SlideShare uma empresa Scribd logo
1 de 47
Baixar para ler offline
CT angiography techniques
Boot camp
Overview
 Basic concepts
• Contrast administration – arterial opacification
• Time scan acquisition during the arterial phase
 Protocol examples
• Helical non-gated CTA
• Pulmonary embolism
• Abdominal aorta
• Aortogram with run-off
• DIEP flap
• ECG-synchronized CTA
• Thoracic aorta
• Thoraco-abdominal aorta
Contrast administration
basic concepts
Achieve arterial enhancement
 CT angiography
• Need intravenous contrast to achieve arterial enhancement
 Proportional to the iodine administration rate
• Increasing iodine concentration of contrast medium
• Increasing Injection flow rate (mL/s)
• Amount of iodinated contrast delivered per unit time
• Longer injection duration (larger volume of contrast)
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Achieve arterial enhancement
 CT angiography
• Need intravenous contrast to achieve arterial enhancement
 Proportional to the iodine administration rate
• Increasing iodine concentration of contrast medium
• Increasing Injection flow rate (mL/s)
• Amount of iodinated contrast delivered per unit time
• Longer injection duration (larger volume of contrast)
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Higher concentration of Iodine
Simulated contrast enhancement curves
of the abdominal aorta
125 mL of contrast at 4 mL/s
Three CM concentrations
Bae KT. Radiology 2010;256:32
2679 HU305 HU24 HU14 HU
0.1
mg/ml
1.0
mg/ml
10
mg/ml
100
mg/ml
Higher Iodine concentration
increased arterial enhancement
Flow rate
 Higher rate
• Enhancement increases
• Duration decreases
 Routine injections rates 4-5
mL/sec
• Needle sizes
• Vein size
 Flow rates > 8 mL/s
• Don’t result in greater
enhancement
• Pooling in central venous
system, reflux into IVC
Simulated contrast enhancement curves of
the abdominal aorta
125 mL of 350 mg/mL contrast
Injected at three different rates
Bae KT. Radiology 2010;256:32
Higher flow rate of CM
increased arterial enhancement
Flow rate
 Higher rate
• Enhancement increases
• Duration decreases
 Routine injections rates 4-5
mL/sec
• Needle sizes
• Vein size
 Flow rates > 8 mL/s
• Don’t result in greater
enhancement
• Pooling in central venous
system, reflux into IVC
Simulated contrast enhancement curves of
the abdominal aorta
125 mL of 350 mg/mL contrast
Injected at three different rates
Bae KT. Radiology 2010;256:32
Higher flow rate of CM
increased arterial enhancement
Flow rate
 Higher rate
• Enhancement increases
• Duration decreases
 Routine injections rates 4-5
mL/sec
• catheter size
• Vein size
 Flow rates > 8 mL/s
• Don’t result in greater
enhancement
• Pooling in central venous
system, reflux into IVC
Simulated contrast enhancement curves of
the abdominal aorta
125 mL of 350 mg/mL contrast
Injected at three different rates
Bae KT. Radiology 2010;256:32
Higher flow rate of CM
increased arterial enhancement
Injection duration = contrast volume
Simulated aortic enhancement
curves (adult male, 70kg,
170cm).
Varying injection durations of
350 mg/ml contrast at 3 cc/s.
5 sec = 15 cc
20 sec = 60 cc
40 sec = 120 cc
60 sec = 180 cc
Time in seconds
20 40 60 80
Aorticattenuation(HU)
5015
0
25
0
35
0
Bae KT. Radiology 2010;256:32
Longer injection duration
increased peak arterial enhancement
Contrast administration summary
 Iodinated contrast needed for CTA to enhance
arterial vasculature
 greater arterial opacification with higher iodine
flux at the time of the scan
• Higher iodine concentration contrast media
• Higher flow rates
• Longer injection durations
Saline chaser
 Pushes contrast in tubing
and peripheral veins into
central veins
• 20 – 30 cc
 Allows reduction in
contrast volume
 Increases peak attenuation
 Reduced streak artifacts
from veins and right heart
 Simpler to implement with
dual head injectors
kVp
Measured attenuation and image noise of a 2% iodine solution at different tube potentials.
McCollough CM. Radiol Clin N Am, 2009;47:27
140
kVp
100 12080
100
200
300
Attenuation(HU)
80 100 120 140
10
20
30
40
50
kVp
noise(HU)
attenuation increases with
lower kVp
noise increases with
lower kVp
Timing scan acquisition to the
arterial phase
Arterial phase of contrast bolus
 After contrast injection
• Time-to-peak enhancement differs for different target
arteries (PA – coronary – aorta – foot)
• Distance from venous access site
• individual cardiac output
• Differ due to local vascular pathology
• Stenosis
• aneurysm
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
Arterial phase of contrast bolus
 After contrast injection
• Time-to-peak enhancement differs for different target
arteries (PA – coronary – aorta – foot)
• Distance from venous access site
• individual cardiac output
• Differ due to local vascular pathology
• Stenosis
• aneurysm
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
Arterial phase of contrast bolus
 After contrast injection
• Time-to-peak enhancement differs for different target
vessels (PA – coronary – aorta – foot)
• Distance from venous access site
• individual cardiac output
• Differ due to local vascular pathology
• Stenosis
• aneurysm
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
Arterial phase of contrast bolus
 After contrast injection
• Time-to-peak enhancement differs for different target
vessels (PA – coronary – aorta – foot)
• Distance from venous access site
• individual cardiac output
• Differ due to local vascular pathology
• Stenosis
• aneurysm
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
Arterial phase of contrast bolus
 After contrast injection
• Time-to-peak enhancement differs for different target
vessels (PA – coronary – aorta – foot)
• Distance from venous access site
• individual cardiac output
• Differ due to local vascular pathology
• Stenosis
• aneurysm
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
Arterial phase of contrast bolus
 Contrast media arrival time (tarr)
• Time for the bolus to reach target vessel
 Can be determined for each individual and desired
target vessel
• Timing bolus
• Bolus tracking
Bae KT. Radiology 2010;256:32
time
Enhancement(HU)
tarr
Scan timing methods
Timing bolus
 Select target location from
scout topogram
 Inject small test-bolus
• 15 – 20 mL contrast
 Acquire low-dose dynamic
scan at specified location
during injection
 ROI in target structure
 Measure time-attenuation
curve
• Contrast material arrival time
in aortic root
Scan timing methods
Bolus triggering
 Select trigger location
 Acquire reference image
• Place ROI in vascular
structure of interest
 Inject contrast bolus
 Acquire low-dose dynamic
scans
 Monitor attenuation in ROI
 Start scan when desired
threshold reached
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Scan timing methods
Timing bolus
 Advantages
• Test adequacy of contrast
path
• Multiple ROIs
• (art and veins)
• replace if error
• Avoid artifacts
• Test patient response
• Heart rate
 Disadvantages
• Two contrast injections
• time
Bolus triggering
 Advantages
• Time efficient
• less contrast
 Disadvantages
• Different scan delay times
• Single shot
• Unable to trouble shoot
