SlideShare uma empresa Scribd logo
1 de 40
Baixar para ler offline
CRF
          2010   12   10       10


      1                    (        )
‣

‣


    2
4
[Lafferty+, 01] Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. John Lafferty, Andrew
McCallum, Fernando Pereira. Proceedings of ICML’01, 2001.

[Collins, 02] Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms.
Michael Collins. Proceedings of EMNLP’02, 2002.

[Morency+, 07] Latent-dynamic discriminative models for
continuous gesture recognition. Louis-Philippe Morency, Ariadna
Quattoni, and Trevor Darrell. Proceedings of CVPR’07, 2007.

[Sun+, 09] Latent Variable Perceptron Algorithm for Structured
Classification. Xu Sun, Takuya Matsuzaki, Daisuke Okanohara and
Jun’ichi Tsujii. Proceedings of IJCAI’09, 2009                     3
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             4
x=   x1        x2               xm



y=   y1        y2               ym

          y1 , . . . , ym ∈ Y

                                     5
(   : NP-chunking)


x1   x2        x3       x4      x5
He   is        her    brother    .



B    O          B        I      O
y1   y2        y3       y4     y5
                        Y = {B, I, O}
                                     6
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             7
Θ
                          P (y|x, Θ)
P (yi |xi , Θ)
    ∗

            Θ
                            {(xi , yi )}i=1
                                    ∗ d

                                       ..
                                            .


                 ..
                      .                         d
                                                    8
Θ
    P (y|x, Θ)


x
                        ˆ
          y = argmax P (y|x, Θ)
                 ˆ
                 y




                                  9
(x, y)

         →
                            
        f1 (y, x)         Θ1
    
       f2 (y, x)    
                        Θ2   
                               
           .
            .            .
                           .   
n
           .       ·    .    = F (y|x, Θ)
                            
           .
            .
                         .
                           .
                               
           .            .   
        fn (y, x)         Θn
           =




                          =

        f (y, x)          Θ                     10
1
      P (y|x, Θ) = exp F (y|x, Θ)
                 Z                
                  
               Z=   exp F (y |x, Θ)
                            

                     y

                          F (y|x, Θ) = f (y, x) · Θ
1/Z


      argmax P (y|x, Θ) = argmax F (y|x, Θ)
         y                    y                       11
1
      P (y|x, Θ) = exp F (y|x, Θ)
                 Z                
                  
               Z=   exp F (y |x, Θ)
                            

                     y

                          F (y|x, Θ) = fO(|Yx) ) Θ
                                        (y, |m ·
1/Z


      argmax P (y|x, Θ) = argmax F (y|x, Θ)
         y                    y                      12
CRF: Conditional Random Field (sequential)

              yj−1             yj
             
                           s(j, x, yj )
                 t(j, x, yj−1 , yj )
                      ⇒




                                          13
CRF: Conditional Random Field (sequential)

              yj−1             yj
             
                           s(j, x, yj )
                 t(j, x, yj−1 , yj )
                      ⇒




                                          14
CRF


                 d
                 
      maximize         log P (yi |xi , Θ)
                               ∗
                                            − R(Θ)
                 i=1

                 R(Θ)                 Θ




                                                     15
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             16
Structured Perceptron

‣
‣       (xi , yi )
               ∗
                               F (yi |xi , Θ)
                                   ∗
                                                =Θ·      f (yi , xi )
                                                             ∗




(xi , yi )
       ∗


                          yi = argmax F (y|xi , Θ )          i
                                        y

               yi =      ∗
                         yi                                      yi =    ∗
                                                                        yi

    Θ   i+1
              =Θ +   i
                         f (yi , xi )
                             ∗
                                        − f (yi , xi )    Θ   i+1
                                                                    =Θ   i

                                                                             17
Structured Perceptron


                    Θ   i+1
                              =Θ +     i
                                            f (yi , xi )
                                                ∗
                                                                − f (yi , xi )



    Θ   i+1
              ·   (f (yi , xi )
                       ∗
                                  − f (yi , xi ))
                                                                                           2
    =Θ ·      i
                   (f (yi , xi )
                        ∗
                                   − f (yi , xi )) +      f (yi , xi )
                                                               ∗
                                                                          −   f (yi , xi )2

