SlideShare uma empresa Scribd logo
1 de 73
Baixar para ler offline
4	
  |	
  Proteins:	
  Structure,	
  Func2on,	
  Folding	
  
© 2013 W. H. Freeman and Company
Structure	
  of	
  Proteins	
  -­‐	
  General	
  Aspects	
  
	
  1.	
  aa	
  sequence	
  determines	
  3D	
  structure	
  
	
  
2.	
  Protein	
  func6on	
  	
  depends	
  on	
  its	
  structure	
  
	
  
3.	
  An	
  isolated	
  protein	
  usually	
  exists	
  in	
  one	
  or	
  few	
  
stable	
  structures	
  
	
  
4.	
  Noncovalent	
  interac6ons	
  are	
  the	
  most	
  
important	
  forces	
  stabilizing	
  protein	
  structure	
  
	
  
5.	
  There	
  are	
  common	
  structural	
  paFerns	
  in	
  protein	
  
architecture	
  
Structure	
  of	
  Proteins	
  
•  Unlike	
  most	
  organic	
  polymers,	
  protein	
  molecules	
  
adopt	
  a	
  specific	
  three-­‐dimensional	
  conforma6on.	
  
ü  Conforma(on:	
  spa%al	
  arrangement	
  of	
  atoms	
  in	
  a	
  protein	
  (any	
  structure	
  that	
  can	
  
exist	
  without	
  breaking	
  covalent	
  bonds)	
  
•  This	
  structure	
  is	
  able	
  to	
  fulfill	
  a	
  specific	
  biological	
  
func6on	
  
•  This	
  structure	
  is	
  called	
  the	
  na6ve	
  fold	
  
ü  Na(ve	
  proteins:	
  proteins	
  in	
  any	
  of	
  their	
  func%onal,	
  folded	
  conforma%ons	
  
•  The	
  na6ve	
  fold	
  has	
  a	
  large	
  number	
  of	
  favorable	
  
interac6ons	
  within	
  the	
  protein	
  
•  There	
  is	
  a	
  cost	
  in	
  conforma6onal	
  entropy	
  of	
  folding	
  
the	
  protein	
  into	
  one	
  specific	
  na6ve	
  fold	
  
Favorable	
  Interac2ons	
  in	
  Proteins	
  
•  Hydrophobic	
  effect	
  
–  Release	
  of	
  water	
  molecules	
  from	
  the	
  structured	
  solva6on	
  layer	
  around	
  
the	
  molecule	
  as	
  protein	
  folds	
  increases	
  the	
  net	
  entropy	
  
•  Hydrogen	
  bonds	
  
–  Interac6on	
  of	
  N-­‐H	
  and	
  C=O	
  of	
  the	
  pep6de	
  bond	
  leads	
  to	
  local	
  regular	
  
structures	
  such	
  as	
  α-­‐helices	
  and	
  β-­‐sheets	
  	
  	
  
•  London	
  dispersion	
  	
  
–  Medium-­‐range	
  weak	
  aFrac6on	
  between	
  all	
  atoms	
  contributes	
  
significantly	
  to	
  the	
  stability	
  in	
  the	
  interior	
  of	
  the	
  protein	
  
•  Electrosta2c	
  interac2ons	
  
–  Long-­‐range	
  strong	
  interac6ons	
  between	
  permanently	
  charged	
  groups	
  
–  Salt-­‐bridges,	
  esp.	
  buried	
  in	
  the	
  hydrophobic	
  environment	
  strongly	
  
stabilize	
  the	
  protein	
  
	
  
Structure of the enzyme
chymotrypsin, a globular protein.
A molecule of glycine (blue) is
shown for size comparison
4	
  Levels	
  of	
  Protein	
  Structure	
  
Weak	
  Interac2ons	
  Stabilize	
  Conforma2on	
  
•  Stability:	
  tendency	
  to	
  keep	
  na6ve	
  conforma6on	
  Release	
  of	
  water	
  
molecules	
  from	
  the	
  structured	
  solva6on	
  layer	
  around	
  the	
  molecule	
  as	
  
protein	
  folds	
  increases	
  the	
  net	
  entropy	
  
–  To	
  break	
  1	
  covalent	
  bond	
  à	
  200	
  –	
  460	
  kJ/mol	
  
–  To	
  break	
  a	
  weak	
  interac6on	
  (H-­‐bond;	
  hydrophobic	
  interac6on,	
  ionic	
  
bond,	
  etc.)	
  à	
  4	
  –	
  30	
  kJ/mol	
  	
  	
  
•  Weak	
  interac2ons	
  are	
  responsible	
  for	
  na2ve	
  structure	
  	
  
–  Breaking	
  individual	
  covalent	
  bonds	
  that	
  contribute	
  to	
  na6ve	
  structure	
  
of	
  proteins	
  (S-­‐S	
  bonds)	
  is	
  more	
  difficult	
  than	
  breaking	
  1	
  weak	
  
interac6on	
  	
  
–  BUT	
  because	
  there	
  are	
  so	
  many	
  weak	
  interac6ons	
  à	
  they	
  are	
  
responsible	
  for	
  keeping	
  na6ve	
  structure	
  
•  	
  Protein	
  conforma2on	
  with	
  the	
  lowest	
  free	
  energy	
  (most	
  
stable)	
  is	
  the	
  one	
  with	
  MAXIMUM	
  number	
  of	
  weak	
  
interac2ons	
  
Weak	
  Interac2ons	
  Stabilize	
  Conforma2on	
  
•  When	
  H2O	
  surrounds	
  a	
  hydrophobic	
  molecule,	
  a	
  solva2on	
  
layer	
  of	
  H2O	
  molecules	
  is	
  created	
  
–  increased order of H2O à ↓ entropy	
  	
  
–  BUT when non polar groups cluster together à ↓ solvation layer
à ↑ entropy à ↓ ΔG à more stable	
  
•  Two	
  rules:	
  
1)  Hydrophobic residues are buried inside proteins
2)  The number of H-bonds within a protein is maximized
	
  
Structure	
  of	
  the	
  Pep2de	
  Bond	
  
•  Structure	
  of	
  the	
  protein	
  is	
  par6ally	
  dictated	
  by	
  the	
  
proper6es	
  of	
  the	
  pep6de	
  bond	
  
•  The	
  pep6de	
  bond	
  is	
  a	
  resonance	
  hybrid	
  of	
  two	
  canonical	
  
structures	
  	
  
•  The	
  resonance	
  (electron	
  sharing)	
  causes	
  the	
  pep6de	
  bonds	
  
–  to	
  be	
  less	
  reac6ve	
  compared	
  to	
  esters,	
  for	
  example	
  
–  C-­‐N	
  bond	
  in	
  a	
  pep6de	
  bond	
  is	
  shorter	
  than	
  C-­‐N	
  bond	
  is	
  a	
  
simple	
  amine	
  	
  
–  to	
  be	
  quite	
  rigid	
  and	
  nearly	
  planar	
  	
  
–  to	
  exhibit	
  a	
  large	
  dipole	
  moment	
  in	
  the	
  favored	
  trans	
  
configura6on	
  
Resonance	
  in	
  the	
  Pep2de	
  Bond	
  
The	
  Rigid	
  Pep2de	
  Plane	
  and	
  	
  
the	
  Par2ally	
  Free	
  Rota2ons	
  
•  Rota6on	
  around	
  the	
  pep6de	
  bond	
  is	
  not	
  permi>ed	
  
•  Rota6on	
  around	
  bonds	
  connected	
  to	
  the	
  alpha	
  carbon	
  
is	
  permiFed	
  	
  	
  
•  φ (phi):	
  angle	
  around	
  the	
  α-­‐carbon—amide	
  nitrogen	
  
bond	
  	
  
•  ψ (psi):	
  angle	
  around	
  the	
  α-carbon—carbonyl	
  carbon	
  
bond	
  
•  In	
  a	
  fully	
  extended	
  polypep6de,	
  both	
  ψ and	
  φ are	
  180°	
  
The	
  polypep2de	
  is	
  made	
  up	
  of	
  a	
  series	
  of	
  
planes	
  linked	
  at	
  α	
  carbons	
  
•  The 6 atoms of the peptide group are in 1 plane
•  O atom of carbonyl and H atom of amide N are trans
•  Due to partial double bond, peptide bond cannot rotate freely
à limiting the range of conformation of a polypeptide
• Some φ and ψ combina6ons	
  are	
  very	
  unfavorable	
  because	
  of	
  
steric	
  crowding	
  of	
  backbone	
  atoms	
  with	
  other	
  atoms	
  in	
  the	
  
backbone	
  or	
  side	
  chains	
  	
  
• Some φ and	
  ψ combina6ons	
  are	
  more	
  favorable	
  because	
  of	
  
chance	
  to	
  form	
  favorable	
  H-­‐bonding	
  interac6ons	
  along	
  the	
  
backbone	
  	
  
Distribu2on	
  of	
  φ	
  and	
  ψ	
  Dihedral	
  Angles	
  	
  
Secondary	
  Structures	
  
•  2o	
  structure	
  refers	
  to	
  a	
  local	
  spa6al	
  arrangement	
  of	
  
the	
  polypep6de	
  backbone	
  (depends	
  on	
  common	
  
regular	
  folding	
  paFerns	
  of	
  polypep6de	
  backbone)	
  
