SlideShare uma empresa Scribd logo
1 de 1
Baixar para ler offline
Software Tools, Methods and Applications of Machine Learning
in Functional Materials Design
Anubhav Jain, Energy Storage & Distributed Resources Division, Berkeley Lab
Generate large computational data sets with pymatgen, FireWorks, and atomate
job 1
job 2
job 3 job 4
structure! workflow! database of all
workflows!
automatically submit + execute!output files + database!
Create machine-learning
models with matminer
Together with collaborators, we
have developed several software
packages for high-throughput data
generation, which have been used
to run millions of density functional
theory calculations and powers the
Materials Project database. This
software is available open-source
a n d w i t h c o m p r e h e n s i v e
documentation and support.
Left:	the	computational	infrastructure	of	
the	Materials	Project	database	(Jain	et	
al.,	APL	Materials	2013)	is	now	powered	
by	the	infrastructure	described	here.	
Right:	Calculating	the	electronic	
transport	properties	of	>40,000	
materials	(Ricci	et	al.,	Sci	Data	2017),	
resulting	in	the	experimental	discovery	
of	the	YCuTe2	thermoelectric	(Aydemir	
et	al.,	JMCA	2016).	
	
experiment
computation
Atomate is a library of standardized workflows
for VASP, Q-Chem, and FEFF codes. Given as
little information as a crystal structure or
molecule, atomate can perform >15 types of
calculation procedures, including band
structure, elastic tensor, thermal expansion,
and work function. Users can customize
settings or use defaults tuned by our team.
When calculations complete, the output files
are automatically parsed via pymatgen and the
information is organized into a database. A
series of database “builders” in atomate collect
data from individual calculations to generate
further database collections, including
searchable summary reports of materials, data
for constructing plots, and higher-level analyses
like phase diagram generation.
www.pymatgen.org https://atomate.org
https://materialsproject.github.io/fireworks
Example: Order-disorder
resolve partial or mixed
occupancies into a fully
ordered crystal structure
(e.g., mixed oxide-fluoride site
into separate oxygen/fluorine)
The pymatgen software
reads crystal structures from
a variety of file formats or
the Materials Project API. It
can perform many structure
operations such as:
•  surface / slab generation
•  order-disorder
•  interstitial finding
•  chemical substitution
and also create inputs for
many common DFT codes.
FireWorks is a workflow software that can
manage, monitor, and execute millions of
computational workflows across multiple
supercomputing centers. FireWorks
supports many features needed for the
materials science domain, including dynamic
(self-modifying) workflows and automatic
failure detection and rerun.
A recent plug-in for FireWorks called
rocketsled assists users in performing
machine learning-based adaptive design of
a search space, minimizing the number of
calculations needed to find a solution.
The matminer package lets one load data from
atomate databases, external web databases, or one
of 24 built-in large materials data sets. It can perform
feature extraction using >40 state-of-the-art methods,
and perform visualization or data mining using
common machine learning libraries. Matminer is
available open-source and comprehensive examples
of performing machine learning are available in the
form of interactive “Jupyter” notebooks.
https://hackingmaterials.github.io/matminer
Funding for this research was
provided by the U.S. Department
of Energy, Basic Energy Sciences,
Materials Science Division through
an Early Career Grant. Computing
resources were provided by the
National Energy Research Scientific
Computing Center.
https://hackingmaterials.lbl.gov
@jainpapers
Over	40	feature	
extraction	
routines	are	
implemented.	
	
atomate output
database(s)
phase
diagrams
Pourbaix
diagrams
diffusivity via MDband structure analysis

Mais conteúdo relacionado

Mais procurados

Materials Project computation and database infrastructure
Materials Project computation and database infrastructureMaterials Project computation and database infrastructure
Materials Project computation and database infrastructureAnubhav Jain
 
Open Source Tools for Materials Informatics
Open Source Tools for Materials InformaticsOpen Source Tools for Materials Informatics
Open Source Tools for Materials InformaticsAnubhav Jain
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAnubhav Jain
 
Materials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learningMaterials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learningAnubhav Jain
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectAnubhav Jain
 