⇔   F (yi |xi , Θ )
        ∗        i+1
                              − F (yi |xi , Θ       i+1
                                                          )
                                                                                               2
    =    F (yi |xi , Θi )
             ∗
                                  − F (yi |xi , Θ ) +
                                                    i
                                                              f (yi , xi )
                                                                   ∗
                                                                              −   f (yi , xi )2
                                                                                          ≥0
                                                                                                   18
Structured Perceptron


            Θ   i+1
                      =Θ +  i
                                 f (yi , xi )
                                     ∗
                                                    − f (yi , xi )


                   ∗
                  yi                                                            yi


 F (yi |xi , Θ )
     ∗        i+1
                      − F (yi |xi , Θ   i+1
                                              )
                                                                                   2
 =   F (yi |xi , Θi )
         ∗
                        − F (yi |xi , Θ ) +
                                        i
                                                  f (yi , xi )
                                                       ∗
                                                                  −   f (yi , xi )2
                                                                              ≥0
                                                                                       19
Structured Perceptron

‣
‣




                d
                        M


                            20
separability

G(xi ) = {all possible label sequences for an example xi },
G(xi ) = G(xi ) −     ∗
                    {yi }



        {(xi , yi )}d
                ∗
                    i=1              δ0
     U2 = 1                   U
     ∀i, ∀z ∈ G(xi ), F (yi |xi , U) − F (z|xi , U) ≥ δ.
                          ∗




                                                              21
mistake bound


                      δ0
{(xi , yi )}d
        ∗
            i=1
                                 M
                                         2
                             R
                           M≤ 2
                              δ
        R         ∀i, ∀z ∈ G(xi ), f (yi , xi ) − f (z, xi )2 ≤ R
                                        ∗




                                     d                                22
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             23
They   are    her   flowers   .
 B      O     B       I      O


They   gave   her   flowers   .
 B      O     B       B      O

                                 24
They   are    her        flowers   .
 B      O     B            I      O
                    B1
They   gave   her        flowers   .
 B      O     B            B      O
                    B2
                                      25
DPLVM - Discriminative Probabilistic Latent Variable Model



                   Y ={ B , I , O }
            
            
            
            
            
            
            
            
            
                        
                        
                        
                        
                        
                        
                        
                        
                        
                        
        HB = {      B1 , . . . , B|HB | }



                           |HB |

                                                        26
DPLVM - Discriminative Probabilistic Latent Variable Model



    y=        y1          y2                 ym


    h=        h1          h2                  hm

                    ∀j, hj ∈ Hyj
                            def.
                           ⇐⇒ Proj(h) = y
                                                        27
DPLVM

             (x, h)

            →
                                
            f1 (h, x)         Θ1
           f2 (h, x)       Θ2   
                                
               .
                .            .
                               .   
               .       ·    .    = F (h|x, Θ)
                                
               .            .   
               .
                .            .
                               .   
            fn (h, x)         Θn
               =




                              =

            f (h, x)          Θ                 28
DPLVM

                h
                    1
        P (h|x, Θ) = exp F (h|x, Θ)
                   Z                
                    
                 Z=   exp F (h |x, Θ)
                              

                        h

                      F (h|x, Θ) = f (h, x) · Θ
           f (h, x)
  argmax P (h|x, Θ) = argmax F (h|x, Θ)
    h                        h
                                                  29
DPLVM
               ∗
        (xi , yi )                     h
              P (h|x, Θ)


          ∗
         yi                   h
                     
  P (y|x, Θ) =            P (y|h, x, Θ)P (h|x, Θ)
                      h
                          
              =                    P (h|x, Θ)
                     h:Proj(h)=y

                                                    30
DPLVM


              d
              
   maximize         log P (yi |xi , Θ)
                            ∗
                                         − R(Θ)
              i=1

              R(Θ)                 Θ




                                                  31
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             32
Latent Variable Perceptron

 (xi , yi )
        ∗
                   hi = argmax F (hi |xi , Θ),
                                  h
                       yi = Proj(hi )

          yi =    ∗
                  yi                                yi =    ∗
                                                           yi

Θ   i+1
          =Θ +i
                   f (hi , xi )
                       ∗
                                  − f (h, xi ) Θ   i+1
                                                         =Θ   i