• Adjust to problems
• Streak artifacts,
misplaced ROI,
occluded vein,
connector leak
Scan timing methods
Timing bolus
 Advantages
• Test adequacy of contrast
path
• Multiple ROIs
• (art and veins)
• replace if error
• Avoid artifacts
• Test patient response
• Heart rate
 Disadvantages
• Two contrast injections
• time
Bolus triggering
 Advantages
• Time efficient
• less contrast
 Disadvantages
• Different scan delay times
• Single shot
• Unable to trouble shoot
• Adjust to problems
• Streak artifacts,
misplaced ROI,
occluded vein,
connector leak
CT angiography: basic strategy
 Use a bolus of iodinated
contrast to produce arterial
enhancement
 determine the contrast
arrival time
• Timing bolus
• Bolus tracking
 Perform diagnostic scan
near peak enhancement
achieved with the contrast
bolus in the target vessel
time
Enhancement
(HU)
Time in seconds
10 20 30 40
Aorticattenuation(HU)
50150250350
scan
Basic strategy with timing bolus
 Select bolus to achieve
sufficient vascular attenuation
• Vol: 150 cc (350 mgI/mL)
• Rate: 5 cc/s
 Determine contrast media
arrival time (tarr)
• Timing bolus
• 15 cc @ 5 cc/s + saline flush
 Specify diagnostic delay (td)
• Account for larger volume of
primary bolus
• Achieve greater enhancement
• Start scan = tarr + td
• Scan delay = tarr + 8 sec
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Time in seconds
10 20 30 40
Aorticattenuation(HU)
50150250350
scan
tarr td
Basic strategy with timing bolus
 Select bolus to achieve
sufficient vascular attenuation
• Vol: 150 cc (350 mgI/mL)
• Rate: 5 cc/s
 Determine contrast media
arrival time (tarr)
• Timing bolus
• 15 cc @ 5 cc/s + saline flush
 Shorter diagnostic delay (td)
• Lower arterial enhancement
150 vs 200 HU
• Start scan = tarr + td
• Scan delay = tarr + 4 sec
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Time in seconds
10 20 30 40
Aorticattenuation(HU)
50150250350
scan
tarr td
Basic strategy with bolus tracking
 Select bolus to achieve
sufficient vascular
attenuation
 Determine contrast media
arrival time (tarr)
• Inject primary bolus
• Bolus tracking
• 100 HU threshold (50 HU)
 Specify diagnostic delay (td)
• Scan delay = tarr + td
• tarr + 8 sec
Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
Time in seconds
10 20 30 40
Aorticattenuation(HU)
50150250350
scan
tarr td
CTA summary points
 Higher contrast concentrations
• Higher arterial enhancement for the same volume of
contrast
 Flow rate 4 – 5 mL/s
 Timing bolus or bolus tracking
• Location
• Size of target vessel
• Expected complexity
 Saline chaser
 Lower kVp when possible
CTAprotocols examples
Putting it all together
Imaging protocol: pulmonary embolism
Timing bolus
 AP and lateral scouts
 Timing bolus below carina. ROI in
PA.
 helical acquisition at timing bolus
peak + 5 sec
 contrast
Omnipaque 350
 caudal-cranial scan direction from
diaphragm to lung apices
Timing bolus: 15 cc contrast (5 cc/s) + 15 cc saline (5cc/s)
Primary bolus: 85 cc contrast (5 cc/s) + 30 cc saline (5 cc/s)
CTA pulmonary embolism
Imaging protocol: CTA abdominal aorta
Bolus tracking
 AP and lateral scouts
 Bolus tracking at L1. ROI in
abdominal aorta.
 Helical acquisition at threshold of
70 HU
 Contrast bolus
Omnipaque 350
 Cranial-caudal scan direction
from diaphragm to lesser
trochanter
< 55 kg: 120 cc contrast (4 cc/s) + 30 cc saline (4 cc/s)
55-74 kg: 125 cc contrast (4 cc/s) + flush
75-84 kg: 130 cc contrast (4.5 cc/s) + flush
85-94 kg: 145 cc contrast (4.5 cc/s) + flush
> 95 kg: 150 cc contrast (5 cc/s) + flush
CTA abdominal aorta
Imaging protocol: CTA aortogram with run-off
Long scan duration
 AP and lateral scouts
 Bolus tracking at L1. ROI in
abdominal aorta.
 Helical acquisition at threshold of
100 HU
 Contrast bolus
Omnipaque 350
Scan delay = 40 sec – scan duration
Biphasic rate injection
 Cranial-caudal scan direction
from diaphragm through toes
Small patient: 20 cc contrast (4 cc/s) + 95 cc contrast (3.2 cc/s) + 30 cc saline (3.2 cc/s)
Medium patient: 25 cc (5 cc/s) + 120 cc (4 cc/s) + 30 cc saline (4 cc/s)
Large patient: 30 cc (6 cc/s) + 140 cc (4.8 cc/s) + 30 cc saline (4.8 cc/s)
Aortogram with peripheral run-off
Biphasic injection: prolong plateau
Uniphasic injection Biphasic rate injection
Bae KT. Radiology, 2000; 216:872
Time (sec)
enhancement(HU)
Time (sec)
enhancement(HU)
50 mL @ 2 mL/s
Continuously upsloping curve
25 mL @ 2 mL/s + 25 mL @ 1.4 mL/s
More prolonged enhancement curve
with two peaks
CTA for DIEP flap breast reconstruction
 AP and lateral scouts
 Timing bolus at level of
acetabulum. ROI in right
external iliac artery.
 Helical acquisition at timing
bolus peak + 10 sec
 Caudal-cranial scan
direction from lesser femoral
trochanters to 4 cm above
umbilicus
Alternate delay for veins
Primary bolus: 100 cc contrast (5 cc/s) + 30 cc saline (5 cc/s)
Example 3d Images
Volume rendered skin view for
Location map of where
perforator exits fascia
Sagittal and axial oblique views
of point where perforator exits
fascia and IM course
Imaging protocol: prospective ECG-triggered
thoracic CT aortogram
Gated scan, timing bolus
 AP and lateral scouts
 Right arm IV placement
• Avoid streak artifacts across arch
vessels
 Timing bolus below carina. ROI in
ascending thoracic aorta.
 PT sequential axial acquisition at
timing bolus peak + 6 sec
 Contrast
• Omnipaque 350
• Biphasic blended
 Cranial-caudal scan direction
from clavicles to L1
70 cc contrast (5 cc/s) + 50 cc (70/30 blend, 5 cc/s) + 50 cc saline (5 cc/s)
Prospective ECG triggered CTA
thoracic aorta
Imaging protocol: prospective ECG-triggered
CT aortogram
ECG gated, prolonged scan
duration
 AP and lateral scouts
 Right arm IV placement
• Avoid streak artifacts across arch
vessels
 Timing bolus below carina. ROI in
descending thoracic aorta.
 PT sequential axial acquisition at
timing bolus peak + 4 sec
 Contrast
• Biphasic size based bolus
 Cranial-caudal scan direction
from clavicles to lesser femoral
trochanter
Small patient: 20 cc contrast (4 cc/s) + 95 cc contrast (3.2 cc/s) + 30 cc saline (3.2 cc/s)
Medium patient: 25 cc contrast (5 cc/s) + 120 cc (4 cc/s) + 30 cc saline (4 cc/s)
Large patient: 30 cc contrast (6 cc/s) + 140 cc (4.8 cc/s) + 30 cc saline (4.8 cc/s)
PT - CT aortogram: multifocal aneurysms
76 yo female with multifocal disease—aneurysms in the aortic arch, descending
thoracic and abdominal aorta. Volume rendered (left), multiplanar reformatted
(MPR), and thin MIP images of the thoracic and abdominal aorta.
Sagittal oblique MPR of the
arch and descending
thoracic aorta
Coronal oblique thin MIP
of the abdominal aorta
Imaging protocol: upper extremity CTA
Distal timing bolus
 AP and lateral scouts
 contralateral arm IV placement
 Timing bolus near area of
concern. ROI in target artery.
 helical acquisition at timing bolus
peak + 4 sec
 scan through extremity from hand
to chest.
• Decrease venous contamination
Bolus > 20 sec, 100 cc (5 cc/s)
Anderson S, Radiology 2008;249:1064
upper extremity
upper extremity
In closing
 Basic concepts of CT angiography
 Contrast administration and bolus
shaping
 Scan timing
 Protocol examples
• Modifications based on the anatomy and
pathology imaged

