SlideShare uma empresa Scribd logo
1 de 31
KLIMATOLOGI PERTANIAN
    ( Kuliah Minggu Ke 7 )


            Oleh



 Suardy Mandung
Barometric formula
Equation 1:




where
   P = Static pressure (pascals)
   T = Standard temperature (kelvins)
   L = Standard temperature lapse rate (kelvins per meter)
   h = Height above sea level (meters)
   R * = Universal gas constant for air: 8.31432×103 N·m / (kmol·K)
   g0 = Gravitational constant (9.80665 m/s²)
   M = Molar mass of Earth's air (28.9644 g/mol)
where
  P = Static pressure (inches of mercury)
  T = Standard temperature (kelvins)
  L = Standard temperature lapse rate (kelvins per foot)
  h = Height above sea level (feet)
  R * = Universal gas constant (using feet and kelvins
  and gram moles: 8.9494596×104 kg·ft2·s-2·K-
  1·kmol-1)
  g0 = Gravitational constant (32.17405 ft/s²)
  M = Molar mass of Earth's air (28.9644 g/mol)
Height
                          Static                  Temperature
             Above
                         Pressure    Standard      Lapse Rate
Subscript   Sea Level
                                    Temperature
   b
                                        (K)
             (m)        (pascals)                   (K/m)


   0          0          101325       288.15       -0.0065

   1        11,000      22632.1       216.65         0.0

   2        20,000      5474.89       216.65        0.001

   3        32,000      868.019       228.65       0.0028

   4        47,000      110.906       270.65         0.0

   5        51,000      66.9389       270.65       -0.0028

   6        71,000      3.95642       214.65        -0.002
Density Equations




where
    ρ = Mass Density (kg/m3)
    T = Standard temperature (kelvins)
    L = Standard temperature lapse rate (kelvins per meter)
    h = Height above sea level (geopotential meters)
    R * = Universal gas constant for air: 8.31432×103 N·m / (kmol·K)
    g0 = Gravitational constant (9.80665 m/s²)
    M = Molar mass of Earth's air (28.9644 g/mol)
Or converted to English units:[1]
Where
    ρ = Mass Density (slugs/Ft3)
    T = Standard Temperature (degrees Kelvin)
    L = Standard Temperature Lapse Rate (degrees Celsius per foot)
    h = Height above Sea Level (geopotential feet)
    R * = Universal Gas Constant (converted to English units: 8.9494596 X
    104 Ft2/sec2 K)
    go = Gravitational Constant (32.17405 Ft/sec2)
    M = Molar Mass of Earth's Air (28.9644 grams per mole)
Height Above Sea   Mass Density              Temperature
Sub         Level (h)          (ρ)        Standard   Lapse Rate (L)
scrip                                     Temp.(T)
 tb           (m)              (kg/m3)       (K)      (K/m)

 0             0               1.2250      288.15    -0.0065
 1           11,000            0.36391     216.65      0.0
 2           20,000            0.08803     216.65     0.001
 3           32,000            0.01322     228.65    0.0028
 4           47,000            0.00143     270.65      0.0
 5           51,000            0.00086     270.65    -0.0028
                               0.00006
 6           71,000                        214.65    -0.002
                                  4
Derivation ideal gas law:
When density is known:


And assuming that all pressure is hydrostatic:


Substituting the first expression into the second we get:


Integrating this expression from the surface to the altitude z we get:


Assuming constant temperature, molar mass, and gravitational acceleration, we get
the barometric formula:


n this formulation, R is the gas constant, and the term RT / Mg gives the scale height
(approximately equal to 7.4 km for the troposphere).
Penyebaran tekan uap air
      (dry season)




Penyebaran tekan uap air
     (wet season)
Water Vapor Pressure




Where

The temperature Tv is in degrees Celsius

The pressure p is in pascals.
Absolute humidity
Absolute humidity is the density of water in a particular volume of air. The most
common units are grams per cubic meter,




  he amount of vapor in that cube of air is the absolute humidity of that cubic
  meter of air. More technically: the mass of water vapor mw, per cubic meter of
  air,   Va .
  volumetric humidity. "absolute humidity." Most humidity charts are given in
  g/kg or kg/kg,
Mixing ratio / Humidity ratio