               ∗
              hi
               ∗
              hi   =       argmax       F (h|xi , Θ )
                                                    i
                                    ∗
                         h:Proj(h)=yi                             33
mistake bound


                  δ0
{(xi , yi )}i=1
        ∗ d


                                         M

                      2T M       2   2
                   M≤
                        δ2
     T                       d
M = max f (y, xi )2 .
       i,y


                                             34
‣
‣

    CRF                                     Structured
    (Conditional Random Field)              Perceptron
                                    1   2
                                    3   4
    DPLVM                                   Latent Variable
    (Discriminative Probabilistic
    Latent Variable Model)                  Perceptron

‣                                                             35
(                     )
‣         X = {a, b}
‣           Y = {A, B}
‣                     HA = {A1 , A2 }, HB = {B1 , B2 }
‣                                     P (hj |hj−1 )
        P (xj |hj )            h     x
‣            y = Proj(h)

‣         {(xi , yi )}i=1
                  ∗ d




‣                                                        36
(                   )
‣                                   p
    from  to      A1              A2           B1      B2
       A1       (1 − p)/3 (1 − p)/3 (1 − p)/3           p
       A2          p            (1 − p)/3 (1 − p)/3 (1 − p)/3
      B1        (1 − p)/3          p      (1 − p)/3 (1 − p)/3
      B2        (1 − p)/3 (1 − p)/3             p    (1 − p)/3

‣                      P (xi = a|hi )
     hi = A1         hi = A2            hi = B1      hi = B2
        0.1              0.7              0.7          0.6       37
(                       )

                           Latent Variable Perceptron              Structured Perceptron

               100

                90
accuracy [%]




                80

                70

                60

                50

                40
                     0.5   0.55    0.6    0.65    0.7       0.75    0.8    0.85    0.9     0.95
                                                        p
                                                                                                  38
‣

‣


‣

‣


‣
    39
‣



‣




    40

Mais conteúdo relacionado

Mais procurados

修士論文発表会
修士論文発表会修士論文発表会
修士論文発表会
Keikusl
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
uis
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
Quang Hoang
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
Quang Hoang
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
tuiye
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
Alexander Decker
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 

Mais procurados (20)

修士論文発表会
修士論文発表会修士論文発表会
修士論文発表会
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Regression Theory
Regression TheoryRegression Theory
Regression Theory
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
 
Computation of the marginal likelihood
Computation of the marginal likelihoodComputation of the marginal likelihood
Computation of the marginal likelihood
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Query Suggestion @ tokyotextmining#2
Query Suggestion @ tokyotextmining#2Query Suggestion @ tokyotextmining#2
Query Suggestion @ tokyotextmining#2
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 

Destaque

Возможности сервиса
Возможности сервисаВозможности сервиса
Возможности сервиса
cbwTest
 

Destaque (20)

Ml4nlp 4 2
Ml4nlp 4 2Ml4nlp 4 2
Ml4nlp 4 2
 
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
 
Overview of Chainer and Its Features
Overview of Chainer and Its FeaturesOverview of Chainer and Its Features
Overview of Chainer and Its Features
 
今日からできる構造学習(主に構造化パーセプトロンについて)
今日からできる構造学習(主に構造化パーセプトロンについて)今日からできる構造学習(主に構造化パーセプトロンについて)
今日からできる構造学習(主に構造化パーセプトロンについて)
 
論文紹介 Compressing Neural Networks with the Hashing Trick
論文紹介 Compressing Neural Networks with the Hashing Trick論文紹介 Compressing Neural Networks with the Hashing Trick
論文紹介 Compressing Neural Networks with the Hashing Trick
 
深層学習フレームワークChainerの紹介とFPGAへの期待
深層学習フレームワークChainerの紹介とFPGAへの期待深層学習フレームワークChainerの紹介とFPGAへの期待
深層学習フレームワークChainerの紹介とFPGAへの期待
 
Introduction to Chainer
Introduction to ChainerIntroduction to Chainer
Introduction to Chainer
 
Differences of Deep Learning Frameworks
Differences of Deep Learning FrameworksDifferences of Deep Learning Frameworks
Differences of Deep Learning Frameworks
 
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding ModelNIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
 