Mais conteúdo relacionado

Mais procurados

Diffusion weighted imaging
Diffusion  weighted imagingDiffusion  weighted imaging
Diffusion weighted imagingSharath Raj
 
Multi detector ct cerebral angiography
Multi detector ct cerebral angiographyMulti detector ct cerebral angiography
Multi detector ct cerebral angiographyEhab Elftouh
 
MDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaMDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaAvinesh Shrestha
 
Magnetic Resonance Perfusion
Magnetic Resonance PerfusionMagnetic Resonance Perfusion
Magnetic Resonance PerfusionRahman Ud Din
 
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh Shrestha
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh ShresthaPerfusion imaging: CT, MRI, Nuclear Medicine- Avinesh Shrestha
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh ShresthaAvinesh Shrestha
 
magnetic resonance angiography
magnetic resonance angiographymagnetic resonance angiography
magnetic resonance angiographyqavi786
 
Magnetic Resonance Angiography and Venography
Magnetic Resonance Angiography and VenographyMagnetic Resonance Angiography and Venography
Magnetic Resonance Angiography and VenographyAnjan Dangal
 
Body CT for Emergency Physicians
Body CT for Emergency PhysiciansBody CT for Emergency Physicians
Body CT for Emergency PhysiciansRathachai Kaewlai
 
CT Procedure of Thorax (CT Chest)
CT Procedure of Thorax (CT Chest)CT Procedure of Thorax (CT Chest)
CT Procedure of Thorax (CT Chest)Upakar Paudel
 
Radiology of Pulmonary Hypertension
Radiology of Pulmonary HypertensionRadiology of Pulmonary Hypertension
Radiology of Pulmonary HypertensionHatlan Al Hatlan
 
CT perfusion physics and its application in Neuroimaging
CT perfusion physics and its application in NeuroimagingCT perfusion physics and its application in Neuroimaging
CT perfusion physics and its application in NeuroimagingDr.Suhas Basavaiah
 

Mais procurados (20)

Diffusion weighted imaging
Diffusion  weighted imagingDiffusion  weighted imaging
Diffusion weighted imaging
 