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV Data
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV DataThe DuraMat Data Hub and Analytics Capability: A Resource for Solar PV Data
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV DataAnubhav Jain
 
DuraMat Data Analytics
DuraMat Data AnalyticsDuraMat Data Analytics
DuraMat Data AnalyticsAnubhav Jain
 
DuraMat Data Management and Analytics
DuraMat Data Management and AnalyticsDuraMat Data Management and Analytics
DuraMat Data Management and AnalyticsAnubhav Jain
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Anubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Anubhav Jain
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Anubhav Jain
 
Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Anubhav Jain
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsAnubhav Jain
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsAnubhav Jain
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Anubhav Jain
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Anubhav Jain
 
Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Anubhav Jain
 
Overview of DuraMat software tool development
Overview of DuraMat software tool developmentOverview of DuraMat software tool development
Overview of DuraMat software tool developmentAnubhav Jain
 

Mais procurados (20)

Materials Project computation and database infrastructure
Materials Project computation and database infrastructureMaterials Project computation and database infrastructure
Materials Project computation and database infrastructure
 
Open Source Tools for Materials Informatics
Open Source Tools for Materials InformaticsOpen Source Tools for Materials Informatics
Open Source Tools for Materials Informatics
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design Problems
 
Materials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learningMaterials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learning
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
 
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV Data
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV DataThe DuraMat Data Hub and Analytics Capability: A Resource for Solar PV Data
The DuraMat Data Hub and Analytics Capability: A Resource for Solar PV Data
 
DuraMat Data Analytics
DuraMat Data AnalyticsDuraMat Data Analytics
DuraMat Data Analytics
 
DuraMat Data Management and Analytics
DuraMat Data Management and AnalyticsDuraMat Data Management and Analytics
DuraMat Data Management and Analytics
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...
 
Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
 
Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...
 
Overview of DuraMat software tool development
Overview of DuraMat software tool developmentOverview of DuraMat software tool development
Overview of DuraMat software tool development
 

Semelhante a Software Tools, Methods and Applications of Machine Learning in Functional Materials Design

Evaluating Machine Learning Algorithms for Materials Science using the Matben...
Evaluating Machine Learning Algorithms for Materials Science using the Matben...Evaluating Machine Learning Algorithms for Materials Science using the Matben...
Evaluating Machine Learning Algorithms for Materials Science using the Matben...Anubhav Jain
 
Advanced Research Computing at York
Advanced Research Computing at YorkAdvanced Research Computing at York
Advanced Research Computing at YorkMing Li
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...University of California, San Diego
 
Open Chemistry: Realizing Open Data, Open Standards, and Open Source
Open Chemistry: Realizing Open Data, Open Standards, and Open SourceOpen Chemistry: Realizing Open Data, Open Standards, and Open Source
Open Chemistry: Realizing Open Data, Open Standards, and Open SourceMarcus Hanwell
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Anubhav Jain
 
Atomate: a high-level interface to generate, execute, and analyze computation...
Atomate: a high-level interface to generate, execute, and analyze computation...Atomate: a high-level interface to generate, execute, and analyze computation...
Atomate: a high-level interface to generate, execute, and analyze computation...Anubhav Jain
 
Scientific
Scientific Scientific
Scientific marpierc
 
Scaling Application on High Performance Computing Clusters and Analysis of th...
Scaling Application on High Performance Computing Clusters and Analysis of th...Scaling Application on High Performance Computing Clusters and Analysis of th...
Scaling Application on High Performance Computing Clusters and Analysis of th...Rusif Eyvazli
 
2023comp90024_Spartan.pdf
2023comp90024_Spartan.pdf2023comp90024_Spartan.pdf
2023comp90024_Spartan.pdfLevLafayette1
 
PNNL April 2011 ogce
PNNL April 2011 ogcePNNL April 2011 ogce
PNNL April 2011 ogcemarpierc
 
FAIR Computational Workflows
FAIR Computational WorkflowsFAIR Computational Workflows
FAIR Computational WorkflowsCarole Goble
 
Big data at experimental facilities
Big data at experimental facilitiesBig data at experimental facilities
Big data at experimental facilitiesIan Foster
 