•  Two	
  regular	
  arrangements	
  are	
  common:	
  	
  
•  The α	
  helix	
  
–  stabilized	
  by	
  hydrogen	
  bonds	
  between	
  nearby	
  residues	
  
•  The	
  β	
  sheet	
  
–  stabilized	
  by	
  hydrogen	
  bonds	
  between	
  adjacent	
  
segments	
  that	
  may	
  not	
  be	
  nearby	
  	
  
•  Irregular	
  arrangement	
  of	
  the	
  polypep6de	
  chain	
  is	
  
called	
  the	
  random	
  coil	
  	
  
The	
  α	
  Helix	
  
•  The	
  simplest	
  arrangement	
  a	
  polypep6de	
  can	
  assume	
  (with	
  its	
  
rigid	
  pep6de	
  bonds	
  and	
  other	
  freely-­‐rota6ng	
  single	
  bonds)	
  is	
  
a	
  helical	
  structure	
  
–  In	
  general,	
  ~	
  ¼	
  of	
  all	
  aa	
  residues	
  in	
  polypep6des	
  are	
  found	
  in	
  α	
  
helices	
  
–  E.g.	
  in	
  α-kera6ns, α helix	
  is	
  a	
  predominant	
  structure	
  
•  Helical	
  backbone	
  is	
  held	
  together	
  by	
  hydrogen	
  bonds	
  
between	
  the	
  backbone	
  amides	
  of	
  an	
  n	
  and	
  n+4	
  amino	
  acids	
  
•  Right-­‐handed	
  helix	
  with	
  3.6	
  residues	
  (5.4	
  Å)	
  per	
  turn	
  
•  Pep6de	
  bonds	
  are	
  aligned	
  roughly	
  parallel	
  with	
  the	
  helical	
  
axis	
  
•  Side	
  chains	
  point	
  out	
  and	
  are	
  roughly	
  perpendicular	
  with	
  the	
  
helical	
  axis	
  
What	
  is	
  a	
  right-­‐handed	
  helix?	
  
The	
  α	
  Helix:	
  Top	
  View	
  
•  The	
  inner	
  diameter	
  of	
  the	
  helix	
  (no	
  side	
  chains)	
  is	
  
about	
  4–5	
  Å	
  
•  Too	
  small	
  for	
  anything	
  to	
  fit	
  “inside”	
  	
  
•  The	
  outer	
  diameter	
  of	
  the	
  helix	
  (with	
  side	
  chains)	
  is	
  
10–12	
  Å	
  
•  Happens	
  to	
  fit	
  well	
  into	
  the	
  major	
  groove	
  of	
  dsDNA	
  
•  Residues	
  1	
  and	
  8	
  align	
  nicely	
  on	
  top	
  of	
  each	
  other	
  
•  What	
  kind	
  of	
  sequence	
  gives	
  an	
  α	
  helix	
  with	
  one	
  
hydrophobic	
  face?	
  
Sequence	
  affects	
  helix	
  stability	
  
•  Not	
  all	
  polypep6de	
  sequences	
  adopt	
  α-­‐helical	
  structures	
  
•  Small	
  hydrophobic	
  residues	
  such	
  as	
  Ala	
  and	
  Leu	
  are	
  
strong	
  helix	
  formers	
  
•  	
  Pro	
  acts	
  as	
  a	
  helix	
  breaker	
  because	
  the	
  rota6on	
  around	
  
the	
  N-­‐Cα	
  bond	
  is	
  impossible	
  
•  	
  Gly	
  acts	
  as	
  a	
  helix	
  breaker	
  because	
  the	
  6ny	
  R-­‐group	
  
supports	
  other	
  conforma6ons	
  
•  AFrac6ve	
  or	
  repulsive	
  interac6ons	
  between	
  side	
  chains	
  
3–4	
  amino	
  acids	
  apart	
  will	
  affect	
  forma6on	
  
Constraints	
  to	
  helix	
  stability	
  
1.  Electrosta6c	
  repulsion	
  (or	
  aFrac6on)	
  between	
  
successive	
  charged	
  aa	
  
2.  Bulkiness	
  of	
  adjacent	
  R	
  groups	
  
3.  Interac6ons	
  between	
  R	
  groups	
  3	
  or	
  4	
  residues	
  apart	
  
4.  Pro	
  or	
  Gly	
  
5.  Interac6ons	
  of	
  aa	
  with	
  dipoles	
  of	
  a	
  helix	
  
Constraints	
  to	
  helix	
  stability	
  
1.  Electrosta6c	
  repulsion	
  (or	
  aFrac6on)	
  between	
  
successive	
  charged	
  aa	
  
	
  
•  Interac6ons	
  between	
  aa	
  side	
  chains	
  can	
  stabilize	
  or	
  
destabilize	
  a	
  helix:	
  
•  E.g.	
  long	
  block	
  of	
  Glu	
  (E)	
  residues	
  à	
  no	
  helix	
  at	
  pH	
  7	
  
because	
  of	
  –ve	
  charge	
  repulsion	
  
•  Same	
  for	
  +vely	
  charged	
  aa	
  
Constraints	
  to	
  helix	
  stability	
  
2.  Bulkiness	
  of	
  adjacent	
  R	
  groups	
  
	
  
•  Near	
  each	
  other,	
  these	
  aa	
  and	
  other	
  bulky	
  aa	
  will	
  not	
  fit	
  
well	
  due	
  to	
  steric	
  hindrance	
  
•  Small	
  hydrophobic	
  residues	
  such	
  as	
  Ala	
  and	
  Leu	
  are	
  
strong	
  helix	
  formers	
  
Constraints	
  to	
  helix	
  stability	
  
3.  Interac6ons	
  between	
  R	
  groups	
  3	
  or	
  4	
  residues	
  apart	
  
•  Due	
  to	
  the	
  twist	
  of	
  α	
  helix	
  à	
  cri6cal	
  interac6on	
  
between	
  aa	
  side	
  chain	
  and	
  side	
  chain	
  of	
  aa	
  3	
  or	
  4	
  
residues	
  apart	
  in	
  both	
  direc6ons	
  
•  Ooen,	
  +vely	
  charged	
  aa	
  are	
  3	
  or	
  4	
  aa	
  away	
  from	
  –ve	
  
charge	
  à	
  forming	
  ion	
  pairs	
  
•  Two	
  hydrophobic	
  side	
  chains	
  3	
  or	
  4	
  aa	
  apart	
  à	
  
hydrophobic	
  interac6ons	
  	
  	
  
Constraints	
  to	
  helix	
  stability	
  
4.  The	
  presence	
  of	
  Pro	
  or	
  Gly	
  
•  Pro:	
  rarely	
  found	
  in	
  α	
  helix	
  
	
  1)	
  rota6on	
  about	
  N-­‐Cα	
  is	
  not	
  possible	
  because	
  N	
  is	
  part	
  
of	
  a	
  rigid	
  ring	
  
	
  2)	
  N	
  has	
  no	
  H	
  to	
  par6cipate	
  in	
  H-­‐bonds	
  
•  Gly:	
  infrequently	
  found	
  in	
  α	
  helix	
  
•  it	
  has	
  more	
  conforma6onal	
  flexibility	
  than	
  other	
  aa	
  
•  makes	
  a	
  different	
  coiled	
  structures	
  than	
  α	
  helix	
  
Constraints	
  to	
  helix	
  stability	
  
5.  Dipoles	
  
•  A	
  small	
  electric	
  dipole	
  exists	
  in	
  each	
  	
  
pep6de	
  bond	
  
–  Carbonyl	
  O	
  nega6ve	
  
–  Amide	
  H	
  posi6ve	
  
•  Dipoles	
  are	
  connected	
  by	
  H-­‐bonds	
  è	
  large	
  net	
  macroscopic	
  
dipole	
  moment	
  extending	
  along	
  helix	
  (increases	
  with	
  helix	
  
length)	
  
•  The	
  4	
  aa	
  at	
  the	
  ends	
  of	
  the	
  helix	
  do	
  not	
  par6cipate	
  fully	
  in	
  H-­‐
bonds	
  à	
  on	
  N-­‐terminus	
  par6al	
  +ve	
  charge	
  and	
  on	
  C-­‐terminus	
  
par6al	
  –ve	
  charge	
  
•  Therefore,	
  normally	
  –vely	
  charge	
  aa	
  are	
  found	
  near	
  N-­‐termini	
  
and	
  vice	
  versa	
  (a	
  +ve	
  aa	
  near	
  N-­‐terminus	
  is	
  destabilizing).	
  	