Mixing or Humidity ratio is expressed as a ratio of
kilograms of water vapour, mw, per kilogram of dry air,
md, at a given pressure
That ratio can be given as:
Specific humidity

Specific humidity is the ratio of water vapor to air (dry air plus water vapor)
in a particular volume of air. Specific humidity ratio is expressed as a ratio
of kilograms of water vapor, mw, per kilogram of air, ma .
That ratio can be given as:



Specific humidity is related to mixing ratio (and vice versa) by:
Relative humidity
Relative humidity is defined as the ratio of the partial pressure of water vapor in a
gaseous mixture of air and water vapor to the saturated vapor pressure of water at
a given temperature. Relative humidity is expressed as a percentage and is
calculated in the following manner:




where

           is the partial pressure of water vapor in the gas mixture;

           is the saturation vapor pressure of water at the temp of the gas mixture

           is the relative humidity of the gas mixture being considered.
Contoh Perhitungan
Pengamatan suhu udara dengan alat psikrometer
1. TBK                     = 32,5OC
2. TBB                     = 27,5OC
3. Tekanan udara           = 1 005 mb
4. Tetapan psikometer      = 0,000667
Tentukan :
1. Tekanan uap     (mb)
2. Suhu Titik embun (OC)
3. Kelembaban Nisbi (%)
4. Kelembaban Spesifik (g/kg)
5. Nisba Campuran (g/kg)
6. Defisit Tekanan Uap (mb)
1. Tekanan Uap Air
TBB   ( nilai ini digunakan pada perhitungan RH pad rumus       Regnault )

                           (17,239 T / ( T + 237,3 ))
 es * = 6,1078 e


                           (17,239 x 27,5 / ( 27,5 + 237,3 ))
 es * = 6,1078 e


                         1,7903
 es * = 6,1078 e
TBB   ( nilai ini digunakan pada perhitungan RH pada rumus   Regnault )



  e = es * - req p ( TBK – TBB)


  e = 36,59 – (0,000667) (1 005) ( 32,5 – 27,5 )


  e = 36,59 – 3,3351


  e = 33,2548 mb (Nilai ini adalah Tekanan Uap air)
2. Suhu Titik Embun

    Td = ( 237,3 x Y ) / ( 17,237 – Y )
                         Y = ln ( e / 6,1078 )
                         Y = ln ( 33,2548 / 6, 1078 )
                         Y = 1,6946

    Td = ( 237,3 x 1,6948 ) / ( 17,237 – 1,6948 )


    Td = 25,88OC
3. Tekanan Uap Air Jenuh
 TBK
                    (17,239 T / ( T + 237,3 ))
 es * = 6,1078 e


                    (17,239 x 32,5 / ( 32,5 + 237,3 ))
 es * = 6,1078 e


                   2,0766
 es * = 6,1078 e
4. Kelembaban Nisbi Udara

        RH = ( e / es ) x 100%


        RH = ( 33,25 mb / 48,72 mb ) x 100%


        RH = 68 %
5. Kelembaban Spesifik
    SH = ( 622 e ) / (1,622 p )


    SH = ( 622 x 33,25 ) / ( 1,622 x 1 005 )


    SH = 12,6872 g/kg
6. Nisbi Campuran

 SH = 622 ( e / ( p - e ))

 SH = 622 ( 33,25 / ( 1005 - 33,25 ))

 SH = 21,28 g/kg
7. Defisit Tekanan Uap


    DTU =   e - es


    DTU =   33,25 - 48,72


    DTU = 16,47 mb
Pan Evaporimeter Class A
Agroklimatologi 7

Mais conteúdo relacionado

Mais procurados

ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3Yuri Melliza
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2Yuri Melliza
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesYuri Melliza
 
Conversion factors
Conversion factorsConversion factors
Conversion factorspirate_Scoe
 
Potter, merle c capitulo 8
Potter, merle c capitulo 8Potter, merle c capitulo 8
Potter, merle c capitulo 8Steeven2405
 
Assignment thermal 2018 . ...
Assignment thermal 2018                   .                                  ...Assignment thermal 2018                   .                                  ...
Assignment thermal 2018 . ...musadoto
 