Introduction to Chainer: A Flexible Framework for Deep Learning
Introduction to Chainer: A Flexible Framework for Deep LearningIntroduction to Chainer: A Flexible Framework for Deep Learning
Introduction to Chainer: A Flexible Framework for Deep Learning
 
Возможности сервиса
Возможности сервисаВозможности сервиса
Возможности сервиса
 
2016-08 PM VDC veröffentlicht Whitepaper Virtuelle Techniken im Automobilbau
2016-08 PM VDC veröffentlicht Whitepaper Virtuelle Techniken im Automobilbau2016-08 PM VDC veröffentlicht Whitepaper Virtuelle Techniken im Automobilbau
2016-08 PM VDC veröffentlicht Whitepaper Virtuelle Techniken im Automobilbau
 
Guia de estudio metodologia de la investigacion se puede bajar universidad s...
Guia de estudio metodologia de la  investigacion se puede bajar universidad s...Guia de estudio metodologia de la  investigacion se puede bajar universidad s...
Guia de estudio metodologia de la investigacion se puede bajar universidad s...
 
Intervenciones grupales positivas para los alumnos con tdah
Intervenciones grupales positivas para los alumnos con tdahIntervenciones grupales positivas para los alumnos con tdah
Intervenciones grupales positivas para los alumnos con tdah
 
Google Analytics as Database of Record
Google Analytics as Database of RecordGoogle Analytics as Database of Record
Google Analytics as Database of Record
 
How to prepare for an oui trial
How to prepare for an oui trialHow to prepare for an oui trial
How to prepare for an oui trial
 
พิชิตชัยชาญ วรรณบุตร
พิชิตชัยชาญ  วรรณบุตรพิชิตชัยชาญ  วรรณบุตร
พิชิตชัยชาญ วรรณบุตร
 
Getting Started With Virtualization
Getting Started With VirtualizationGetting Started With Virtualization
Getting Started With Virtualization
 
Sesión 1 introdución online
Sesión 1 introdución onlineSesión 1 introdución online
Sesión 1 introdución online
 
Pretotyping primer 4
Pretotyping primer   4Pretotyping primer   4
Pretotyping primer 4
 

Semelhante a rinko2010

CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
zukun
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
Springer
 
Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2
Phong Vo
 
Ml mle_bayes
Ml  mle_bayesMl  mle_bayes
Ml mle_bayes
Phong Vo
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
tomoyukiichiba
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
ketanaka
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
zukun
 
Intro probability 3
Intro probability 3Intro probability 3
Intro probability 3
Phong Vo
 

Semelhante a rinko2010 (20)

CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2
 
Ml mle_bayes
Ml  mle_bayesMl  mle_bayes
Ml mle_bayes
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 
March12 natarajan
March12 natarajanMarch12 natarajan
March12 natarajan
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Additional notes EC220
Additional notes EC220Additional notes EC220
Additional notes EC220
 
Chapter2: Likelihood-based approach
Chapter2: Likelihood-based approach Chapter2: Likelihood-based approach
Chapter2: Likelihood-based approach
 
Introduction to Stochastic calculus
Introduction to Stochastic calculusIntroduction to Stochastic calculus
Introduction to Stochastic calculus
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Random Forest
Random ForestRandom Forest
Random Forest
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBO
 
Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Introduction to modern Variational Inference.
Introduction to modern Variational Inference.
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Intro probability 3
Intro probability 3Intro probability 3
Intro probability 3
 

Mais de Seiya Tokui

Mais de Seiya Tokui (18)

Chainer/CuPy v5 and Future (Japanese)
Chainer/CuPy v5 and Future (Japanese)Chainer/CuPy v5 and Future (Japanese)
Chainer/CuPy v5 and Future (Japanese)
 
Chainer v3
Chainer v3Chainer v3
Chainer v3
 
Chainer v2 and future dev plan
Chainer v2 and future dev planChainer v2 and future dev plan
Chainer v2 and future dev plan
 
Chainer v2 alpha
Chainer v2 alphaChainer v2 alpha
Chainer v2 alpha
 
Learning stochastic neural networks with Chainer
Learning stochastic neural networks with ChainerLearning stochastic neural networks with Chainer
Learning stochastic neural networks with Chainer
 