  
β	
  Sheets	
  
•  The	
  planarity	
  of	
  the	
  pep6de	
  bond	
  and	
  tetrahedral	
  
geometry	
  of	
  the	
  α-­‐carbon	
  create	
  a	
  pleated	
  sheet-­‐like	
  
structure	
  
•  Sheet-­‐like	
  arrangement	
  of	
  backbone	
  is	
  held	
  together	
  by	
  
hydrogen	
  bonds	
  between	
  the	
  backbone	
  amides	
  in	
  
different	
  strands	
  
•  Side	
  chains	
  protrude	
  from	
  the	
  sheet	
  alterna6ng	
  in	
  up	
  
and	
  down	
  direc6on	
  
β	
  Sheets	
  
•  Backbone	
  is	
  extended	
  into	
  a	
  zigzag	
  
•  Zigzag	
  polypep6de	
  chains	
  are	
  arranged	
  side-­‐by-­‐side	
  
forming	
  the	
  β	
  sheet	
  
•  H-­‐bonds	
  form	
  between	
  adjacent	
  segments	
  
•  Segments	
  are	
  usually	
  near	
  each	
  other	
  (some6mes	
  can	
  
be	
  very	
  far	
  or	
  even	
  between	
  different	
  polypep6des)	
  
•  The	
  R	
  groups	
  of	
  adjacent	
  aa	
  come	
  out	
  opposite	
  
direc6on	
  
•  Size	
  limits:	
  nearby	
  R	
  groups	
  must	
  be	
  small	
  
•  E.g.	
  β-­‐kera6ns	
  (silk	
  fibroin	
  and	
  fibroin	
  of	
  spider	
  webs)	
  
have	
  high	
  content	
  of	
  Gly	
  and	
  Ala	
  (smallest	
  R	
  groups)	
  
•  Adjacent	
  chains	
  can	
  be	
  parallel	
  or	
  an6-­‐parallel	
  
Parallel	
  and	
  An2parallel	
  β Sheets	
  
•  Parallel	
  or	
  an6parallel	
  orienta6on	
  of	
  two	
  chains	
  
within	
  a	
  sheet	
  are	
  possible	
  	
  
•  In	
  parallel	
  β	
  sheets	
  the	
  H-­‐bonded	
  strands	
  run	
  in	
  
the	
  same	
  direc6on	
  
–  Resul6ng	
  in	
  bent	
  H-­‐bonds	
  (weaker)	
  
•  In	
  an6parallel	
  β	
  sheets	
  the	
  H-­‐bonded	
  strands	
  run	
  
in	
  opposite	
  direc6ons	
  	
  
–  Resul6ng	
  in	
  linear	
  H-­‐bonds	
  (stronger)	
  
 β Turns	
  
•  Globular	
  proteins	
  have	
  compact	
  folded	
  structures	
  
•  ~	
  1/3	
  aa	
  are	
  turns	
  or	
  loops	
  (polypep6de	
  reverses	
  
direc6on)	
  
•  β	
  turns	
  occur	
  frequently	
  whenever	
  strands	
  in	
  β	
  sheets	
  
change	
  the	
  direc6on	
  	
  	
  
•  Connec6ng	
  elements	
  linking	
  successive	
  runs	
  of	
  α	
  helix	
  
or	
  β	
  sheet	
  
•  The	
  180°	
  turn	
  is	
  accomplished	
  over	
  four	
  amino	
  acids	
  
•  The	
  turn	
  is	
  stabilized	
  by	
  a	
  hydrogen	
  bond	
  from	
  a	
  
carbonyl	
  oxygen	
  to	
  amide	
  proton	
  three	
  residues	
  down	
  
the	
  sequence	
  (aa1	
  and	
  aa4)	
  
•  Proline	
  in	
  posi6on	
  2	
  or	
  glycine	
  in	
  posi6on	
  3	
  are	
  
common	
  in	
  β	
  turns	
  
Proline	
  Isomers	
  
•  Most	
  pep6de	
  bonds	
  not	
  involving	
  proline	
  are	
  in	
  the	
  
trans	
  configura6on	
  (>99.95%)	
  	
  	
  
•  For	
  pep6de	
  bonds	
  involving	
  proline,	
  about	
  6%	
  are	
  in	
  the	
  
cis	
  configura6on.	
  	
  Most	
  of	
  this	
  6%	
  involve	
  β-­‐turns	
  
•  Proline	
  isomeriza6on	
  is	
  catalyzed	
  by	
  proline	
  isomerases	
  
γ	
  turns	
  
•  Less	
  common	
  
•  3	
  aa	
  turn	
  
•  H-­‐bonding	
  between	
  1st	
  and	
  3rd	
  aa	
  
Circular	
  Dichroism	
  (CD)	
  Analysis	
  
•  A	
  technique	
  used	
  to	
  determine	
  the	
  secondary	
  structure	
  fold	
  
of	
  purified	
  proteins	
  
•  CD	
  measures	
  the	
  molar	
  absorp6on	
  difference	
  Δε of	
  leo-­‐	
  and	
  
right-­‐circularly	
  polarized	
  light:	
  Δε = εL – εR
•  Chromophores	
  (mainly	
  aroma6c	
  aa)	
  in	
  the	
  chiral	
  
environment	
  produce	
  characteris6c	
  signals	
  
•  CD	
  signals	
  from	
  pep6de	
  bonds	
  depend	
  on	
  the	
  chain	
  
conforma6on	
  	
  	
  
•  Characteris6c	
  spectra	
  for	
  different	
  secondary	
  structures	
  
•  Combined	
  spectra	
  give	
  the	
  percentage	
  of	
  α	
  to	
  β	
  in	
  a	
  protein	
  
• Ter6ary	
  structure	
  refers	
  to	
  the	
  overall	
  spa6al	
  
arrangement	
  of	
  atoms	
  in	
  a	
  protein	
  
• Stabilized	
  by	
  numerous	
  weak	
  interac6ons	
  between	
  
amino	
  acid	
  side	
  chains.	
  
-  Largely	
  hydrophobic	
  and	
  polar	
  interac6ons	
  
-  Can	
  be	
  stabilized	
  by	
  disulfide	
  bonds	
  
• Interac6ng	
  amino	
  acids	
  are	
  not	
  necessarily	
  next	
  to	
  
each	
  other	
  in	
  the	
  primary	
  sequence.	
  	
  	
  
• Two	
  major	
  classes	
  
– 	
  Fibrous	
  and	
  globular	
  
Protein	
  Ter2ary	
  Structure	
  
•  Fibrous	
  proteins	
  –	
  polypep6de	
  chain	
  arranged	
  in	
  
long	
  strands	
  or	
  sheets	
  
	
  –	
  consist	
  largely	
  of	
  1	
  type	
  of	
  2o	
  structure	
  
	
  –	
  needed	
  for	
  structure	
  and	
  shape	
  of	
  cells	
  
	
   	
  –	
  water	
  insoluble	
  (hydrophobic)	
  
	
  
•  Globular	
  proteins	
  –	
  polypep6de	
  chain	
  folded	
  into	
  
spherical	
  shape	
  
	
  –	
  many	
  types	
  of	
  2o	
  structures	
  
	
  –	
  enzymes	
  and	
  regulators	
  
	
  –	
  largely	
  water	
  soluble	
  (hydrophilic) 	
  	
  
Protein	
  Ter2ary	
  Structure	
  
Fibrous Proteins:
From Structure to Function
Function Structure Example
Tough, rigid, Cross-linked α-helixes α-keratin
hard (nails, horns) Rigid linker (S—S)
Tensile strength, Cross-linked triple-helixes Collagen
non-stretching Flexible linker (Lys-HyLys)
(tendons, cartilage)
Soft, flexible Non-covalently held β-sheets
non-stretchy van der Waals interaction Silk fibroin
(egg sac, nest, web)
•  Have	
  proper6es	
  that	
  give	
  them	
  strength	
  and	
  
flexibility	
  
•  All	
  fibrous	
  proteins	
  are	
  water	
  insoluble	
  (high	
  
concentra6on	
  of	
  hydrophobic	
  aa	
  inside	
  and	
  on	
  
protein	
  surface)	
  
•  α-­‐kera2n:	
  ~	
  all	
  dry	
  weight	
  of	
  hair,	
  wool,	
  nail,	
  
horns,	
  hooves,	
  etc.	
  
