and NetworkingMeenakshi Paul
 
Spanning tree protocol (stp)
Spanning tree protocol (stp)Spanning tree protocol (stp)
Spanning tree protocol (stp)RaghulR21
 

Mais procurados (20)

Data link layer
Data link layer Data link layer
Data link layer
 
Stream Control Transmission Protocol (SCTP) - Introduction
Stream Control Transmission Protocol (SCTP) - IntroductionStream Control Transmission Protocol (SCTP) - Introduction
Stream Control Transmission Protocol (SCTP) - Introduction
 
Security in mobile ad hoc networks
Security in mobile ad hoc networksSecurity in mobile ad hoc networks
Security in mobile ad hoc networks
 
ARP
ARPARP
ARP
 
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESSComputer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
Computer Networks Unit 2 UNIT II DATA-LINK LAYER & MEDIA ACCESS
 
CCNP Switching Chapter 4
CCNP Switching Chapter 4CCNP Switching Chapter 4
CCNP Switching Chapter 4
 
Atm
AtmAtm
Atm
 
Computer Communication Networks-Wireless LAN
Computer Communication Networks-Wireless LANComputer Communication Networks-Wireless LAN
Computer Communication Networks-Wireless LAN
 
Introduction to mobile ad hoc network (m.a.net)
Introduction to mobile ad hoc network (m.a.net)Introduction to mobile ad hoc network (m.a.net)
Introduction to mobile ad hoc network (m.a.net)
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
TCP-IP Reference Model
TCP-IP Reference ModelTCP-IP Reference Model
TCP-IP Reference Model
 
Data Link Layer
Data Link LayerData Link Layer
Data Link Layer
 
Network Fundamentals: Ch7 - Data Link Layer
Network Fundamentals: Ch7 - Data Link LayerNetwork Fundamentals: Ch7 - Data Link Layer
Network Fundamentals: Ch7 - Data Link Layer
 
Introduction to Application layer
Introduction to Application layerIntroduction to Application layer
Introduction to Application layer
 
Mobile ad hoc networks (manets)
Mobile ad hoc networks (manets)Mobile ad hoc networks (manets)
Mobile ad hoc networks (manets)
 
01 Overview of Data Communication and Networking
01 Overview of Data Communication and Networking01 Overview of Data Communication and Networking
01 Overview of Data Communication and Networking
 
Data Link Layer
Data Link LayerData Link Layer
Data Link Layer
 
Data link layer
Data link layerData link layer
Data link layer
 
2.7 wlan ieee 802.11
2.7 wlan   ieee 802.112.7 wlan   ieee 802.11
2.7 wlan ieee 802.11
 
Spanning tree protocol (stp)
Spanning tree protocol (stp)Spanning tree protocol (stp)
Spanning tree protocol (stp)
 

Destaque (14)

Circuit switching packet switching
Circuit switching  packet  switchingCircuit switching  packet  switching
Circuit switching packet switching
 
Packet switching
Packet switchingPacket switching
Packet switching
 
Chap 8 switching
Chap 8 switchingChap 8 switching
Chap 8 switching
 
Computer network switching
Computer network switchingComputer network switching
Computer network switching
 
Circuit and packet_switching111
Circuit and packet_switching111Circuit and packet_switching111
Circuit and packet_switching111
 
Networks 1-intro
Networks 1-introNetworks 1-intro
Networks 1-intro
 
Ppt 01 10
Ppt 01 10Ppt 01 10
Ppt 01 10
 
Diff paket&circuit
Diff paket&circuitDiff paket&circuit
Diff paket&circuit
 
Switching
SwitchingSwitching
Switching
 
Networking Related
Networking RelatedNetworking Related
Networking Related
 
Packet Switching
Packet SwitchingPacket Switching
Packet Switching
 
Switching Techniques
Switching TechniquesSwitching Techniques
Switching Techniques
 
Introduction to Mobile Core Network
Introduction to Mobile Core NetworkIntroduction to Mobile Core Network
Introduction to Mobile Core Network
 
Osi model vs TCP/IP
Osi model vs TCP/IPOsi model vs TCP/IP
Osi model vs TCP/IP
 

Semelhante a 8 Packet Switching

switching techniques
switching techniques switching techniques
switching techniques ziaulhaq96
 