Multi detector ct cerebral angiography
Multi detector ct cerebral angiographyMulti detector ct cerebral angiography
Multi detector ct cerebral angiography
 
MDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaMDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh Shrestha
 
CT Enteroclysis
CT EnteroclysisCT Enteroclysis
CT Enteroclysis
 
Magnetic Resonance Perfusion
Magnetic Resonance PerfusionMagnetic Resonance Perfusion
Magnetic Resonance Perfusion
 
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh Shrestha
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh ShresthaPerfusion imaging: CT, MRI, Nuclear Medicine- Avinesh Shrestha
Perfusion imaging: CT, MRI, Nuclear Medicine- Avinesh Shrestha
 
CT artifact
CT artifact CT artifact
CT artifact
 
magnetic resonance angiography
magnetic resonance angiographymagnetic resonance angiography
magnetic resonance angiography
 
Magnetic Resonance Angiography and Venography
Magnetic Resonance Angiography and VenographyMagnetic Resonance Angiography and Venography
Magnetic Resonance Angiography and Venography
 
Hrct i
Hrct iHrct i
Hrct i
 
MRI artifacts
MRI artifactsMRI artifacts
MRI artifacts
 
MDCT (2)
MDCT (2)MDCT (2)
MDCT (2)
 
Body CT for Emergency Physicians
Body CT for Emergency PhysiciansBody CT for Emergency Physicians
Body CT for Emergency Physicians
 
CT Procedure of Thorax (CT Chest)
CT Procedure of Thorax (CT Chest)CT Procedure of Thorax (CT Chest)
CT Procedure of Thorax (CT Chest)
 
Radiology of Pulmonary Hypertension
Radiology of Pulmonary HypertensionRadiology of Pulmonary Hypertension
Radiology of Pulmonary Hypertension
 
MR ENTEROGRAPHY
MR ENTEROGRAPHYMR ENTEROGRAPHY
MR ENTEROGRAPHY
 
CT perfusion physics and its application in Neuroimaging
CT perfusion physics and its application in NeuroimagingCT perfusion physics and its application in Neuroimaging
CT perfusion physics and its application in Neuroimaging
 
Cardiac CT
Cardiac CT Cardiac CT
Cardiac CT
 
Post Processing of CT Thorax
Post Processing of CT ThoraxPost Processing of CT Thorax
Post Processing of CT Thorax
 
Coronary CT
Coronary CTCoronary CT
Coronary CT
 

Destaque

CT angiography
CT angiographyCT angiography
CT angiographyJaya Yadav
 
CT Coronary Angiography (CTCA)
CT Coronary Angiography (CTCA)CT Coronary Angiography (CTCA)
CT Coronary Angiography (CTCA)SCGH ED CME
 
Ct pulmonary angiogram
Ct pulmonary angiogramCt pulmonary angiogram
Ct pulmonary angiogrammuhammed Yasar
 
CT contrast injection and protocols (Vietnamese)
CT contrast injection and protocols (Vietnamese)CT contrast injection and protocols (Vietnamese)
CT contrast injection and protocols (Vietnamese)Sơn Nguyễn
 
State-of-the-art Cardiac CT of the coronary arteries
State-of-the-art Cardiac CT of the coronary arteriesState-of-the-art Cardiac CT of the coronary arteries
State-of-the-art Cardiac CT of the coronary arteriesErik R. Ranschaert, MD, PhD
 
Contrast media used with ct
Contrast media used with ctContrast media used with ct
Contrast media used with ctDR Laith
 
Ct coronary angiography gptalk
Ct coronary angiography gptalk Ct coronary angiography gptalk
Ct coronary angiography gptalk alistair Begg
 
Imaging of pulmonary embolism
Imaging of pulmonary embolismImaging of pulmonary embolism
Imaging of pulmonary embolismThorsang Chayovan
 
Ct pulmonary angiogram (ctpa)
Ct pulmonary angiogram (ctpa)Ct pulmonary angiogram (ctpa)
Ct pulmonary angiogram (ctpa)VadlamudiNamratha
 
Contrast media in CT
Contrast media in CTContrast media in CT
Contrast media in CTKyle Rousseau
 
Imaging of Pulmonary Embolism
Imaging of Pulmonary Embolism  Imaging of Pulmonary Embolism
Imaging of Pulmonary Embolism Gamal Agmy
 
Ct carotid and cerebral
Ct  carotid and cerebralCt  carotid and cerebral
Ct carotid and cerebralMithlesh shah
 
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...NCHANJI NKEH KENETH
 
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)Tips and Tricks in Vascular Imaging (Lower Extremity CTA)
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)Sam Watermeier
 
Clinical Applications Of Cardiac Ct
Clinical Applications Of Cardiac CtClinical Applications Of Cardiac Ct
Clinical Applications Of Cardiac CtMuhammad Ayub
 
Advances in ct technology
Advances in ct technologyAdvances in ct technology
Advances in ct technologyMitusha Verma
 

Destaque (20)

CT angiography
CT angiographyCT angiography
CT angiography
 
CT Coronary Angiography (CTCA)
CT Coronary Angiography (CTCA)CT Coronary Angiography (CTCA)
CT Coronary Angiography (CTCA)
 
Ct pulmonary angiogram
Ct pulmonary angiogramCt pulmonary angiogram
Ct pulmonary angiogram
 
CT contrast injection and protocols (Vietnamese)
CT contrast injection and protocols (Vietnamese)CT contrast injection and protocols (Vietnamese)
CT contrast injection and protocols (Vietnamese)
 
State-of-the-art Cardiac CT of the coronary arteries
State-of-the-art Cardiac CT of the coronary arteriesState-of-the-art Cardiac CT of the coronary arteries
State-of-the-art Cardiac CT of the coronary arteries
 
Contrast media used with ct
Contrast media used with ctContrast media used with ct
Contrast media used with ct
 