深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開
 
論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks
 
Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12
 
Towards Chainer v1.5
Towards Chainer v1.5Towards Chainer v1.5
Towards Chainer v1.5
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
 
Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
 
Deep Learning技術の今
Deep Learning技術の今Deep Learning技術の今
Deep Learning技術の今
 
Deep Learningの技術と未来
Deep Learningの技術と未来Deep Learningの技術と未来
Deep Learningの技術と未来
 

Último

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 

rinko2010

  • 1. CRF 2010 12 10 10 1 ( )
  • 3. 4 [Lafferty+, 01] Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. John Lafferty, Andrew McCallum, Fernando Pereira. Proceedings of ICML’01, 2001. [Collins, 02] Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. Michael Collins. Proceedings of EMNLP’02, 2002. [Morency+, 07] Latent-dynamic discriminative models for continuous gesture recognition. Louis-Philippe Morency, Ariadna Quattoni, and Trevor Darrell. Proceedings of CVPR’07, 2007. [Sun+, 09] Latent Variable Perceptron Algorithm for Structured Classification. Xu Sun, Takuya Matsuzaki, Daisuke Okanohara and Jun’ichi Tsujii. Proceedings of IJCAI’09, 2009 3
  • 4. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 4
  • 5. x= x1 x2 xm y= y1 y2 ym y1 , . . . , ym ∈ Y 5
  • 6. ( : NP-chunking) x1 x2 x3 x4 x5 He is her brother . B O B I O y1 y2 y3 y4 y5 Y = {B, I, O} 6
  • 7. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 7
  • 8. Θ P (y|x, Θ) P (yi |xi , Θ) ∗ Θ {(xi , yi )}i=1 ∗ d .. . .. . d 8
  • 9. Θ P (y|x, Θ) x ˆ y = argmax P (y|x, Θ) ˆ y 9
  • 10. (x, y) →     f1 (y, x) Θ1   f2 (y, x)     Θ2    . .   . .  n  . · .  = F (y|x, Θ)      . .   . .   .   .  fn (y, x) Θn = = f (y, x) Θ 10
  • 11. 1 P (y|x, Θ) = exp F (y|x, Θ) Z Z= exp F (y |x, Θ) y F (y|x, Θ) = f (y, x) · Θ 1/Z argmax P (y|x, Θ) = argmax F (y|x, Θ) y y 11
  • 12. 1 P (y|x, Θ) = exp F (y|x, Θ) Z Z= exp F (y |x, Θ) y F (y|x, Θ) = fO(|Yx) ) Θ (y, |m · 1/Z argmax P (y|x, Θ) = argmax F (y|x, Θ) y y 12
  • 13. CRF: Conditional Random Field (sequential) yj−1 yj s(j, x, yj ) t(j, x, yj−1 , yj ) ⇒ 13
  • 14. CRF: Conditional Random Field (sequential) yj−1 yj s(j, x, yj ) t(j, x, yj−1 , yj ) ⇒ 14
  • 15. CRF d maximize log P (yi |xi , Θ) ∗ − R(Θ) i=1 R(Θ) Θ 15
  • 16. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 16
  • 17. Structured Perceptron ‣ ‣ (xi , yi ) ∗ F (yi |xi , Θ) ∗ =Θ· f (yi , xi ) ∗ (xi , yi ) ∗ yi = argmax F (y|xi , Θ ) i y yi = ∗ yi yi = ∗ yi Θ i+1 =Θ + i f (yi , xi ) ∗ − f (yi , xi ) Θ i+1 =Θ i 17