Unit 3 CND physical layer_switching_pranoti doke
Unit 3  CND physical layer_switching_pranoti dokeUnit 3  CND physical layer_switching_pranoti doke
Unit 3 CND physical layer_switching_pranoti dokePranoti Doke
 
Unit 3 cnd physical layer_switching_pranoti doke
Unit 3  cnd physical layer_switching_pranoti dokeUnit 3  cnd physical layer_switching_pranoti doke
Unit 3 cnd physical layer_switching_pranoti dokePranoti Doke
 
unit 2_switchingtechniques.ppt
unit 2_switchingtechniques.pptunit 2_switchingtechniques.ppt
unit 2_switchingtechniques.pptThangamaniR3
 
Wmcn ch.3
Wmcn ch.3Wmcn ch.3
Wmcn ch.3Alaa2
 
switchingtechniques.ppt
switchingtechniques.pptswitchingtechniques.ppt
switchingtechniques.pptShoukatRiaz
 
Switching Techniques - Unit 3 notes aktu.pptx
Switching Techniques - Unit 3 notes aktu.pptxSwitching Techniques - Unit 3 notes aktu.pptx
Switching Techniques - Unit 3 notes aktu.pptxxesome9832
 
Switching techniques
Switching techniquesSwitching techniques
Switching techniquesGLIM Digital
 
Switching techniques
Switching techniquesSwitching techniques
Switching techniquesGupta6Bindu
 
circuit switching1.pdf
circuit switching1.pdfcircuit switching1.pdf
circuit switching1.pdfJayaprasanna4
 
Ravi namboori switching
Ravi namboori   switchingRavi namboori   switching
Ravi namboori switchingRavi namboori
 
Switiching by Ravi Namboori Babson University USA
Switiching by Ravi Namboori Babson University USASwitiching by Ravi Namboori Babson University USA
Switiching by Ravi Namboori Babson University USARavi Namboori
 
Ravi Namboori switching
Ravi Namboori   switchingRavi Namboori   switching
Ravi Namboori switchingRavi Namboori
 
WT - Circuit & Packet switching
WT - Circuit & Packet switchingWT - Circuit & Packet switching
WT - Circuit & Packet switchingvinay arora
 

Semelhante a 8 Packet Switching (20)

switching techniques
switching techniques switching techniques
switching techniques
 
Unit 3 CND physical layer_switching_pranoti doke
Unit 3  CND physical layer_switching_pranoti dokeUnit 3  CND physical layer_switching_pranoti doke
Unit 3 CND physical layer_switching_pranoti doke
 
Unit 3 cnd physical layer_switching_pranoti doke
Unit 3  cnd physical layer_switching_pranoti dokeUnit 3  cnd physical layer_switching_pranoti doke
Unit 3 cnd physical layer_switching_pranoti doke
 
unit 2_switchingtechniques.ppt
unit 2_switchingtechniques.pptunit 2_switchingtechniques.ppt
unit 2_switchingtechniques.ppt
 
Chapter#3
Chapter#3Chapter#3
Chapter#3
 
Wmcn ch.3
Wmcn ch.3Wmcn ch.3
Wmcn ch.3
 
network devices, types of delay
network devices, types of delaynetwork devices, types of delay
network devices, types of delay
 
switchingtechniques.ppt
switchingtechniques.pptswitchingtechniques.ppt
switchingtechniques.ppt
 
Switching Techniques - Unit 3 notes aktu.pptx
Switching Techniques - Unit 3 notes aktu.pptxSwitching Techniques - Unit 3 notes aktu.pptx
Switching Techniques - Unit 3 notes aktu.pptx
 
switching.ppt
switching.pptswitching.ppt
switching.ppt
 
SwitchingTechniques.ppt
SwitchingTechniques.pptSwitchingTechniques.ppt
SwitchingTechniques.ppt
 
Switching techniques
Switching techniquesSwitching techniques
Switching techniques
 
Switching techniques
Switching techniquesSwitching techniques
Switching techniques
 
circuit switching1.pdf
circuit switching1.pdfcircuit switching1.pdf
circuit switching1.pdf
 
Ravi namboori switching
Ravi namboori   switchingRavi namboori   switching
Ravi namboori switching
 
Ravi Namboori_switching
Ravi Namboori_switchingRavi Namboori_switching
Ravi Namboori_switching
 
Switiching by Ravi Namboori Babson University USA
Switiching by Ravi Namboori Babson University USASwitiching by Ravi Namboori Babson University USA
Switiching by Ravi Namboori Babson University USA
 