Hopsworks - ExtremeEarth Open Workshop
Hopsworks - ExtremeEarth Open WorkshopHopsworks - ExtremeEarth Open Workshop
Hopsworks - ExtremeEarth Open WorkshopExtremeEarth
 
Parsl: Pervasive Parallel Programming in Python
Parsl: Pervasive Parallel Programming in PythonParsl: Pervasive Parallel Programming in Python
Parsl: Pervasive Parallel Programming in PythonDaniel S. Katz
 
Software tools to facilitate materials science research
Software tools to facilitate materials science researchSoftware tools to facilitate materials science research
Software tools to facilitate materials science researchAnubhav Jain
 
Computing Outside The Box September 2009
Computing Outside The Box September 2009Computing Outside The Box September 2009
Computing Outside The Box September 2009Ian Foster
 
09 The Extreme-scale Scientific Software Stack for Collaborative Open Source
09 The Extreme-scale Scientific Software Stack for Collaborative Open Source09 The Extreme-scale Scientific Software Stack for Collaborative Open Source
09 The Extreme-scale Scientific Software Stack for Collaborative Open SourceRCCSRENKEI
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingPaco Nathan
 
Swift Parallel Scripting for High-Performance Workflow
Swift Parallel Scripting for High-Performance WorkflowSwift Parallel Scripting for High-Performance Workflow
Swift Parallel Scripting for High-Performance WorkflowDaniel S. Katz
 

Semelhante a Software Tools, Methods and Applications of Machine Learning in Functional Materials Design (20)

Evaluating Machine Learning Algorithms for Materials Science using the Matben...
Evaluating Machine Learning Algorithms for Materials Science using the Matben...Evaluating Machine Learning Algorithms for Materials Science using the Matben...
Evaluating Machine Learning Algorithms for Materials Science using the Matben...
 
Advanced Research Computing at York
Advanced Research Computing at YorkAdvanced Research Computing at York
Advanced Research Computing at York
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
 
Open Chemistry: Realizing Open Data, Open Standards, and Open Source
Open Chemistry: Realizing Open Data, Open Standards, and Open SourceOpen Chemistry: Realizing Open Data, Open Standards, and Open Source
Open Chemistry: Realizing Open Data, Open Standards, and Open Source
 
Data mining weka
Data mining wekaData mining weka
Data mining weka
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Atomate: a high-level interface to generate, execute, and analyze computation...
Atomate: a high-level interface to generate, execute, and analyze computation...Atomate: a high-level interface to generate, execute, and analyze computation...
Atomate: a high-level interface to generate, execute, and analyze computation...
 
Scientific
Scientific Scientific
Scientific
 
Scaling Application on High Performance Computing Clusters and Analysis of th...
Scaling Application on High Performance Computing Clusters and Analysis of th...Scaling Application on High Performance Computing Clusters and Analysis of th...
Scaling Application on High Performance Computing Clusters and Analysis of th...
 
2023comp90024_Spartan.pdf
2023comp90024_Spartan.pdf2023comp90024_Spartan.pdf
2023comp90024_Spartan.pdf
 
PNNL April 2011 ogce
PNNL April 2011 ogcePNNL April 2011 ogce
PNNL April 2011 ogce
 
FAIR Computational Workflows
FAIR Computational WorkflowsFAIR Computational Workflows
FAIR Computational Workflows
 
Big data at experimental facilities
Big data at experimental facilitiesBig data at experimental facilities
Big data at experimental facilities
 
Hopsworks - ExtremeEarth Open Workshop
Hopsworks - ExtremeEarth Open WorkshopHopsworks - ExtremeEarth Open Workshop
Hopsworks - ExtremeEarth Open Workshop
 
Parsl: Pervasive Parallel Programming in Python
Parsl: Pervasive Parallel Programming in PythonParsl: Pervasive Parallel Programming in Python
Parsl: Pervasive Parallel Programming in Python
 
Software tools to facilitate materials science research
Software tools to facilitate materials science researchSoftware tools to facilitate materials science research
Software tools to facilitate materials science research
 
Computing Outside The Box September 2009
Computing Outside The Box September 2009Computing Outside The Box September 2009
Computing Outside The Box September 2009
 