•  Part	
  of	
  a	
  family	
  called	
  intermediate	
  filaments	
  (IF)	
  
•  Coiled	
  coil,	
  parallel	
  (N-­‐termini	
  at	
  same	
  side)	
  
•  Supertwists	
  are	
  leo-­‐handed	
  
•  At	
  the	
  surface	
  of	
  a	
  helix	
  where	
  supertwists	
  exist	
  
there	
  are	
  many	
  hydrophobic	
  aa
	
  	
  
Fibrous	
  Proteins	
  
Structure	
  of	
  α-­‐Kera2n	
  in	
  Hair	
  
•  Simple	
  3o	
  structure:	
  dominated	
  by	
  a-­‐helical	
  2o	
  structure	
  with	
  its	
  
helical	
  axis	
  twisted	
  in	
  a	
  leo-­‐handed	
  helix	
  
•  Complex	
  4o	
  structure:	
  many	
  coiled	
  coils	
  assembled	
  into	
  large	
  
supramolecular	
  complexes	
  	
  
Chemistry	
  of	
  Permanent	
  Waving	
  
Structure	
  of	
  Collagen	
  
•  Collagen	
  is	
  an	
  important	
  cons6tuent	
  of	
  connec6ve	
  
6ssue:	
  tendons,	
  car6lage,	
  bones,	
  cornea	
  of	
  the	
  eye	
  	
  
•  Each	
  collagen	
  chain	
  is	
  a	
  long	
  Gly-­‐	
  and	
  Pro-­‐rich	
  leo-­‐
handed	
  helix	
  
•  Collagen	
  helix	
  is	
  different	
  from	
  α	
  helix:	
  	
  
	
  1)	
  it	
  is	
  leo	
  handed	
  
	
  2)	
  it	
  has	
  3	
  aa	
  per	
  turn	
  
•  Three	
  collagen	
  chains	
  intertwine	
  into	
  a	
  right-­‐handed	
  
superhelical	
  triple	
  helix	
  
•  The	
  triple	
  helix	
  has	
  higher	
  tensile	
  strength	
  than	
  a	
  steel	
  
wire	
  of	
  equal	
  cross	
  sec6on	
  
Structure	
  of	
  Collagen	
  
•  Typical	
  collagen	
  has	
  ~35%	
  Gly,	
  11%	
  Ala	
  and	
  21%	
  Pro	
  
and	
  4-­‐Hyp	
  
	
  –	
  aa	
  sequence	
  is	
  generally	
  a	
  tripep6de	
  (Gly-­‐X-­‐X)	
  
often Pro often 4-Hyp	
  
•  Many	
  triple-­‐helices	
  assemble	
  into	
  a	
  collagen	
  fibril	
  
•  Collagenase	
  is	
  an	
  enzyme	
  that	
  breaks	
  down	
  collagen	
  
Collagen	
  Fibrils	
  
Silk	
  Fibroin	
  
•  Fibroin	
  is	
  the	
  main	
  protein	
  in	
  silk	
  from	
  moths	
  and	
  spiders	
  
•  An6parallel	
  β	
  sheet	
  structure	
  	
  	
  
•  Small	
  side	
  chains	
  (Ala	
  and	
  Gly)	
  allow	
  the	
  close	
  packing	
  of	
  
sheets	
  
•  Silk	
  does	
  not	
  stretch	
  (β	
  conforma6on	
  is	
  highly	
  extended)	
  
•  Flexible	
  because	
  it	
  is	
  held	
  together	
  by	
  weak	
  interac6ons	
  	
  
•  Structure	
  is	
  stabilized	
  by	
  
–  hydrogen	
  bonding	
  within	
  sheets	
  
–  London	
  dispersion	
  interac6ons	
  between	
  sheets	
  
Globular	
  Proteins	
  
•  Different	
  segments	
  of	
  polypep6de	
  chain	
  (or	
  mul6ple	
  
polypep6de	
  chains)	
  fold	
  back	
  on	
  each	
  other	
  à	
  compact	
  
form	
  
•  Provides	
  structural	
  diversity	
  to	
  carry	
  out	
  a	
  wide	
  range	
  of	
  
biological	
  func6ons	
  
Human serum albumin
Myoglobin	
  
•  Small	
  (Mr	
  16700)	
  
•  	
  O2–binding	
  protein	
  of	
  muscle	
  cells	
  
•  Storage	
  of	
  O2	
  and	
  rapid	
  supply	
  to	
  contrac6ng	
  muscles	
  	
  
•  Has	
  a	
  heme	
  group	
  
•  Abundant	
  in	
  muscles	
  of	
  diving	
  mammals	
  
•  8	
  straight	
  α	
  helices	
  interrupted	
  by	
  bends	
  (some	
  of	
  which	
  
are	
  β	
  turns)	
  
•  Longest	
  helix	
  –	
  23	
  aa;	
  shortest	
  helix	
  –	
  7	
  aa	
  
•  70%	
  of	
  myoglobin	
  is	
  α	
  helix	
  
•  Most	
  hydrophobic	
  R	
  groups	
  are	
  inside	
  the	
  protein	
  
The hydrophobic residues are
shown in blue; most are buried in
the interior of the protein and thus
not visible
Mo2fs	
  (folds	
  or	
  supersecondary	
  structures)
•  Specific	
  arrangement	
  of	
  several	
  secondary	
  
structure	
  elements	
  
–  All	
  alpha-­‐helix	
  
–  All	
  beta-­‐sheet	
  
–  Both	
  
•  Mo6fs	
  can	
  be	
  found	
  as	
  reoccurring	
  structures	
  in	
  
numerous	
  proteins	
  
•  Proteins	
  are	
  made	
  of	
  different	
  mo6fs	
  folded	
  
together	
  
•  Complex motifs:
•  A series of β-α-β loops can
form a barrel, called α/β
barrel
•  All connections are right
handed
Protein	
  Quaternary	
  Structure	
  
• 	
  Quaternary	
  structure	
  is	
  formed	
  by	
  the	
  assembly	
  of	
  
individual	
  polypep6des	
  into	
  a	
  larger	
  func6onal	
  cluster	
  
• 	
  It	
  describes	
  the	
  arrangement	
  of	
  protein	
  subunits	
  in	
  3D	
  
complexes	
  
• Only	
  in	
  mul6subunit	
  proteins	
  
Tetramer or dimer of αβ protomers
Proteostasis	
  
Maintenance	
  of	
  cellular	
  protein	
  ac6vity	
  is	
  accomplished	
  
by	
  the	
  coordina6on	
  of	
  many	
  different	
  pathways.	
  
3 processes contribute to
proteostasis:
1)  protein synthesis on ribosomes
2)  protein folding (involving
complexes called chaperones)
3)  the sequestration and
degradation of proteins that are
irreversibly unfolded
Protein	
  Stability	
  and	
  Folding	
  
•  A	
  protein’s	
  func6on	
  depends	
  on	
  its	
  3D-­‐structure	
  
•  Denatura6on:	
  the	
  loss	
  of	
  na6ve	
  structure	
  sufficient	
  to	
  cause	
  
loss	
  of	
  func6on	
  
•  Does	
  not	
  mean	
  that	
  protein	
  is	
  always	
  unfolded	
  
•  Under	
  most	
  condi6ons,	
  denatured	
  proteins	
  exist	
  in	
  par6ally	
  
folded	
  states	
  
•  Loss of structure à Loss of function
•  Causes	
  of	
  denatura6on:	
  
	
  
1)  Heat:	
  affec6ng	
  weak	
  interac6ons	
  (mainly	
  H-­‐bonds)	
  
-­‐	
  gradual	
  increase	
  in	
  temp,	
  conforma6on	
  remains	
  intact	
  un6l	
  
an	
  abrupt	
  change	
  occurs	
  at	
  a	
  narrow	
  temp	
  range	
  
-­‐	
  due	
  to	
  coopera6vity	
  (loss	
  of	
  structure	
  in	
  one	
  part	
  of	
  the	
  
protein	
  destabilizes	
  other	
  parts)	
  
2)  Extremes	
  of	
  pH:	
  change	
  net	
  charge	
  on	
  protein	
  à	
  electrosta6c	
  
repulsion	
  and	
  disrup6on	
  of	
  some	
  H-­‐bonds	
  
3)  Organic	
  solvents,	
  detergents:	
  no	
  covalent	
  bonds	
  in	
  the	
  protein	
  
are	
  broken.	
  Disrup6on	
  of	
  hydrophobic	
  interac6ons	
  
	
  
4)  Chaotropic	
  agents	
  (urea	
  and	
  guanidine	
  HCl):	
  disrup6on	
  of	
  the	
  
arrangement	
  of	
  water	
  molecules	
  that	
  solvate	
  the	
  proteins	
  	
  
Melting temp
•  Renatura2on:	
  some	
  denatured	
  proteins	
  can	
  get	
  back	
  to	
  their	
  
na6ve	
  conforma6on	
  and	
  biological	
  ac6vity	
  if	
  returned	
  to	
  
condi6ons	
  where	
  na6ve	
  conforma6on	
  is	
  stable	
  
•  E.g.	
  Ribonuclease	
  A	
  is	
  a	
  small	
  protein	
  that	
  contains	
  8	
  cysteines	
  
linked	
  via	
  4	
  disulfide	
  bonds.	
  It	
  can	
  be	
  fully	
  denatured	
  by	
  urea	
  
and	
  a	
  reducing	
  agent	
  (to	
  break	
  its	
  4	
  disulfide	
  bonds)	
  	