Ravi Namboori switching
Ravi Namboori   switchingRavi Namboori   switching
Ravi Namboori switching
 
chapter 5.2.pptx
chapter 5.2.pptxchapter 5.2.pptx
chapter 5.2.pptx
 
WT - Circuit & Packet switching
WT - Circuit & Packet switchingWT - Circuit & Packet switching
WT - Circuit & Packet switching
 

Mais de Water Birds (Ali)

Creative Writing Course Worksheets
Creative Writing Course WorksheetsCreative Writing Course Worksheets
Creative Writing Course WorksheetsWater Birds (Ali)
 
PhDs Produced by Punjab University from Jan to Dec 2014
PhDs Produced by Punjab University from Jan to Dec 2014PhDs Produced by Punjab University from Jan to Dec 2014
PhDs Produced by Punjab University from Jan to Dec 2014Water Birds (Ali)
 
Course Outline for MA Urdu Punjab University
Course Outline for MA Urdu Punjab UniversityCourse Outline for MA Urdu Punjab University
Course Outline for MA Urdu Punjab UniversityWater Birds (Ali)
 
Course Outline for MA Philosophy Punjab University
Course Outline for MA Philosophy Punjab UniversityCourse Outline for MA Philosophy Punjab University
Course Outline for MA Philosophy Punjab UniversityWater Birds (Ali)
 
Course Outline for MA French Punjab University
Course Outline for MA French Punjab UniversityCourse Outline for MA French Punjab University
Course Outline for MA French Punjab UniversityWater Birds (Ali)
 
Course Outline for MA English Punjab University
Course Outline for MA English Punjab UniversityCourse Outline for MA English Punjab University
Course Outline for MA English Punjab UniversityWater Birds (Ali)
 
MPhil English Interview Schedule for 27 July 2011 (Punjab University)
MPhil English Interview Schedule for 27 July 2011 (Punjab University)MPhil English Interview Schedule for 27 July 2011 (Punjab University)
MPhil English Interview Schedule for 27 July 2011 (Punjab University)Water Birds (Ali)
 
PU's MPhil English Interview Result 2011
PU's MPhil English Interview Result 2011PU's MPhil English Interview Result 2011
PU's MPhil English Interview Result 2011Water Birds (Ali)
 
Chinua Achebe - Things Fall Apart [Edited Version]
Chinua Achebe - Things Fall Apart [Edited Version]Chinua Achebe - Things Fall Apart [Edited Version]
Chinua Achebe - Things Fall Apart [Edited Version]Water Birds (Ali)
 
Tips to Relax Your Tired Eyes
Tips to Relax Your Tired EyesTips to Relax Your Tired Eyes
Tips to Relax Your Tired EyesWater Birds (Ali)
 
Mother Courage and Her Children by Bertolt Bretch
Mother Courage and Her Children by Bertolt BretchMother Courage and Her Children by Bertolt Bretch
Mother Courage and Her Children by Bertolt BretchWater Birds (Ali)
 
Things Fall Apart by Chinua Achebe
Things Fall Apart by Chinua AchebeThings Fall Apart by Chinua Achebe
Things Fall Apart by Chinua AchebeWater Birds (Ali)
 
Chapter 1 Automatic Controloverview
Chapter 1 Automatic ControloverviewChapter 1 Automatic Controloverview
Chapter 1 Automatic ControloverviewWater Birds (Ali)
 
Chapter 3 History and Geography The Foundations of Culture
Chapter 3   History and Geography The Foundations of Culture  Chapter 3   History and Geography The Foundations of Culture
Chapter 3 History and Geography The Foundations of Culture Water Birds (Ali)
 

Mais de Water Birds (Ali) (20)

Who invented?
Who invented?Who invented?
Who invented?
 