  • 18. Structured Perceptron Θ i+1 =Θ + i f (yi , xi ) ∗ − f (yi , xi ) Θ i+1 · (f (yi , xi ) ∗ − f (yi , xi )) 2 =Θ · i (f (yi , xi ) ∗ − f (yi , xi )) + f (yi , xi ) ∗ − f (yi , xi )2 ⇔ F (yi |xi , Θ ) ∗ i+1 − F (yi |xi , Θ i+1 ) 2 = F (yi |xi , Θi ) ∗ − F (yi |xi , Θ ) + i f (yi , xi ) ∗ − f (yi , xi )2 ≥0 18
  • 19. Structured Perceptron Θ i+1 =Θ + i f (yi , xi ) ∗ − f (yi , xi ) ∗ yi yi F (yi |xi , Θ ) ∗ i+1 − F (yi |xi , Θ i+1 ) 2 = F (yi |xi , Θi ) ∗ − F (yi |xi , Θ ) + i f (yi , xi ) ∗ − f (yi , xi )2 ≥0 19
  • 21. separability G(xi ) = {all possible label sequences for an example xi }, G(xi ) = G(xi ) − ∗ {yi } {(xi , yi )}d ∗ i=1 δ0 U2 = 1 U ∀i, ∀z ∈ G(xi ), F (yi |xi , U) − F (z|xi , U) ≥ δ. ∗ 21
  • 22. mistake bound δ0 {(xi , yi )}d ∗ i=1 M 2 R M≤ 2 δ R ∀i, ∀z ∈ G(xi ), f (yi , xi ) − f (z, xi )2 ≤ R ∗ d 22
  • 23. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 23
  • 24. They are her flowers . B O B I O They gave her flowers . B O B B O 24
  • 25. They are her flowers . B O B I O B1 They gave her flowers . B O B B O B2 25
  • 26. DPLVM - Discriminative Probabilistic Latent Variable Model Y ={ B , I , O }                    HB = { B1 , . . . , B|HB | } |HB | 26
  • 27. DPLVM - Discriminative Probabilistic Latent Variable Model y= y1 y2 ym h= h1 h2 hm ∀j, hj ∈ Hyj def. ⇐⇒ Proj(h) = y 27
  • 28. DPLVM (x, h) →     f1 (h, x) Θ1  f2 (h, x)   Θ2       . .   . .   . · .  = F (h|x, Θ)      .   .   . .   . .  fn (h, x) Θn = = f (h, x) Θ 28
  • 29. DPLVM h 1 P (h|x, Θ) = exp F (h|x, Θ) Z Z= exp F (h |x, Θ) h F (h|x, Θ) = f (h, x) · Θ f (h, x) argmax P (h|x, Θ) = argmax F (h|x, Θ) h h 29
  • 30. DPLVM ∗ (xi , yi ) h P (h|x, Θ) ∗ yi h P (y|x, Θ) = P (y|h, x, Θ)P (h|x, Θ) h = P (h|x, Θ) h:Proj(h)=y 30
  • 31. DPLVM d maximize log P (yi |xi , Θ) ∗ − R(Θ) i=1 R(Θ) Θ 31
  • 32. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 32
  • 33. Latent Variable Perceptron (xi , yi ) ∗ hi = argmax F (hi |xi , Θ), h yi = Proj(hi ) yi = ∗ yi yi = ∗ yi Θ i+1 =Θ +i f (hi , xi ) ∗ − f (h, xi ) Θ i+1 =Θ i ∗ hi ∗ hi = argmax F (h|xi , Θ ) i ∗ h:Proj(h)=yi 33
  • 34. mistake bound δ0 {(xi , yi )}i=1 ∗ d M 2T M 2 2 M≤ δ2 T d M = max f (y, xi )2 . i,y 34
  • 35. ‣ ‣ CRF Structured (Conditional Random Field) Perceptron 1 2 3 4 DPLVM Latent Variable (Discriminative Probabilistic Latent Variable Model) Perceptron ‣ 35
  • 36. ( ) ‣ X = {a, b} ‣ Y = {A, B} ‣ HA = {A1 , A2 }, HB = {B1 , B2 } ‣ P (hj |hj−1 ) P (xj |hj ) h x ‣ y = Proj(h) ‣ {(xi , yi )}i=1 ∗ d ‣ 36
  • 37. ( ) ‣ p from to A1 A2 B1 B2 A1 (1 − p)/3 (1 − p)/3 (1 − p)/3 p A2 p (1 − p)/3 (1 − p)/3 (1 − p)/3 B1 (1 − p)/3 p (1 − p)/3 (1 − p)/3 B2 (1 − p)/3 (1 − p)/3 p (1 − p)/3 ‣ P (xi = a|hi ) hi = A1 hi = A2 hi = B1 hi = B2 0.1 0.7 0.7 0.6 37
  • 38. ( ) Latent Variable Perceptron Structured Perceptron 100 90 accuracy [%] 80 70 60 50 40 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 p 38
  • 40. ‣ ‣ 40