  
•  When	
  urea	
  and	
  2-­‐mercaptoethanol	
  are	
  removed,	
  the	
  protein	
  
spontaneously	
  refolds,	
  and	
  the	
  correct	
  disulfide	
  bonds	
  are	
  
reformed	
  	
  	
  	
  
•  The	
  sequence	
  alone	
  determines	
  the	
  na%ve	
  conforma%on	
  
Ribonuclease	
  Refolding	
  Experiment	
  
Quite	
  “simple”	
  experiment,	
  but	
  so	
  
important	
  it	
  earned	
  Chris	
  Anfinsen	
  
the	
  1972	
  Chemistry	
  Nobel	
  Prize	
  
•  Defects	
  in	
  protein	
  folding	
  cause	
  many	
  diseases:	
  
q Cys2c	
  fibrosis	
  (CF	
   ‫التليف‬	
  ‫الكيسي‬ )	
  is	
  caused	
  by	
  a	
  muta6on	
  in	
  the	
  gene	
  
for	
  the	
  protein	
  cys6c	
  fibrosis	
  transmembrane	
  conductance	
  
regulator	
  (CFTR),	
  a	
  Cl-­‐	
  channel.	
  A	
  muta6on	
  in	
  this	
  protein	
  causes	
  
misfolding	
  
q Mad	
  cow	
  disease	
  caused	
  by	
  a	
  misfolded	
  protein	
  (prion)	
  
q Amyloid	
  fibrils	
  accumulate	
  in	
  Alzheimer's	
  disease	
  and	
  many	
  other	
  
neurodegenera2ve	
  diseases.	
  They	
  arise	
  from	
  misfolded	
  normal	
  
proteins	
  and	
  polypep6des	
  
Protein	
  misfolding	
  is	
  the	
  basis	
  of	
  
numerous	
  human	
  diseases	
  
•  Not	
  all	
  proteins	
  fold	
  spontaneously	
  
•  Molecular	
  chaperones	
  are	
  proteins	
  that	
  help	
  proteins	
  fold	
  by	
  
interac6ng	
  with	
  par6ally	
  folded	
  polypep6des	
  and	
  providing	
  
microenvironments	
  for	
  proper	
  folding	
  
•  Two	
  classes:	
  
1.  Hsp70	
  –	
  heat	
  shock	
  proteins	
  of	
  MW	
  ~70	
  kDa	
  
-­‐	
  bind	
  to	
  unfolded	
  polypep6des	
  rich	
  in	
  hydrophobic	
  aa	
  
-­‐	
  need	
  another	
  Hsp40	
  
-­‐	
  In	
  bacteria,	
  homologs	
  are	
  DnaK	
  and	
  DnaJ	
  
-­‐	
  prevent	
  the	
  aggrega6on	
  of	
  unfolded	
  proteins	
  
2.  Chaperonins	
  –	
  (GroEL/GroES	
  in	
  bacteria)	
  
-­‐	
  barrel	
  and	
  lid,	
  provide	
  good	
  microenvironment	
  for	
  proteins	
  to	
  
fold	
  properly	
  
Assisted	
  Folding	
  of	
  Proteins	
  
Chaperones	
  prevent	
  misfolding	
  	
  
Chaperonins	
  facilitate	
  folding	
  
Biochemistry - Ch4 protein structure , and function

Mais conteúdo relacionado

Mais procurados

Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)
Amrutha Hari
 
Quaternary structure of protein
Quaternary structure of proteinQuaternary structure of protein
Quaternary structure of protein
Arjun K Gopi
 

Mais procurados (20)

Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and ProteinsLearning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
 
Protein structure & function
Protein structure & functionProtein structure & function
Protein structure & function
 
Quaternary structure of protein
Quaternary structure of proteinQuaternary structure of protein
Quaternary structure of protein
 
protein ligend interaction by kk sahu
protein ligend interaction by kk sahuprotein ligend interaction by kk sahu
protein ligend interaction by kk sahu
 
Four levels of protein structure
Four levels of protein structureFour levels of protein structure
Four levels of protein structure
 
Quaternary structure of protein By KK Sahu Sir
Quaternary structure of protein By KK Sahu SirQuaternary structure of protein By KK Sahu Sir
Quaternary structure of protein By KK Sahu Sir
 
Biochemistry - Ch3 Amino Acids , Peptides , Protein
Biochemistry - Ch3 Amino Acids , Peptides , ProteinBiochemistry - Ch3 Amino Acids , Peptides , Protein
Biochemistry - Ch3 Amino Acids , Peptides , Protein
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
HELIX-LOOP-HELIX, HELIX-TURN-HELIX
HELIX-LOOP-HELIX, HELIX-TURN-HELIXHELIX-LOOP-HELIX, HELIX-TURN-HELIX
HELIX-LOOP-HELIX, HELIX-TURN-HELIX
 
Protein structure
Protein structure  Protein structure
Protein structure
 
Supersecondary structure ppt
Supersecondary structure pptSupersecondary structure ppt
Supersecondary structure ppt
 
Protein folding @ sid
Protein folding @ sidProtein folding @ sid
Protein folding @ sid
 
Fibrous proteinss
Fibrous proteinssFibrous proteinss
Fibrous proteinss
 
Protein folding
Protein foldingProtein folding
Protein folding
 
Membrane Proteins & its types
Membrane Proteins & its typesMembrane Proteins & its types
Membrane Proteins & its types
 
Protein
ProteinProtein
Protein
 
Protein Structure and Function
Protein Structure and FunctionProtein Structure and Function
Protein Structure and Function
 
Glycolipids
GlycolipidsGlycolipids
Glycolipids
 

Semelhante a Biochemistry - Ch4 protein structure , and function

Bản sao của Lesson2.1 - Protein structure.pptx
Bản sao của Lesson2.1 - Protein structure.pptxBản sao của Lesson2.1 - Protein structure.pptx
Bản sao của Lesson2.1 - Protein structure.pptx
nhblamy2023
 

Semelhante a Biochemistry - Ch4 protein structure , and function (20)

Structural level of organization of proteins
Structural level of organization of proteinsStructural level of organization of proteins
Structural level of organization of proteins
 
protein
protein protein
protein
 
proteins.pdf
proteins.pdfproteins.pdf
proteins.pdf
 
structureofproteins-161119045143.pptx
structureofproteins-161119045143.pptxstructureofproteins-161119045143.pptx
structureofproteins-161119045143.pptx
 
Atindra-protein.pptx
Atindra-protein.pptxAtindra-protein.pptx
Atindra-protein.pptx
 
PROTEIN STRUCTURE PRESENTATION
PROTEIN STRUCTURE PRESENTATIONPROTEIN STRUCTURE PRESENTATION
PROTEIN STRUCTURE PRESENTATION
 
Proteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012bProteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012b
 
Structure of protiens and the applied aspects
Structure of protiens and the applied aspectsStructure of protiens and the applied aspects
Structure of protiens and the applied aspects
 
Lec4 protein structure aimec
Lec4 protein structure aimecLec4 protein structure aimec
Lec4 protein structure aimec
 
Lec4 proteinstructure
Lec4 proteinstructureLec4 proteinstructure
Lec4 proteinstructure
 
Protein folding by KK Sahu sir
Protein folding by KK Sahu sirProtein folding by KK Sahu sir
Protein folding by KK Sahu sir
 
Protein Structure
Protein StructureProtein Structure
Protein Structure
 
Proteins
ProteinsProteins
Proteins
 
Protein
ProteinProtein
Protein
 
Structure of protein By KK Sahu Sir
Structure of protein By KK Sahu SirStructure of protein By KK Sahu Sir
Structure of protein By KK Sahu Sir
 
protin super sec strctr.pptx
protin super sec strctr.pptxprotin super sec strctr.pptx
protin super sec strctr.pptx
 
219102 lecture 7
219102 lecture 7219102 lecture 7
219102 lecture 7
 
Bản sao của Lesson2.1 - Protein structure.pptx
Bản sao của Lesson2.1 - Protein structure.pptxBản sao của Lesson2.1 - Protein structure.pptx
Bản sao của Lesson2.1 - Protein structure.pptx
 
Protein structure and_stability-1
Protein structure and_stability-1Protein structure and_stability-1
Protein structure and_stability-1
 
Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students
 

Mais de Areej Abu Hanieh

Mais de Areej Abu Hanieh (20)