Creative Writing Course Worksheets
Creative Writing Course WorksheetsCreative Writing Course Worksheets
Creative Writing Course Worksheets
 
Essay Writing
Essay Writing   Essay Writing
Essay Writing
 
PhDs Produced by Punjab University from Jan to Dec 2014
PhDs Produced by Punjab University from Jan to Dec 2014PhDs Produced by Punjab University from Jan to Dec 2014
PhDs Produced by Punjab University from Jan to Dec 2014
 
Course Outline for MA Urdu Punjab University
Course Outline for MA Urdu Punjab UniversityCourse Outline for MA Urdu Punjab University
Course Outline for MA Urdu Punjab University
 
Course Outline for MA Philosophy Punjab University
Course Outline for MA Philosophy Punjab UniversityCourse Outline for MA Philosophy Punjab University
Course Outline for MA Philosophy Punjab University
 
Course Outline for MA French Punjab University
Course Outline for MA French Punjab UniversityCourse Outline for MA French Punjab University
Course Outline for MA French Punjab University
 
Course Outline for MA English Punjab University
Course Outline for MA English Punjab UniversityCourse Outline for MA English Punjab University
Course Outline for MA English Punjab University
 
MPhil English Interview Schedule for 27 July 2011 (Punjab University)
MPhil English Interview Schedule for 27 July 2011 (Punjab University)MPhil English Interview Schedule for 27 July 2011 (Punjab University)
MPhil English Interview Schedule for 27 July 2011 (Punjab University)
 
PU's MPhil English Interview Result 2011
PU's MPhil English Interview Result 2011PU's MPhil English Interview Result 2011
PU's MPhil English Interview Result 2011
 
Chinua Achebe - Things Fall Apart [Edited Version]
Chinua Achebe - Things Fall Apart [Edited Version]Chinua Achebe - Things Fall Apart [Edited Version]
Chinua Achebe - Things Fall Apart [Edited Version]
 
Tips to Relax Your Tired Eyes
Tips to Relax Your Tired EyesTips to Relax Your Tired Eyes
Tips to Relax Your Tired Eyes
 
Mother Courage and Her Children by Bertolt Bretch
Mother Courage and Her Children by Bertolt BretchMother Courage and Her Children by Bertolt Bretch
Mother Courage and Her Children by Bertolt Bretch
 
Things Fall Apart by Chinua Achebe
Things Fall Apart by Chinua AchebeThings Fall Apart by Chinua Achebe
Things Fall Apart by Chinua Achebe
 
Chapter 1 Automatic Controloverview
Chapter 1 Automatic ControloverviewChapter 1 Automatic Controloverview
Chapter 1 Automatic Controloverview
 
Radar Terminology
Radar TerminologyRadar Terminology
Radar Terminology
 
Traffic Signals
Traffic SignalsTraffic Signals
Traffic Signals
 
Writing Engineering Reports
Writing Engineering ReportsWriting Engineering Reports
Writing Engineering Reports
 
Chapter 3 History and Geography The Foundations of Culture
Chapter 3   History and Geography The Foundations of Culture  Chapter 3   History and Geography The Foundations of Culture
Chapter 3 History and Geography The Foundations of Culture
 
Youth Problems in Pakistan
Youth Problems in PakistanYouth Problems in Pakistan
Youth Problems in Pakistan
 