ME 12 Assignment No. 1
ME 12 Assignment No. 1ME 12 Assignment No. 1
ME 12 Assignment No. 1Yuri Melliza
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...KirkMcdowells
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th editionsolution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th editionChandu Kolli
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1Malaysia
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Yuri Melliza
 
The standard atmosphere
The standard atmosphereThe standard atmosphere
The standard atmosphereMohamed Yasser
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2Yuri Melliza
 
ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)Yuri Melliza
 
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasIB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasLawrence kok
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineersYuri Melliza
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Yuri Melliza
 

Mais procurados (20)

ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Conversion factors
Conversion factorsConversion factors
Conversion factors
 
Potter, merle c capitulo 8
Potter, merle c capitulo 8Potter, merle c capitulo 8
Potter, merle c capitulo 8
 
Assignment thermal 2018 . ...
Assignment thermal 2018                   .                                  ...Assignment thermal 2018                   .                                  ...
Assignment thermal 2018 . ...
 
ME 12 Assignment No. 1
ME 12 Assignment No. 1ME 12 Assignment No. 1
ME 12 Assignment No. 1
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th editionsolution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1
 
Ch.4
Ch.4Ch.4
Ch.4
 
Free convection
Free convectionFree convection
Free convection
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
The standard atmosphere
The standard atmosphereThe standard atmosphere
The standard atmosphere
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2
 
ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)
 
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasIB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 

Destaque

Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan Kalor
Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan KalorProses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan Kalor
Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan KalorJennie Ong
 
Proses pada Litosfer dan Atmosfer Bumi
Proses pada Litosfer dan Atmosfer BumiProses pada Litosfer dan Atmosfer Bumi
Proses pada Litosfer dan Atmosfer BumiShareen R.
 
Dasar kenyamanan termal
Dasar kenyamanan termalDasar kenyamanan termal
Dasar kenyamanan termalDedep Tohpati
 

Destaque (7)

Agroklimatologi
AgroklimatologiAgroklimatologi
Agroklimatologi
 
observasi BMKg
observasi BMKgobservasi BMKg
observasi BMKg
 
Display ver.2
Display ver.2Display ver.2
Display ver.2
 
Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan Kalor
Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan KalorProses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan Kalor
Proses yang Terjadi di Atmosfer dan Pengaruhnya bagi Perubahan Zat dan Kalor
 
Climatology
ClimatologyClimatology
Climatology
 
Proses pada Litosfer dan Atmosfer Bumi
Proses pada Litosfer dan Atmosfer BumiProses pada Litosfer dan Atmosfer Bumi
Proses pada Litosfer dan Atmosfer Bumi
 
Dasar kenyamanan termal
Dasar kenyamanan termalDasar kenyamanan termal
Dasar kenyamanan termal
 

Semelhante a Agroklimatologi 7

13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
Thermo 5th chap01p085
Thermo 5th chap01p085Thermo 5th chap01p085
Thermo 5th chap01p085Luma Marques
 
Thermo 5th chap01_p085
Thermo 5th chap01_p085Thermo 5th chap01_p085
Thermo 5th chap01_p085João Pires
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and applicationUsama Khan
 
psychrometric chart & processes.pdf
psychrometric chart & processes.pdfpsychrometric chart & processes.pdf
psychrometric chart & processes.pdfAbhayThakur193489
 
Boiler doc 02 principles & heat transfer
Boiler doc 02   principles & heat transferBoiler doc 02   principles & heat transfer
Boiler doc 02 principles & heat transferMars Tsani
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquidNoaman Ahmed
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3Ebra21
 
HdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptHdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptJENILPATEL919230
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)Yuri Melliza
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3Malaysia
 
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviourIB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviourLawrence kok
 

Semelhante a Agroklimatologi 7 (20)

Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Thermo 5th chap01p085
Thermo 5th chap01p085Thermo 5th chap01p085
Thermo 5th chap01p085
 
Thermo 5th chap01_p085
Thermo 5th chap01_p085Thermo 5th chap01_p085
Thermo 5th chap01_p085
 