Ct coronary angiography gptalk
Ct coronary angiography gptalk Ct coronary angiography gptalk
Ct coronary angiography gptalk
 
Imaging of pulmonary embolism
Imaging of pulmonary embolismImaging of pulmonary embolism
Imaging of pulmonary embolism
 
CTA OF PULMONARY EMBOLISM
CTA OF PULMONARY EMBOLISMCTA OF PULMONARY EMBOLISM
CTA OF PULMONARY EMBOLISM
 
Ct pulmonary angiogram (ctpa)
Ct pulmonary angiogram (ctpa)Ct pulmonary angiogram (ctpa)
Ct pulmonary angiogram (ctpa)
 
Brain angiography
Brain angiographyBrain angiography
Brain angiography
 
Contrast media in CT
Contrast media in CTContrast media in CT
Contrast media in CT
 
Imaging of Pulmonary Embolism
Imaging of Pulmonary Embolism  Imaging of Pulmonary Embolism
Imaging of Pulmonary Embolism
 
BASICS of CT Head
BASICS of CT HeadBASICS of CT Head
BASICS of CT Head
 
Ct carotid and cerebral
Ct  carotid and cerebralCt  carotid and cerebral
Ct carotid and cerebral
 
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...
Ct instrumentation lecture. NCHANJI NKEH KENETH, RADIOLOGY DEPARTMENT, ST LOU...
 
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)Tips and Tricks in Vascular Imaging (Lower Extremity CTA)
Tips and Tricks in Vascular Imaging (Lower Extremity CTA)
 
Cardiac ct ccta
Cardiac ct cctaCardiac ct ccta
Cardiac ct ccta
 
Clinical Applications Of Cardiac Ct
Clinical Applications Of Cardiac CtClinical Applications Of Cardiac Ct
Clinical Applications Of Cardiac Ct
 
Advances in ct technology
Advances in ct technologyAdvances in ct technology
Advances in ct technology
 

Semelhante a Copy of Mitsumori-CT angiography techniques

Cardiac output monitoring
Cardiac output monitoring Cardiac output monitoring
Cardiac output monitoring pbsherren
 
ctaheadandneckyash-190917182954.pdf
ctaheadandneckyash-190917182954.pdfctaheadandneckyash-190917182954.pdf
ctaheadandneckyash-190917182954.pdfBrian Sells
 
cardiac output pptx
cardiac output pptxcardiac output pptx
cardiac output pptxananya nanda
 
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_Sam Watermeier
 
SEMS 2014: Dan Davis - Using technology in resus
SEMS 2014: Dan Davis - Using technology in resusSEMS 2014: Dan Davis - Using technology in resus
SEMS 2014: Dan Davis - Using technology in resusRahul Goswami
 
Adequacy of Hemodialysis.pptx
Adequacy of Hemodialysis.pptxAdequacy of Hemodialysis.pptx
Adequacy of Hemodialysis.pptxEllyanaFarina1
 
Transverse Aortic Constriction: The Importance of Monitoring Surgical Outcomes
Transverse Aortic Constriction: The Importance of Monitoring Surgical OutcomesTransverse Aortic Constriction: The Importance of Monitoring Surgical Outcomes
Transverse Aortic Constriction: The Importance of Monitoring Surgical OutcomesScintica Instrumentation
 
satya sai 2018 cardiac output.pdf
satya sai 2018 cardiac output.pdfsatya sai 2018 cardiac output.pdf
satya sai 2018 cardiac output.pdfCutiePie71
 
29624_Cardiac Output and hemodynamic measurement.ppt
29624_Cardiac Output and hemodynamic measurement.ppt29624_Cardiac Output and hemodynamic measurement.ppt
29624_Cardiac Output and hemodynamic measurement.pptraphaelyohana140
 
Ccpa catheter basics07medicine
Ccpa catheter basics07medicineCcpa catheter basics07medicine
Ccpa catheter basics07medicineanjika
 
Cardiac output monitoring
Cardiac output monitoringCardiac output monitoring
Cardiac output monitoringNIICS
 
Cardiac output & monitoring
Cardiac output &  monitoringCardiac output &  monitoring
Cardiac output & monitoringArundev P Nair
 
Intra aortic balloon pump and ECMO
Intra aortic balloon pump and ECMOIntra aortic balloon pump and ECMO
Intra aortic balloon pump and ECMORachel Jeevakirubai
 
cardiac output measurment and monitoring ppt-1.pptx
cardiac output measurment and monitoring ppt-1.pptxcardiac output measurment and monitoring ppt-1.pptx
cardiac output measurment and monitoring ppt-1.pptxshekinah41
 
Haemodynamic monitoring-Minati
Haemodynamic monitoring-MinatiHaemodynamic monitoring-Minati
Haemodynamic monitoring-MinatiMinati Choudhury
 
Transesophageal echocardiography by Dhaval patel
Transesophageal echocardiography by Dhaval patelTransesophageal echocardiography by Dhaval patel
Transesophageal echocardiography by Dhaval patelDhaval Patel
 

Semelhante a Copy of Mitsumori-CT angiography techniques (20)

Cardiac output monitoring
Cardiac output monitoring Cardiac output monitoring
Cardiac output monitoring
 
ctaheadandneckyash-190917182954.pdf
ctaheadandneckyash-190917182954.pdfctaheadandneckyash-190917182954.pdf
ctaheadandneckyash-190917182954.pdf
 
cardiac output pptx
cardiac output pptxcardiac output pptx
cardiac output pptx
 
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_
Handout vsm scct_2015_hallett_ct of aortic and pulmonary vascular disease_
 
SEMS 2014: Dan Davis - Using technology in resus
SEMS 2014: Dan Davis - Using technology in resusSEMS 2014: Dan Davis - Using technology in resus
SEMS 2014: Dan Davis - Using technology in resus
 
Adequacy of Hemodialysis.pptx
Adequacy of Hemodialysis.pptxAdequacy of Hemodialysis.pptx
Adequacy of Hemodialysis.pptx
 