Último

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 

Último (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

8 Packet Switching

  • 2. Introduction The long-haul circuit-switching telecommunications network was originally designed to handle voice traffic A key characteristic of circuit-switching networks is that resources within the network are dedicated to a particular call. For voice connections, resulting circuit will enjoy a high percentage of utilization. However, as the circuit-switching network began to be used increasingly for data connections, two shortcomings became apparent:  In a typical user host data connection (e.g., personal computer user logged on to a database server), much of the time the line is idle. Thus, with data connections, a circuit-switching approach is inefficient.  In a circuit-switching network, the connection provides for transmission at constant data rate. Thus, each of the two devices that are connected must transmit and receive at the same data rate as the other; this limits the utility of the network in interconnecting a variety of host computers and terminals.
  • 3. Solving the problem To understand how packet switching addresses these problems, let us briefly summarize packet-switching operation. Data are transmitted in short packets. A typical upper bound on packet length is 1000 octets (bytes).  If a source has a longer message to send, the message is broken up into a series of packets Each packet contains a portion of the user's data plus some control information. The control information, at a minimum, includes the information that the network requires in order to be able to route the packet through the network At each node en route, the packet is received, stored briefly, and passed on to the next node.
  • 4. The Approach This approach has a number of advantages over circuit switching: Line efficiency is greater, as a single node-to-node link can be dynamically shared by many packets over time. The packets are queued up and transmitted as rapidly as possible over the link. By contrast, with circuit switching, time on a node-to- node link is pre-allocated using synchronous TDM. Much of the time, link may be idle because a portion of its time is dedicated to a connection which is idle. Packet-switch network can perform data-rate conversion. Two stations of different data rates can exchange packets because each connects to its node at its proper data rate.
  • 5. The Approach II When traffic becomes heavy on a circuit-switching network, the network refuses to accept additional connection requests (Blocked) Until load decreases. On a packet-switching network, packets are still accepted, but delivery delay increases. Priorities can be used. It can transmit the higher-priority packets first. These packets will therefore experience less delay than lower-priority packets.
  • 6. Switching Technique  A station has a message to send through a packet-switching network that is of length greater than the maximum packet size.  It therefore breaks the message up into packets and sends these packets, one at a time, to the network.  A question arises as to how the network will handle this stream of packets as it attempts to route them through the network and deliver them to the intended destination  There are two approaches that are used in contemporary networks:  datagram &  Virtual circuit
  • 7. Datagram approach Each packet is treated independently, with no reference to packets that have gone before. Some implication of this approach. When the data is sent over the network it might be possible that the data packets if broken take different route to its destination They totally dependent upon the forwarding node for routing the packets Possibly the data packet which was last may reach the destination first. It is possible for a packet to be destroyed in the network (if a packet switching node crashes momentarily) if packets get lost, the destination node has no way to know that one of the packets in the sequence has been lost. it is up to receiver to detect loss of a packet and recovers it.
  • 8. Virtual circuitsIn the virtual-circuit approach, a preplanned route is established before any packets are sent It first sends a special control packet, referred to as a Call-Request packet Nodes decides to route the request and all subsequent packets to other nodes If Station is prepared to accept the connection, it sends Call-Accept packet back to station via nodes Stations can then exchange data over the route that has been established. As route is fixed for the duration of the logical connection, it is somewhat similar to a circuit-switching network, and is referred to as a virtual circuit Each packet also contains a virtual-circuit identifier and data Eventually, one of the stations terminates the connection with a Clear-Request packet At any time, each station can have more than one virtual circuit to any other station and can have virtual circuits to more than one station.
  • 9. Advantages of datagram In datagram approach the call setup phase is avoided Datagram delivery will be quicker. It is more primitive and more flexible Good with Congestion control-  Unlike virtual circuits, packets follow a predefined route, it is difficult to adapt to congestion Datagram delivery is inherently more reliable Alternate route that bypasses congestion and failure A datagram-style of operation is common in inter- networks
  • 10. Characteristic of the virtual-circuit In virtual-circuit (VC) a route between stations is set up prior to data transfer That does not mean its a dedicated path packet is still buffered at each node, and queued for output over a line With virtual circuits, the node does not make a routing decision for transferring each packet
  • 11. Advantages of VC If two stations wish to exchange data over an extended period of time network may provide services related to the virtual circuit, including sequencing and error control because all packets follow the same route, they arrive in the original order If dara arrives with an error, node can request a retransmission of that packet from previous node
  • 12. Packet size One important issue is the packet size to be sent on network There is a significant relationship between packet size and transmission time
  • 13. Packet size •In this Fig, it is assumed that there is a virtual circuit from station X through nodes a and b to station Y. •The message comprises 30 octets, of and each packet contains 3 octets of control information •Placed at beginning of each packet and is referred to as a header.