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank you
 
Infection - penicillins
Infection - penicillinsInfection - penicillins
Infection - penicillins
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumonia
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy
 
Cellulitis - Treatment
Cellulitis - TreatmentCellulitis - Treatment
Cellulitis - Treatment
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - Pharmacology
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology
 
Sickle cell anemia
Sickle cell anemia Sickle cell anemia
Sickle cell anemia
 
Poisoning - Treatment
Poisoning - TreatmentPoisoning - Treatment
Poisoning - Treatment
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergencies
 
Diabetic ketoacidosis DKA
Diabetic ketoacidosis DKADiabetic ketoacidosis DKA
Diabetic ketoacidosis DKA
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failure
 
Acute Coronary syndrome
Acute Coronary syndrome Acute Coronary syndrome
Acute Coronary syndrome
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus
 
Stress ulcer prophylaxis
Stress ulcer prophylaxis Stress ulcer prophylaxis
Stress ulcer prophylaxis
 
Pain in the ICU
Pain in the ICUPain in the ICU
Pain in the ICU
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVT
 
Anti - Coagulants agents
Anti - Coagulants agentsAnti - Coagulants agents
Anti - Coagulants agents
 

Último

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 

Último (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 

Biochemistry - Ch4 protein structure , and function

  • 1. 4  |  Proteins:  Structure,  Func2on,  Folding   © 2013 W. H. Freeman and Company
  • 2. Structure  of  Proteins  -­‐  General  Aspects    1.  aa  sequence  determines  3D  structure     2.  Protein  func6on    depends  on  its  structure     3.  An  isolated  protein  usually  exists  in  one  or  few   stable  structures     4.  Noncovalent  interac6ons  are  the  most   important  forces  stabilizing  protein  structure     5.  There  are  common  structural  paFerns  in  protein   architecture  
  • 3. Structure  of  Proteins   •  Unlike  most  organic  polymers,  protein  molecules   adopt  a  specific  three-­‐dimensional  conforma6on.   ü  Conforma(on:  spa%al  arrangement  of  atoms  in  a  protein  (any  structure  that  can   exist  without  breaking  covalent  bonds)   •  This  structure  is  able  to  fulfill  a  specific  biological   func6on   •  This  structure  is  called  the  na6ve  fold   ü  Na(ve  proteins:  proteins  in  any  of  their  func%onal,  folded  conforma%ons   •  The  na6ve  fold  has  a  large  number  of  favorable   interac6ons  within  the  protein   •  There  is  a  cost  in  conforma6onal  entropy  of  folding   the  protein  into  one  specific  na6ve  fold  
  • 4. Favorable  Interac2ons  in  Proteins   •  Hydrophobic  effect   –  Release  of  water  molecules  from  the  structured  solva6on  layer  around   the  molecule  as  protein  folds  increases  the  net  entropy   •  Hydrogen  bonds   –  Interac6on  of  N-­‐H  and  C=O  of  the  pep6de  bond  leads  to  local  regular   structures  such  as  α-­‐helices  and  β-­‐sheets       •  London  dispersion     –  Medium-­‐range  weak  aFrac6on  between  all  atoms  contributes   significantly  to  the  stability  in  the  interior  of  the  protein   •  Electrosta2c  interac2ons   –  Long-­‐range  strong  interac6ons  between  permanently  charged  groups   –  Salt-­‐bridges,  esp.  buried  in  the  hydrophobic  environment  strongly   stabilize  the  protein    
  • 5. Structure of the enzyme chymotrypsin, a globular protein. A molecule of glycine (blue) is shown for size comparison
  • 6. 4  Levels  of  Protein  Structure  
  • 7. Weak  Interac2ons  Stabilize  Conforma2on   •  Stability:  tendency  to  keep  na6ve  conforma6on  Release  of  water   molecules  from  the  structured  solva6on  layer  around  the  molecule  as   protein  folds  increases  the  net  entropy   –  To  break  1  covalent  bond  à  200  –  460  kJ/mol   –  To  break  a  weak  interac6on  (H-­‐bond;  hydrophobic  interac6on,  ionic   bond,  etc.)  à  4  –  30  kJ/mol       •  Weak  interac2ons  are  responsible  for  na2ve  structure     –  Breaking  individual  covalent  bonds  that  contribute  to  na6ve  structure   of  proteins  (S-­‐S  bonds)  is  more  difficult  than  breaking  1  weak   interac6on     –  BUT  because  there  are  so  many  weak  interac6ons  à  they  are   responsible  for  keeping  na6ve  structure   •   Protein  conforma2on  with  the  lowest  free  energy  (most   stable)  is  the  one  with  MAXIMUM  number  of  weak   interac2ons  
  • 8. Weak  Interac2ons  Stabilize  Conforma2on   •  When  H2O  surrounds  a  hydrophobic  molecule,  a  solva2on   layer  of  H2O  molecules  is  created   –  increased order of H2O à ↓ entropy     –  BUT when non polar groups cluster together à ↓ solvation layer à ↑ entropy à ↓ ΔG à more stable   •  Two  rules:   1)  Hydrophobic residues are buried inside proteins 2)  The number of H-bonds within a protein is maximized  
  • 9. Structure  of  the  Pep2de  Bond   •  Structure  of  the  protein  is  par6ally  dictated  by  the   proper6es  of  the  pep6de  bond   •  The  pep6de  bond  is  a  resonance  hybrid  of  two  canonical   structures     •  The  resonance  (electron  sharing)  causes  the  pep6de  bonds   –  to  be  less  reac6ve  compared  to  esters,  for  example   –  C-­‐N  bond  in  a  pep6de  bond  is  shorter  than  C-­‐N  bond  is  a   simple  amine     –  to  be  quite  rigid  and  nearly  planar     –  to  exhibit  a  large  dipole  moment  in  the  favored  trans   configura6on  
  • 10. Resonance  in  the  Pep2de  Bond  
  • 11. The  Rigid  Pep2de  Plane  and     the  Par2ally  Free  Rota2ons   •  Rota6on  around  the  pep6de  bond  is  not  permi>ed   •  Rota6on  around  bonds  connected  to  the  alpha  carbon   is  permiFed       •  φ (phi):  angle  around  the  α-­‐carbon—amide  nitrogen   bond     •  ψ (psi):  angle  around  the  α-carbon—carbonyl  carbon   bond   •  In  a  fully  extended  polypep6de,  both  ψ and  φ are  180°  
  • 12. The  polypep2de  is  made  up  of  a  series  of   planes  linked  at  α  carbons   •  The 6 atoms of the peptide group are in 1 plane •  O atom of carbonyl and H atom of amide N are trans •  Due to partial double bond, peptide bond cannot rotate freely à limiting the range of conformation of a polypeptide
  • 13. • Some φ and ψ combina6ons  are  very  unfavorable  because  of   steric  crowding  of  backbone  atoms  with  other  atoms  in  the   backbone  or  side  chains     • Some φ and  ψ combina6ons  are  more  favorable  because  of   chance  to  form  favorable  H-­‐bonding  interac6ons  along  the   backbone     Distribu2on  of  φ  and  ψ  Dihedral  Angles    
  • 14. Secondary  Structures   •  2o  structure  refers  to  a  local  spa6al  arrangement  of   the  polypep6de  backbone  (depends  on  common   regular  folding  paFerns  of  polypep6de  backbone)   •  Two  regular  arrangements  are  common:     •  The α  helix   –  stabilized  by  hydrogen  bonds  between  nearby  residues   •  The  β  sheet   –  stabilized  by  hydrogen  bonds  between  adjacent   segments  that  may  not  be  nearby     •  Irregular  arrangement  of  the  polypep6de  chain  is   called  the  random  coil    
  • 15. The  α  Helix   •  The  simplest  arrangement  a  polypep6de  can  assume  (with  its   rigid  pep6de  bonds  and  other  freely-­‐rota6ng  single  bonds)  is   a  helical  structure   –  In  general,  ~  ¼  of  all  aa  residues  in  polypep6des  are  found  in  α   helices   –  E.g.  in  α-kera6ns, α helix  is  a  predominant  structure   •  Helical  backbone  is  held  together  by  hydrogen  bonds   between  the  backbone  amides  of  an  n  and  n+4  amino  acids   •  Right-­‐handed  helix  with  3.6  residues  (5.4  Å)  per  turn   •  Pep6de  bonds  are  aligned  roughly  parallel  with  the  helical   axis   •  Side  chains  point  out  and  are  roughly  perpendicular  with  the   helical  axis  