Gases.pptx
Gases.pptxGases.pptx
Gases.pptx
 
Psychrometry
PsychrometryPsychrometry
Psychrometry
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and application
 
psychrometric chart & processes.pdf
psychrometric chart & processes.pdfpsychrometric chart & processes.pdf
psychrometric chart & processes.pdf
 
The Essentials in fluid mechanics
The Essentials in fluid mechanicsThe Essentials in fluid mechanics
The Essentials in fluid mechanics
 
Boiler doc 02 principles & heat transfer
Boiler doc 02   principles & heat transferBoiler doc 02   principles & heat transfer
Boiler doc 02 principles & heat transfer
 
System of Units
System of UnitsSystem of Units
System of Units
 
Lecture 01: STKM3212
Lecture 01: STKM3212Lecture 01: STKM3212
Lecture 01: STKM3212
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
HdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptHdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.ppt
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3
 
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviourIB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
IB Chemistry Real, Ideal Gas and Deviation from Ideal Gas behaviour
 

Agroklimatologi 7

  • 1. KLIMATOLOGI PERTANIAN ( Kuliah Minggu Ke 7 ) Oleh Suardy Mandung
  • 2.
  • 3.
  • 4. Barometric formula Equation 1: where P = Static pressure (pascals) T = Standard temperature (kelvins) L = Standard temperature lapse rate (kelvins per meter) h = Height above sea level (meters) R * = Universal gas constant for air: 8.31432×103 N·m / (kmol·K) g0 = Gravitational constant (9.80665 m/s²) M = Molar mass of Earth's air (28.9644 g/mol)
  • 5. where P = Static pressure (inches of mercury) T = Standard temperature (kelvins) L = Standard temperature lapse rate (kelvins per foot) h = Height above sea level (feet) R * = Universal gas constant (using feet and kelvins and gram moles: 8.9494596×104 kg·ft2·s-2·K- 1·kmol-1) g0 = Gravitational constant (32.17405 ft/s²) M = Molar mass of Earth's air (28.9644 g/mol)
  • 6. Height Static Temperature Above Pressure Standard Lapse Rate Subscript Sea Level Temperature b (K) (m) (pascals) (K/m) 0 0 101325 288.15 -0.0065 1 11,000 22632.1 216.65 0.0 2 20,000 5474.89 216.65 0.001 3 32,000 868.019 228.65 0.0028 4 47,000 110.906 270.65 0.0 5 51,000 66.9389 270.65 -0.0028 6 71,000 3.95642 214.65 -0.002
  • 7. Density Equations where ρ = Mass Density (kg/m3) T = Standard temperature (kelvins) L = Standard temperature lapse rate (kelvins per meter) h = Height above sea level (geopotential meters) R * = Universal gas constant for air: 8.31432×103 N·m / (kmol·K) g0 = Gravitational constant (9.80665 m/s²) M = Molar mass of Earth's air (28.9644 g/mol)
  • 8. Or converted to English units:[1] Where ρ = Mass Density (slugs/Ft3) T = Standard Temperature (degrees Kelvin) L = Standard Temperature Lapse Rate (degrees Celsius per foot) h = Height above Sea Level (geopotential feet) R * = Universal Gas Constant (converted to English units: 8.9494596 X 104 Ft2/sec2 K) go = Gravitational Constant (32.17405 Ft/sec2) M = Molar Mass of Earth's Air (28.9644 grams per mole)
  • 9. Height Above Sea Mass Density Temperature Sub Level (h) (ρ) Standard Lapse Rate (L) scrip Temp.(T) tb (m) (kg/m3) (K) (K/m) 0 0 1.2250 288.15 -0.0065 1 11,000 0.36391 216.65 0.0 2 20,000 0.08803 216.65 0.001 3 32,000 0.01322 228.65 0.0028 4 47,000 0.00143 270.65 0.0 5 51,000 0.00086 270.65 -0.0028 0.00006 6 71,000 214.65 -0.002 4