Transverse Aortic Constriction: The Importance of Monitoring Surgical Outcomes
Transverse Aortic Constriction: The Importance of Monitoring Surgical OutcomesTransverse Aortic Constriction: The Importance of Monitoring Surgical Outcomes
Transverse Aortic Constriction: The Importance of Monitoring Surgical Outcomes
 
satya sai 2018 cardiac output.pdf
satya sai 2018 cardiac output.pdfsatya sai 2018 cardiac output.pdf
satya sai 2018 cardiac output.pdf
 
29624_Cardiac Output and hemodynamic measurement.ppt
29624_Cardiac Output and hemodynamic measurement.ppt29624_Cardiac Output and hemodynamic measurement.ppt
29624_Cardiac Output and hemodynamic measurement.ppt
 
Ccpa catheter basics07medicine
Ccpa catheter basics07medicineCcpa catheter basics07medicine
Ccpa catheter basics07medicine
 
Cardiac output monitoring
Cardiac output monitoringCardiac output monitoring
Cardiac output monitoring
 
Adequacy hd
Adequacy hdAdequacy hd
Adequacy hd
 
Cardiac output & monitoring
Cardiac output &  monitoringCardiac output &  monitoring
Cardiac output & monitoring
 
PiCCO Monitor
PiCCO Monitor PiCCO Monitor
PiCCO Monitor
 
Ivl basics
Ivl basicsIvl basics
Ivl basics
 
Intra aortic balloon pump and ECMO
Intra aortic balloon pump and ECMOIntra aortic balloon pump and ECMO
Intra aortic balloon pump and ECMO
 
cardiac output measurment and monitoring ppt-1.pptx
cardiac output measurment and monitoring ppt-1.pptxcardiac output measurment and monitoring ppt-1.pptx
cardiac output measurment and monitoring ppt-1.pptx
 
Haemodynamic monitoring-Minati
Haemodynamic monitoring-MinatiHaemodynamic monitoring-Minati
Haemodynamic monitoring-Minati
 
Open heart surgery uday
Open heart surgery udayOpen heart surgery uday
Open heart surgery uday
 
Transesophageal echocardiography by Dhaval patel
Transesophageal echocardiography by Dhaval patelTransesophageal echocardiography by Dhaval patel
Transesophageal echocardiography by Dhaval patel
 