  • 14. Packet sizeIf the sent packet consists of 33 octets (3 of header plus 30 of data), then  Packet is first transmitted from station X to node a (Figure a).  When the entire packet is received, it can then be transmitted from a to b.  When the entire packet is received at node b, it is transferred to station Y.  The total transmission time at the nodes is 99 octet-times (33 octets X 3 packet transmissions = 99 Octet-times). So if we break up the message into more packets (Packet + Control info) So because of overlapping in transmission, the total transmission time of 2 packets drops to 72 octet-times, for 5 packets it drop to total of 63 However, this process of using more and smaller packets eventually results in increased, rather than reduced, delay as in Fig d; This is because each packet contains a fixed amount of header, and more packets means more of these headers. We did not consider processing and queuing delays at each node. Extremely small packet size (53 octets) can result in an efficient network design.
  • 15. Comparison of Circuit Switching & Packet Switching Performance  A simple comparison of circuit switching and the two forms of packet switching are provided in next slides.  The figure shows transmission of a message across four nodes. from a source attached to node 1 to a destination attached to node 4. In that figure, we are concerned with three types of delay:  Propagation delay. The time it takes a signal to propagate from one node to the next. This time is generally negligible in ms  Transmission time. The time it takes for a transmitter to send out a block of data. For example, it takes 1 s to transmit a 10,000-bit block of data on a 10-kbps line.  Node delay. The time it takes for a node to perform the necessary processing as it switches data. However, actual performance depends on a host of factors, including the size of the network, its topology, the pattern of load, and the characteristics of typical exchanges.
  • 16. Circuit switch In circuit switching, there is a of delay in message before it is sent. First, a call request signal is sent through the network in order to set up a connection to the destination. A processing delay is faced at each node during the call request This time is spent at each node setting up the route of the connection. On the return, this processing is not needed because the connection is already set up Once set up, the message is sent as a single block, with no noticeable delay at the switching nodes.
  • 17. Virtual Circuit Virtual-circuit packet similar to circuit switching. A virtual circuit is requested using a call-request packet, which incurs a delay at each node. The virtual circuit is accepted with a call-accept packet. In contrast to the circuit-switching case, the call acceptance also experiences node delays, even though the virtual circuit route is now established the reason is that this packet is queued at each node and must wait its turn for retransmission. On establishment of virtual circuit message is transmitted in packets. This phase can be no faster than circuit switching, Some delay are present at each node in the path; worse, this delay is variable and will increase with increased load.
  • 18. Datagram packet switching Datagram packet switching does not require a call setup. Thus for short messages it is faster than virtual- circuit packet switching and perhaps circuit switching. However, because each individual datagram is routed independently, the processing for each datagram at each node may be longer than for virtual-circuit packets. Thus, for long messages, the virtual-circuit technique may be superior.
  • 19. Transparency of circuit switching Circuit switching is essentially a transparent service. Once a connection is established, a constant data rate is provided to the connected stations But not the case with packet switching, which typically introduces variable delay, so that data arrive in a choppy manner. With datagram packet switching, data may arrive in a different order than they were transmitted. An additional consequence of transparency is that there is no overhead required to accommodate circuit switching. Once a connection is established, the analog or digital data are passed through, as is, from source to destination. For packet switching, analog data must be converted to digital before transmission and each packet includes overhead bits, such as the destination address.
  • 20. External and internal operation Depends upon the characteristics of packet switching weather it is using data-grams or virtual circuits. There are two dimensions of these characteristics. At the interface between a station and network node Network may provide  Connection-oriented  Connectionless service
  • 21. Connection-oriented service A station performs a call request to set up a logical connection to another station All packets presented to the network are identified as belonging to a particular logical connection and are numbered sequentially The logical connection is usually referred to as a virtual circuit and the connection-oriented service is referred to as an external virtual circuit service Where as the external service is distinct from the concept of internal virtual circuit operation a good example is X.25 X.25 - This standard is almost universally used for interfacing to packet-switching networks and is employed for packet switching in ISDN.
  • 22. Connectionless With connectionless service, the network only agrees to handle packets independently, and may not deliver them in order or reliably, known as an external datagram service This concept is distinct from that of internal datagram operation. Internally the network may actually construct a fixed route between endpoints (virtual circuit), or it may not (datagram).
  • 23.
  • 24. Design decisions These internal and external design decisions need not match External virtual circuit, internal virtual circuit.  The user requested virtual circuit, a dedicated route through the network. All packets follow that same route. External virtual circuit, internal datagram.  Packets are handled separately. Thus, different packets for the same external virtual circuit may take different routes. Which are buffered at the destination node, in proper order. External datagram, internal datagram.  Each packet is treated independently from both the user's and the network's point of view. External datagram, internal virtual circuit.  The external user does not see any connections, as it simply sends packets one at a time. The network, however, sets up a logical connection between stations for packet delivery and may leave such connections in place for an extended period, so as to satisfy estimated future needs
  • 25.
  • 26. Choice Which one to choose in virtual circuits and data-grams out of both internal and external. This will depend on the specific design objectives for the communication network and the cost factors that prevail.  The datagram service, allows efficient use of the network as no call setup and no need to hold up packets while a packet in error is retransmitted.  This latter feature is desirable in some real-time applications.  The virtual-circuit service can provide end-to-end sequencing and error control; this service is attractive for supporting connection-oriented applications such as file transfer and remote-terminal access. Virtual-circuit service is much more common than the datagram service. The reliability and convenience of a connection-oriented service is seen as more attractive than the benefits of the datagram service.