  • 10. Derivation ideal gas law: When density is known: And assuming that all pressure is hydrostatic: Substituting the first expression into the second we get: Integrating this expression from the surface to the altitude z we get: Assuming constant temperature, molar mass, and gravitational acceleration, we get the barometric formula: n this formulation, R is the gas constant, and the term RT / Mg gives the scale height (approximately equal to 7.4 km for the troposphere).
  • 11.
  • 12. Penyebaran tekan uap air (dry season) Penyebaran tekan uap air (wet season)
  • 13. Water Vapor Pressure Where The temperature Tv is in degrees Celsius The pressure p is in pascals.
  • 14. Absolute humidity Absolute humidity is the density of water in a particular volume of air. The most common units are grams per cubic meter, he amount of vapor in that cube of air is the absolute humidity of that cubic meter of air. More technically: the mass of water vapor mw, per cubic meter of air, Va . volumetric humidity. "absolute humidity." Most humidity charts are given in g/kg or kg/kg,
  • 15. Mixing ratio / Humidity ratio Mixing or Humidity ratio is expressed as a ratio of kilograms of water vapour, mw, per kilogram of dry air, md, at a given pressure That ratio can be given as:
  • 16. Specific humidity Specific humidity is the ratio of water vapor to air (dry air plus water vapor) in a particular volume of air. Specific humidity ratio is expressed as a ratio of kilograms of water vapor, mw, per kilogram of air, ma . That ratio can be given as: Specific humidity is related to mixing ratio (and vice versa) by:
  • 17. Relative humidity Relative humidity is defined as the ratio of the partial pressure of water vapor in a gaseous mixture of air and water vapor to the saturated vapor pressure of water at a given temperature. Relative humidity is expressed as a percentage and is calculated in the following manner: where is the partial pressure of water vapor in the gas mixture; is the saturation vapor pressure of water at the temp of the gas mixture is the relative humidity of the gas mixture being considered.
  • 18.
  • 19.
  • 20. Contoh Perhitungan Pengamatan suhu udara dengan alat psikrometer 1. TBK = 32,5OC 2. TBB = 27,5OC 3. Tekanan udara = 1 005 mb 4. Tetapan psikometer = 0,000667 Tentukan : 1. Tekanan uap (mb) 2. Suhu Titik embun (OC) 3. Kelembaban Nisbi (%) 4. Kelembaban Spesifik (g/kg) 5. Nisba Campuran (g/kg) 6. Defisit Tekanan Uap (mb)
  • 21. 1. Tekanan Uap Air TBB ( nilai ini digunakan pada perhitungan RH pad rumus Regnault ) (17,239 T / ( T + 237,3 )) es * = 6,1078 e (17,239 x 27,5 / ( 27,5 + 237,3 )) es * = 6,1078 e 1,7903 es * = 6,1078 e
  • 22. TBB ( nilai ini digunakan pada perhitungan RH pada rumus Regnault ) e = es * - req p ( TBK – TBB) e = 36,59 – (0,000667) (1 005) ( 32,5 – 27,5 ) e = 36,59 – 3,3351 e = 33,2548 mb (Nilai ini adalah Tekanan Uap air)
  • 23. 2. Suhu Titik Embun Td = ( 237,3 x Y ) / ( 17,237 – Y ) Y = ln ( e / 6,1078 ) Y = ln ( 33,2548 / 6, 1078 ) Y = 1,6946 Td = ( 237,3 x 1,6948 ) / ( 17,237 – 1,6948 ) Td = 25,88OC
  • 24. 3. Tekanan Uap Air Jenuh TBK (17,239 T / ( T + 237,3 )) es * = 6,1078 e (17,239 x 32,5 / ( 32,5 + 237,3 )) es * = 6,1078 e 2,0766 es * = 6,1078 e
  • 25. 4. Kelembaban Nisbi Udara RH = ( e / es ) x 100% RH = ( 33,25 mb / 48,72 mb ) x 100% RH = 68 %
  • 26. 5. Kelembaban Spesifik SH = ( 622 e ) / (1,622 p ) SH = ( 622 x 33,25 ) / ( 1,622 x 1 005 ) SH = 12,6872 g/kg
  • 27. 6. Nisbi Campuran SH = 622 ( e / ( p - e )) SH = 622 ( 33,25 / ( 1005 - 33,25 )) SH = 21,28 g/kg
  • 28. 7. Defisit Tekanan Uap DTU = e - es DTU = 33,25 - 48,72 DTU = 16,47 mb
  • 29.