  • 16. What  is  a  right-­‐handed  helix?  
  • 17. The  α  Helix:  Top  View   •  The  inner  diameter  of  the  helix  (no  side  chains)  is   about  4–5  Å   •  Too  small  for  anything  to  fit  “inside”     •  The  outer  diameter  of  the  helix  (with  side  chains)  is   10–12  Å   •  Happens  to  fit  well  into  the  major  groove  of  dsDNA   •  Residues  1  and  8  align  nicely  on  top  of  each  other   •  What  kind  of  sequence  gives  an  α  helix  with  one   hydrophobic  face?  
  • 18.
  • 19. Sequence  affects  helix  stability   •  Not  all  polypep6de  sequences  adopt  α-­‐helical  structures   •  Small  hydrophobic  residues  such  as  Ala  and  Leu  are   strong  helix  formers   •   Pro  acts  as  a  helix  breaker  because  the  rota6on  around   the  N-­‐Cα  bond  is  impossible   •   Gly  acts  as  a  helix  breaker  because  the  6ny  R-­‐group   supports  other  conforma6ons   •  AFrac6ve  or  repulsive  interac6ons  between  side  chains   3–4  amino  acids  apart  will  affect  forma6on  
  • 20. Constraints  to  helix  stability   1.  Electrosta6c  repulsion  (or  aFrac6on)  between   successive  charged  aa   2.  Bulkiness  of  adjacent  R  groups   3.  Interac6ons  between  R  groups  3  or  4  residues  apart   4.  Pro  or  Gly   5.  Interac6ons  of  aa  with  dipoles  of  a  helix  
  • 21. Constraints  to  helix  stability   1.  Electrosta6c  repulsion  (or  aFrac6on)  between   successive  charged  aa     •  Interac6ons  between  aa  side  chains  can  stabilize  or   destabilize  a  helix:   •  E.g.  long  block  of  Glu  (E)  residues  à  no  helix  at  pH  7   because  of  –ve  charge  repulsion   •  Same  for  +vely  charged  aa  
  • 22. Constraints  to  helix  stability   2.  Bulkiness  of  adjacent  R  groups     •  Near  each  other,  these  aa  and  other  bulky  aa  will  not  fit   well  due  to  steric  hindrance   •  Small  hydrophobic  residues  such  as  Ala  and  Leu  are   strong  helix  formers  
  • 23. Constraints  to  helix  stability   3.  Interac6ons  between  R  groups  3  or  4  residues  apart   •  Due  to  the  twist  of  α  helix  à  cri6cal  interac6on   between  aa  side  chain  and  side  chain  of  aa  3  or  4   residues  apart  in  both  direc6ons   •  Ooen,  +vely  charged  aa  are  3  or  4  aa  away  from  –ve   charge  à  forming  ion  pairs   •  Two  hydrophobic  side  chains  3  or  4  aa  apart  à   hydrophobic  interac6ons      
  • 24. Constraints  to  helix  stability   4.  The  presence  of  Pro  or  Gly   •  Pro:  rarely  found  in  α  helix    1)  rota6on  about  N-­‐Cα  is  not  possible  because  N  is  part   of  a  rigid  ring    2)  N  has  no  H  to  par6cipate  in  H-­‐bonds   •  Gly:  infrequently  found  in  α  helix   •  it  has  more  conforma6onal  flexibility  than  other  aa   •  makes  a  different  coiled  structures  than  α  helix  
  • 25. Constraints  to  helix  stability   5.  Dipoles   •  A  small  electric  dipole  exists  in  each     pep6de  bond   –  Carbonyl  O  nega6ve   –  Amide  H  posi6ve   •  Dipoles  are  connected  by  H-­‐bonds  è  large  net  macroscopic   dipole  moment  extending  along  helix  (increases  with  helix   length)   •  The  4  aa  at  the  ends  of  the  helix  do  not  par6cipate  fully  in  H-­‐ bonds  à  on  N-­‐terminus  par6al  +ve  charge  and  on  C-­‐terminus   par6al  –ve  charge   •  Therefore,  normally  –vely  charge  aa  are  found  near  N-­‐termini   and  vice  versa  (a  +ve  aa  near  N-­‐terminus  is  destabilizing).    
  • 26.
  • 27. β  Sheets   •  The  planarity  of  the  pep6de  bond  and  tetrahedral   geometry  of  the  α-­‐carbon  create  a  pleated  sheet-­‐like   structure   •  Sheet-­‐like  arrangement  of  backbone  is  held  together  by   hydrogen  bonds  between  the  backbone  amides  in   different  strands   •  Side  chains  protrude  from  the  sheet  alterna6ng  in  up   and  down  direc6on  
  • 28. β  Sheets   •  Backbone  is  extended  into  a  zigzag   •  Zigzag  polypep6de  chains  are  arranged  side-­‐by-­‐side   forming  the  β  sheet   •  H-­‐bonds  form  between  adjacent  segments   •  Segments  are  usually  near  each  other  (some6mes  can   be  very  far  or  even  between  different  polypep6des)   •  The  R  groups  of  adjacent  aa  come  out  opposite   direc6on   •  Size  limits:  nearby  R  groups  must  be  small   •  E.g.  β-­‐kera6ns  (silk  fibroin  and  fibroin  of  spider  webs)   have  high  content  of  Gly  and  Ala  (smallest  R  groups)   •  Adjacent  chains  can  be  parallel  or  an6-­‐parallel  
  • 29. Parallel  and  An2parallel  β Sheets   •  Parallel  or  an6parallel  orienta6on  of  two  chains   within  a  sheet  are  possible     •  In  parallel  β  sheets  the  H-­‐bonded  strands  run  in   the  same  direc6on   –  Resul6ng  in  bent  H-­‐bonds  (weaker)   •  In  an6parallel  β  sheets  the  H-­‐bonded  strands  run   in  opposite  direc6ons     –  Resul6ng  in  linear  H-­‐bonds  (stronger)  
  • 30.
  • 31.
  • 32.  β Turns   •  Globular  proteins  have  compact  folded  structures   •  ~  1/3  aa  are  turns  or  loops  (polypep6de  reverses   direc6on)   •  β  turns  occur  frequently  whenever  strands  in  β  sheets   change  the  direc6on       •  Connec6ng  elements  linking  successive  runs  of  α  helix   or  β  sheet   •  The  180°  turn  is  accomplished  over  four  amino  acids   •  The  turn  is  stabilized  by  a  hydrogen  bond  from  a   carbonyl  oxygen  to  amide  proton  three  residues  down   the  sequence  (aa1  and  aa4)   •  Proline  in  posi6on  2  or  glycine  in  posi6on  3  are   common  in  β  turns  
  • 33.
  • 34. Proline  Isomers   •  Most  pep6de  bonds  not  involving  proline  are  in  the   trans  configura6on  (>99.95%)       •  For  pep6de  bonds  involving  proline,  about  6%  are  in  the   cis  configura6on.    Most  of  this  6%  involve  β-­‐turns   •  Proline  isomeriza6on  is  catalyzed  by  proline  isomerases  
  • 35.
  • 36. γ  turns   •  Less  common   •  3  aa  turn   •  H-­‐bonding  between  1st  and  3rd  aa  
  • 37. Circular  Dichroism  (CD)  Analysis   •  A  technique  used  to  determine  the  secondary  structure  fold   of  purified  proteins   •  CD  measures  the  molar  absorp6on  difference  Δε of  leo-­‐  and   right-­‐circularly  polarized  light:  Δε = εL – εR •  Chromophores  (mainly  aroma6c  aa)  in  the  chiral   environment  produce  characteris6c  signals   •  CD  signals  from  pep6de  bonds  depend  on  the  chain   conforma6on       •  Characteris6c  spectra  for  different  secondary  structures   •  Combined  spectra  give  the  percentage  of  α  to  β  in  a  protein  
  • 38.
  • 39. • Ter6ary  structure  refers  to  the  overall  spa6al   arrangement  of  atoms  in  a  protein   • Stabilized  by  numerous  weak  interac6ons  between   amino  acid  side  chains.   -  Largely  hydrophobic  and  polar  interac6ons   -  Can  be  stabilized  by  disulfide  bonds   • Interac6ng  amino  acids  are  not  necessarily  next  to   each  other  in  the  primary  sequence.       • Two  major  classes   –   Fibrous  and  globular   Protein  Ter2ary  Structure  
  • 40. •  Fibrous  proteins  –  polypep6de  chain  arranged  in   long  strands  or  sheets    –  consist  largely  of  1  type  of  2o  structure    –  needed  for  structure  and  shape  of  cells      –  water  insoluble  (hydrophobic)     •  Globular  proteins  –  polypep6de  chain  folded  into   spherical  shape    –  many  types  of  2o  structures    –  enzymes  and  regulators    –  largely  water  soluble  (hydrophilic)     Protein  Ter2ary  Structure  