09 The Extreme-scale Scientific Software Stack for Collaborative Open Source
09 The Extreme-scale Scientific Software Stack for Collaborative Open Source09 The Extreme-scale Scientific Software Stack for Collaborative Open Source
09 The Extreme-scale Scientific Software Stack for Collaborative Open Source
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
 
Swift Parallel Scripting for High-Performance Workflow
Swift Parallel Scripting for High-Performance WorkflowSwift Parallel Scripting for High-Performance Workflow
Swift Parallel Scripting for High-Performance Workflow
 

Mais de Anubhav Jain

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Anubhav Jain
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Anubhav Jain
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Anubhav Jain
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Anubhav Jain
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst DesignAnubhav Jain
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Anubhav Jain
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAnubhav Jain
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …Anubhav Jain
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials ProjectAnubhav Jain
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Anubhav Jain
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Anubhav Jain
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectAnubhav Jain
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...Anubhav Jain
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...Anubhav Jain
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignAnubhav Jain
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignAnubhav Jain
 

Mais de Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 

Último

Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 

Último (20)

CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 

Software Tools, Methods and Applications of Machine Learning in Functional Materials Design

  • 1. Software Tools, Methods and Applications of Machine Learning in Functional Materials Design Anubhav Jain, Energy Storage & Distributed Resources Division, Berkeley Lab Generate large computational data sets with pymatgen, FireWorks, and atomate job 1 job 2 job 3 job 4 structure! workflow! database of all workflows! automatically submit + execute!output files + database! Create machine-learning models with matminer Together with collaborators, we have developed several software packages for high-throughput data generation, which have been used to run millions of density functional theory calculations and powers the Materials Project database. This software is available open-source a n d w i t h c o m p r e h e n s i v e documentation and support. Left: the computational infrastructure of the Materials Project database (Jain et al., APL Materials 2013) is now powered by the infrastructure described here. Right: Calculating the electronic transport properties of >40,000 materials (Ricci et al., Sci Data 2017), resulting in the experimental discovery of the YCuTe2 thermoelectric (Aydemir et al., JMCA 2016). experiment computation Atomate is a library of standardized workflows for VASP, Q-Chem, and FEFF codes. Given as little information as a crystal structure or molecule, atomate can perform >15 types of calculation procedures, including band structure, elastic tensor, thermal expansion, and work function. Users can customize settings or use defaults tuned by our team. When calculations complete, the output files are automatically parsed via pymatgen and the information is organized into a database. A series of database “builders” in atomate collect data from individual calculations to generate further database collections, including searchable summary reports of materials, data for constructing plots, and higher-level analyses like phase diagram generation. www.pymatgen.org https://atomate.org https://materialsproject.github.io/fireworks Example: Order-disorder resolve partial or mixed occupancies into a fully ordered crystal structure (e.g., mixed oxide-fluoride site into separate oxygen/fluorine) The pymatgen software reads crystal structures from a variety of file formats or the Materials Project API. It can perform many structure operations such as: •  surface / slab generation •  order-disorder •  interstitial finding •  chemical substitution and also create inputs for many common DFT codes. FireWorks is a workflow software that can manage, monitor, and execute millions of computational workflows across multiple supercomputing centers. FireWorks supports many features needed for the materials science domain, including dynamic (self-modifying) workflows and automatic failure detection and rerun. A recent plug-in for FireWorks called rocketsled assists users in performing machine learning-based adaptive design of a search space, minimizing the number of calculations needed to find a solution. The matminer package lets one load data from atomate databases, external web databases, or one of 24 built-in large materials data sets. It can perform feature extraction using >40 state-of-the-art methods, and perform visualization or data mining using common machine learning libraries. Matminer is available open-source and comprehensive examples of performing machine learning are available in the form of interactive “Jupyter” notebooks. https://hackingmaterials.github.io/matminer Funding for this research was provided by the U.S. Department of Energy, Basic Energy Sciences, Materials Science Division through an Early Career Grant. Computing resources were provided by the National Energy Research Scientific Computing Center. https://hackingmaterials.lbl.gov @jainpapers Over 40 feature extraction routines are implemented. atomate output database(s) phase diagrams Pourbaix diagrams diffusivity via MDband structure analysis