Copy of Mitsumori-CT angiography techniques

  • 2. Overview  Basic concepts • Contrast administration – arterial opacification • Time scan acquisition during the arterial phase  Protocol examples • Helical non-gated CTA • Pulmonary embolism • Abdominal aorta • Aortogram with run-off • DIEP flap • ECG-synchronized CTA • Thoracic aorta • Thoraco-abdominal aorta
  • 4. Achieve arterial enhancement  CT angiography • Need intravenous contrast to achieve arterial enhancement  Proportional to the iodine administration rate • Increasing iodine concentration of contrast medium • Increasing Injection flow rate (mL/s) • Amount of iodinated contrast delivered per unit time • Longer injection duration (larger volume of contrast) Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
  • 5. Achieve arterial enhancement  CT angiography • Need intravenous contrast to achieve arterial enhancement  Proportional to the iodine administration rate • Increasing iodine concentration of contrast medium • Increasing Injection flow rate (mL/s) • Amount of iodinated contrast delivered per unit time • Longer injection duration (larger volume of contrast) Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
  • 6. Higher concentration of Iodine Simulated contrast enhancement curves of the abdominal aorta 125 mL of contrast at 4 mL/s Three CM concentrations Bae KT. Radiology 2010;256:32 2679 HU305 HU24 HU14 HU 0.1 mg/ml 1.0 mg/ml 10 mg/ml 100 mg/ml Higher Iodine concentration increased arterial enhancement
  • 7. Flow rate  Higher rate • Enhancement increases • Duration decreases  Routine injections rates 4-5 mL/sec • Needle sizes • Vein size  Flow rates > 8 mL/s • Don’t result in greater enhancement • Pooling in central venous system, reflux into IVC Simulated contrast enhancement curves of the abdominal aorta 125 mL of 350 mg/mL contrast Injected at three different rates Bae KT. Radiology 2010;256:32 Higher flow rate of CM increased arterial enhancement
  • 8. Flow rate  Higher rate • Enhancement increases • Duration decreases  Routine injections rates 4-5 mL/sec • Needle sizes • Vein size  Flow rates > 8 mL/s • Don’t result in greater enhancement • Pooling in central venous system, reflux into IVC Simulated contrast enhancement curves of the abdominal aorta 125 mL of 350 mg/mL contrast Injected at three different rates Bae KT. Radiology 2010;256:32 Higher flow rate of CM increased arterial enhancement
  • 9. Flow rate  Higher rate • Enhancement increases • Duration decreases  Routine injections rates 4-5 mL/sec • catheter size • Vein size  Flow rates > 8 mL/s • Don’t result in greater enhancement • Pooling in central venous system, reflux into IVC Simulated contrast enhancement curves of the abdominal aorta 125 mL of 350 mg/mL contrast Injected at three different rates Bae KT. Radiology 2010;256:32 Higher flow rate of CM increased arterial enhancement
  • 10. Injection duration = contrast volume Simulated aortic enhancement curves (adult male, 70kg, 170cm). Varying injection durations of 350 mg/ml contrast at 3 cc/s. 5 sec = 15 cc 20 sec = 60 cc 40 sec = 120 cc 60 sec = 180 cc Time in seconds 20 40 60 80 Aorticattenuation(HU) 5015 0 25 0 35 0 Bae KT. Radiology 2010;256:32 Longer injection duration increased peak arterial enhancement
  • 11. Contrast administration summary  Iodinated contrast needed for CTA to enhance arterial vasculature  greater arterial opacification with higher iodine flux at the time of the scan • Higher iodine concentration contrast media • Higher flow rates • Longer injection durations
  • 12. Saline chaser  Pushes contrast in tubing and peripheral veins into central veins • 20 – 30 cc  Allows reduction in contrast volume  Increases peak attenuation  Reduced streak artifacts from veins and right heart  Simpler to implement with dual head injectors
  • 13. kVp Measured attenuation and image noise of a 2% iodine solution at different tube potentials. McCollough CM. Radiol Clin N Am, 2009;47:27 140 kVp 100 12080 100 200 300 Attenuation(HU) 80 100 120 140 10 20 30 40 50 kVp noise(HU) attenuation increases with lower kVp noise increases with lower kVp
  • 14. Timing scan acquisition to the arterial phase
  • 15. Arterial phase of contrast bolus  After contrast injection • Time-to-peak enhancement differs for different target arteries (PA – coronary – aorta – foot) • Distance from venous access site • individual cardiac output • Differ due to local vascular pathology • Stenosis • aneurysm Bae KT. Radiology 2010;256:32 time Enhancement(HU)
  • 16. Arterial phase of contrast bolus  After contrast injection • Time-to-peak enhancement differs for different target arteries (PA – coronary – aorta – foot) • Distance from venous access site • individual cardiac output • Differ due to local vascular pathology • Stenosis • aneurysm Bae KT. Radiology 2010;256:32 time Enhancement(HU)
  • 17. Arterial phase of contrast bolus  After contrast injection • Time-to-peak enhancement differs for different target vessels (PA – coronary – aorta – foot) • Distance from venous access site • individual cardiac output • Differ due to local vascular pathology • Stenosis • aneurysm Bae KT. Radiology 2010;256:32 time Enhancement(HU)
  • 18. Arterial phase of contrast bolus  After contrast injection • Time-to-peak enhancement differs for different target vessels (PA – coronary – aorta – foot) • Distance from venous access site • individual cardiac output • Differ due to local vascular pathology • Stenosis • aneurysm Bae KT. Radiology 2010;256:32 time Enhancement(HU)
  • 19. Arterial phase of contrast bolus  After contrast injection • Time-to-peak enhancement differs for different target vessels (PA – coronary – aorta – foot) • Distance from venous access site • individual cardiac output • Differ due to local vascular pathology • Stenosis • aneurysm Bae KT. Radiology 2010;256:32 time Enhancement(HU)
  • 20. Arterial phase of contrast bolus  Contrast media arrival time (tarr) • Time for the bolus to reach target vessel  Can be determined for each individual and desired target vessel • Timing bolus • Bolus tracking Bae KT. Radiology 2010;256:32 time Enhancement(HU) tarr
  • 21. Scan timing methods Timing bolus  Select target location from scout topogram  Inject small test-bolus • 15 – 20 mL contrast  Acquire low-dose dynamic scan at specified location during injection  ROI in target structure  Measure time-attenuation curve • Contrast material arrival time in aortic root
  • 22. Scan timing methods Bolus triggering  Select trigger location  Acquire reference image • Place ROI in vascular structure of interest  Inject contrast bolus  Acquire low-dose dynamic scans  Monitor attenuation in ROI  Start scan when desired threshold reached Fleischmann, D. Radiol Clin N Am, 2010; 48: 237
  • 23. Scan timing methods Timing bolus  Advantages • Test adequacy of contrast path • Multiple ROIs • (art and veins) • replace if error • Avoid artifacts • Test patient response • Heart rate  Disadvantages • Two contrast injections • time Bolus triggering  Advantages • Time efficient • less contrast  Disadvantages • Different scan delay times • Single shot • Unable to trouble shoot • Adjust to problems • Streak artifacts, misplaced ROI, occluded vein, connector leak