  • 41. Fibrous Proteins: From Structure to Function Function Structure Example Tough, rigid, Cross-linked α-helixes α-keratin hard (nails, horns) Rigid linker (S—S) Tensile strength, Cross-linked triple-helixes Collagen non-stretching Flexible linker (Lys-HyLys) (tendons, cartilage) Soft, flexible Non-covalently held β-sheets non-stretchy van der Waals interaction Silk fibroin (egg sac, nest, web)
  • 42. •  Have  proper6es  that  give  them  strength  and   flexibility   •  All  fibrous  proteins  are  water  insoluble  (high   concentra6on  of  hydrophobic  aa  inside  and  on   protein  surface)   •  α-­‐kera2n:  ~  all  dry  weight  of  hair,  wool,  nail,   horns,  hooves,  etc.   •  Part  of  a  family  called  intermediate  filaments  (IF)   •  Coiled  coil,  parallel  (N-­‐termini  at  same  side)   •  Supertwists  are  leo-­‐handed   •  At  the  surface  of  a  helix  where  supertwists  exist   there  are  many  hydrophobic  aa     Fibrous  Proteins  
  • 43. Structure  of  α-­‐Kera2n  in  Hair   •  Simple  3o  structure:  dominated  by  a-­‐helical  2o  structure  with  its   helical  axis  twisted  in  a  leo-­‐handed  helix   •  Complex  4o  structure:  many  coiled  coils  assembled  into  large   supramolecular  complexes    
  • 44.
  • 46. Structure  of  Collagen   •  Collagen  is  an  important  cons6tuent  of  connec6ve   6ssue:  tendons,  car6lage,  bones,  cornea  of  the  eye     •  Each  collagen  chain  is  a  long  Gly-­‐  and  Pro-­‐rich  leo-­‐ handed  helix   •  Collagen  helix  is  different  from  α  helix:      1)  it  is  leo  handed    2)  it  has  3  aa  per  turn   •  Three  collagen  chains  intertwine  into  a  right-­‐handed   superhelical  triple  helix   •  The  triple  helix  has  higher  tensile  strength  than  a  steel   wire  of  equal  cross  sec6on  
  • 47. Structure  of  Collagen   •  Typical  collagen  has  ~35%  Gly,  11%  Ala  and  21%  Pro   and  4-­‐Hyp    –  aa  sequence  is  generally  a  tripep6de  (Gly-­‐X-­‐X)   often Pro often 4-Hyp   •  Many  triple-­‐helices  assemble  into  a  collagen  fibril   •  Collagenase  is  an  enzyme  that  breaks  down  collagen  
  • 48.
  • 50. Silk  Fibroin   •  Fibroin  is  the  main  protein  in  silk  from  moths  and  spiders   •  An6parallel  β  sheet  structure       •  Small  side  chains  (Ala  and  Gly)  allow  the  close  packing  of   sheets   •  Silk  does  not  stretch  (β  conforma6on  is  highly  extended)   •  Flexible  because  it  is  held  together  by  weak  interac6ons     •  Structure  is  stabilized  by   –  hydrogen  bonding  within  sheets   –  London  dispersion  interac6ons  between  sheets  
  • 51.
  • 52. Globular  Proteins   •  Different  segments  of  polypep6de  chain  (or  mul6ple   polypep6de  chains)  fold  back  on  each  other  à  compact   form   •  Provides  structural  diversity  to  carry  out  a  wide  range  of   biological  func6ons   Human serum albumin
  • 53. Myoglobin   •  Small  (Mr  16700)   •   O2–binding  protein  of  muscle  cells   •  Storage  of  O2  and  rapid  supply  to  contrac6ng  muscles     •  Has  a  heme  group   •  Abundant  in  muscles  of  diving  mammals   •  8  straight  α  helices  interrupted  by  bends  (some  of  which   are  β  turns)   •  Longest  helix  –  23  aa;  shortest  helix  –  7  aa   •  70%  of  myoglobin  is  α  helix   •  Most  hydrophobic  R  groups  are  inside  the  protein  
  • 54.
  • 55. The hydrophobic residues are shown in blue; most are buried in the interior of the protein and thus not visible
  • 56. Mo2fs  (folds  or  supersecondary  structures) •  Specific  arrangement  of  several  secondary   structure  elements   –  All  alpha-­‐helix   –  All  beta-­‐sheet   –  Both   •  Mo6fs  can  be  found  as  reoccurring  structures  in   numerous  proteins   •  Proteins  are  made  of  different  mo6fs  folded   together  
  • 57.
  • 58.
  • 59. •  Complex motifs: •  A series of β-α-β loops can form a barrel, called α/β barrel •  All connections are right handed
  • 60. Protein  Quaternary  Structure   •   Quaternary  structure  is  formed  by  the  assembly  of   individual  polypep6des  into  a  larger  func6onal  cluster   •   It  describes  the  arrangement  of  protein  subunits  in  3D   complexes   • Only  in  mul6subunit  proteins   Tetramer or dimer of αβ protomers
  • 61. Proteostasis   Maintenance  of  cellular  protein  ac6vity  is  accomplished   by  the  coordina6on  of  many  different  pathways.   3 processes contribute to proteostasis: 1)  protein synthesis on ribosomes 2)  protein folding (involving complexes called chaperones) 3)  the sequestration and degradation of proteins that are irreversibly unfolded
  • 62. Protein  Stability  and  Folding   •  A  protein’s  func6on  depends  on  its  3D-­‐structure   •  Denatura6on:  the  loss  of  na6ve  structure  sufficient  to  cause   loss  of  func6on   •  Does  not  mean  that  protein  is  always  unfolded   •  Under  most  condi6ons,  denatured  proteins  exist  in  par6ally   folded  states  
  • 63. •  Loss of structure à Loss of function •  Causes  of  denatura6on:     1)  Heat:  affec6ng  weak  interac6ons  (mainly  H-­‐bonds)   -­‐  gradual  increase  in  temp,  conforma6on  remains  intact  un6l   an  abrupt  change  occurs  at  a  narrow  temp  range   -­‐  due  to  coopera6vity  (loss  of  structure  in  one  part  of  the   protein  destabilizes  other  parts)   2)  Extremes  of  pH:  change  net  charge  on  protein  à  electrosta6c   repulsion  and  disrup6on  of  some  H-­‐bonds   3)  Organic  solvents,  detergents:  no  covalent  bonds  in  the  protein   are  broken.  Disrup6on  of  hydrophobic  interac6ons     4)  Chaotropic  agents  (urea  and  guanidine  HCl):  disrup6on  of  the   arrangement  of  water  molecules  that  solvate  the  proteins    
  • 65.
  • 66. •  Renatura2on:  some  denatured  proteins  can  get  back  to  their   na6ve  conforma6on  and  biological  ac6vity  if  returned  to   condi6ons  where  na6ve  conforma6on  is  stable   •  E.g.  Ribonuclease  A  is  a  small  protein  that  contains  8  cysteines   linked  via  4  disulfide  bonds.  It  can  be  fully  denatured  by  urea   and  a  reducing  agent  (to  break  its  4  disulfide  bonds)     •  When  urea  and  2-­‐mercaptoethanol  are  removed,  the  protein   spontaneously  refolds,  and  the  correct  disulfide  bonds  are   reformed         •  The  sequence  alone  determines  the  na%ve  conforma%on   Ribonuclease  Refolding  Experiment  
  • 67. Quite  “simple”  experiment,  but  so   important  it  earned  Chris  Anfinsen   the  1972  Chemistry  Nobel  Prize  
  • 68. •  Defects  in  protein  folding  cause  many  diseases:   q Cys2c  fibrosis  (CF   ‫التليف‬  ‫الكيسي‬ )  is  caused  by  a  muta6on  in  the  gene   for  the  protein  cys6c  fibrosis  transmembrane  conductance   regulator  (CFTR),  a  Cl-­‐  channel.  A  muta6on  in  this  protein  causes   misfolding   q Mad  cow  disease  caused  by  a  misfolded  protein  (prion)   q Amyloid  fibrils  accumulate  in  Alzheimer's  disease  and  many  other   neurodegenera2ve  diseases.  They  arise  from  misfolded  normal   proteins  and  polypep6des   Protein  misfolding  is  the  basis  of   numerous  human  diseases  
  • 69.
  • 70. •  Not  all  proteins  fold  spontaneously   •  Molecular  chaperones  are  proteins  that  help  proteins  fold  by   interac6ng  with  par6ally  folded  polypep6des  and  providing   microenvironments  for  proper  folding   •  Two  classes:   1.  Hsp70  –  heat  shock  proteins  of  MW  ~70  kDa   -­‐  bind  to  unfolded  polypep6des  rich  in  hydrophobic  aa   -­‐  need  another  Hsp40   -­‐  In  bacteria,  homologs  are  DnaK  and  DnaJ   -­‐  prevent  the  aggrega6on  of  unfolded  proteins   2.  Chaperonins  –  (GroEL/GroES  in  bacteria)   -­‐  barrel  and  lid,  provide  good  microenvironment  for  proteins  to   fold  properly   Assisted  Folding  of  Proteins