  • 24. Scan timing methods Timing bolus  Advantages • Test adequacy of contrast path • Multiple ROIs • (art and veins) • replace if error • Avoid artifacts • Test patient response • Heart rate  Disadvantages • Two contrast injections • time Bolus triggering  Advantages • Time efficient • less contrast  Disadvantages • Different scan delay times • Single shot • Unable to trouble shoot • Adjust to problems • Streak artifacts, misplaced ROI, occluded vein, connector leak
  • 25. CT angiography: basic strategy  Use a bolus of iodinated contrast to produce arterial enhancement  determine the contrast arrival time • Timing bolus • Bolus tracking  Perform diagnostic scan near peak enhancement achieved with the contrast bolus in the target vessel time Enhancement (HU) Time in seconds 10 20 30 40 Aorticattenuation(HU) 50150250350 scan
  • 26. Basic strategy with timing bolus  Select bolus to achieve sufficient vascular attenuation • Vol: 150 cc (350 mgI/mL) • Rate: 5 cc/s  Determine contrast media arrival time (tarr) • Timing bolus • 15 cc @ 5 cc/s + saline flush  Specify diagnostic delay (td) • Account for larger volume of primary bolus • Achieve greater enhancement • Start scan = tarr + td • Scan delay = tarr + 8 sec Fleischmann, D. Radiol Clin N Am, 2010; 48: 237 Time in seconds 10 20 30 40 Aorticattenuation(HU) 50150250350 scan tarr td
  • 27. Basic strategy with timing bolus  Select bolus to achieve sufficient vascular attenuation • Vol: 150 cc (350 mgI/mL) • Rate: 5 cc/s  Determine contrast media arrival time (tarr) • Timing bolus • 15 cc @ 5 cc/s + saline flush  Shorter diagnostic delay (td) • Lower arterial enhancement 150 vs 200 HU • Start scan = tarr + td • Scan delay = tarr + 4 sec Fleischmann, D. Radiol Clin N Am, 2010; 48: 237 Time in seconds 10 20 30 40 Aorticattenuation(HU) 50150250350 scan tarr td
  • 28. Basic strategy with bolus tracking  Select bolus to achieve sufficient vascular attenuation  Determine contrast media arrival time (tarr) • Inject primary bolus • Bolus tracking • 100 HU threshold (50 HU)  Specify diagnostic delay (td) • Scan delay = tarr + td • tarr + 8 sec Fleischmann, D. Radiol Clin N Am, 2010; 48: 237 Time in seconds 10 20 30 40 Aorticattenuation(HU) 50150250350 scan tarr td
  • 29. CTA summary points  Higher contrast concentrations • Higher arterial enhancement for the same volume of contrast  Flow rate 4 – 5 mL/s  Timing bolus or bolus tracking • Location • Size of target vessel • Expected complexity  Saline chaser  Lower kVp when possible
  • 31. Imaging protocol: pulmonary embolism Timing bolus  AP and lateral scouts  Timing bolus below carina. ROI in PA.  helical acquisition at timing bolus peak + 5 sec  contrast Omnipaque 350  caudal-cranial scan direction from diaphragm to lung apices Timing bolus: 15 cc contrast (5 cc/s) + 15 cc saline (5cc/s) Primary bolus: 85 cc contrast (5 cc/s) + 30 cc saline (5 cc/s)
  • 33. Imaging protocol: CTA abdominal aorta Bolus tracking  AP and lateral scouts  Bolus tracking at L1. ROI in abdominal aorta.  Helical acquisition at threshold of 70 HU  Contrast bolus Omnipaque 350  Cranial-caudal scan direction from diaphragm to lesser trochanter < 55 kg: 120 cc contrast (4 cc/s) + 30 cc saline (4 cc/s) 55-74 kg: 125 cc contrast (4 cc/s) + flush 75-84 kg: 130 cc contrast (4.5 cc/s) + flush 85-94 kg: 145 cc contrast (4.5 cc/s) + flush > 95 kg: 150 cc contrast (5 cc/s) + flush
  • 35. Imaging protocol: CTA aortogram with run-off Long scan duration  AP and lateral scouts  Bolus tracking at L1. ROI in abdominal aorta.  Helical acquisition at threshold of 100 HU  Contrast bolus Omnipaque 350 Scan delay = 40 sec – scan duration Biphasic rate injection  Cranial-caudal scan direction from diaphragm through toes Small patient: 20 cc contrast (4 cc/s) + 95 cc contrast (3.2 cc/s) + 30 cc saline (3.2 cc/s) Medium patient: 25 cc (5 cc/s) + 120 cc (4 cc/s) + 30 cc saline (4 cc/s) Large patient: 30 cc (6 cc/s) + 140 cc (4.8 cc/s) + 30 cc saline (4.8 cc/s)
  • 37. Biphasic injection: prolong plateau Uniphasic injection Biphasic rate injection Bae KT. Radiology, 2000; 216:872 Time (sec) enhancement(HU) Time (sec) enhancement(HU) 50 mL @ 2 mL/s Continuously upsloping curve 25 mL @ 2 mL/s + 25 mL @ 1.4 mL/s More prolonged enhancement curve with two peaks
  • 38. CTA for DIEP flap breast reconstruction  AP and lateral scouts  Timing bolus at level of acetabulum. ROI in right external iliac artery.  Helical acquisition at timing bolus peak + 10 sec  Caudal-cranial scan direction from lesser femoral trochanters to 4 cm above umbilicus Alternate delay for veins Primary bolus: 100 cc contrast (5 cc/s) + 30 cc saline (5 cc/s)
  • 39. Example 3d Images Volume rendered skin view for Location map of where perforator exits fascia Sagittal and axial oblique views of point where perforator exits fascia and IM course
  • 40. Imaging protocol: prospective ECG-triggered thoracic CT aortogram Gated scan, timing bolus  AP and lateral scouts  Right arm IV placement • Avoid streak artifacts across arch vessels  Timing bolus below carina. ROI in ascending thoracic aorta.  PT sequential axial acquisition at timing bolus peak + 6 sec  Contrast • Omnipaque 350 • Biphasic blended  Cranial-caudal scan direction from clavicles to L1 70 cc contrast (5 cc/s) + 50 cc (70/30 blend, 5 cc/s) + 50 cc saline (5 cc/s)
  • 41. Prospective ECG triggered CTA thoracic aorta
  • 42. Imaging protocol: prospective ECG-triggered CT aortogram ECG gated, prolonged scan duration  AP and lateral scouts  Right arm IV placement • Avoid streak artifacts across arch vessels  Timing bolus below carina. ROI in descending thoracic aorta.  PT sequential axial acquisition at timing bolus peak + 4 sec  Contrast • Biphasic size based bolus  Cranial-caudal scan direction from clavicles to lesser femoral trochanter Small patient: 20 cc contrast (4 cc/s) + 95 cc contrast (3.2 cc/s) + 30 cc saline (3.2 cc/s) Medium patient: 25 cc contrast (5 cc/s) + 120 cc (4 cc/s) + 30 cc saline (4 cc/s) Large patient: 30 cc contrast (6 cc/s) + 140 cc (4.8 cc/s) + 30 cc saline (4.8 cc/s)
  • 43. PT - CT aortogram: multifocal aneurysms 76 yo female with multifocal disease—aneurysms in the aortic arch, descending thoracic and abdominal aorta. Volume rendered (left), multiplanar reformatted (MPR), and thin MIP images of the thoracic and abdominal aorta. Sagittal oblique MPR of the arch and descending thoracic aorta Coronal oblique thin MIP of the abdominal aorta
  • 44. Imaging protocol: upper extremity CTA Distal timing bolus  AP and lateral scouts  contralateral arm IV placement  Timing bolus near area of concern. ROI in target artery.  helical acquisition at timing bolus peak + 4 sec  scan through extremity from hand to chest. • Decrease venous contamination Bolus > 20 sec, 100 cc (5 cc/s) Anderson S, Radiology 2008;249:1064
  • 47. In closing  Basic concepts of CT angiography  Contrast administration and bolus shaping  Scan timing  Protocol examples • Modifications based on the anatomy and pathology imaged