SlideShare uma empresa Scribd logo
1 de 3
Ejercicios propuestos<br />Dado S = {(2,4) , (1,0) , (4,3)}. Determinar si S es LI o LD.<br />Primero realizamos la combinación lineal de S con el cero vector:<br />(0,0) = α(2,4) + β(1,0) + γ(4,3)<br />(0,0) = (2α,4α) + (β,0) + (4γ,3γ)<br />(0,0) = (2α+β+4γ ; 4α+3γ)<br />A continuación planteamos un sistema de ecuaciones:<br />2α+β+4γ = 0<br />4α+3γ = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema         de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />2     1       4      00    -2     -5      02     1     4        04     0     3        0                                              ≈<br />                                     F2 = F2 – 2F1                                                      Э ∞ soluciones<br />Como existen infinitas soluciones, entonces S es linealmente dependiente (LD).<br />Dado B = {(1,1,0) , (0,1,1) , (1,0,1) , (1,2,2)}. Determinar si B es LI o LD.<br />Primero realizamos la combinación lineal de B con el cero vector:<br />(0,0,0) = α(1,1,0) + β(0,1,1) + γ(1,0,1) + δ(1,2,2)<br />(0,0,0) = (α,α,0) + (0,β,β) + (γ,0,γ) + (δ,2δ,2δ)<br />(0,0,0) = (α+γ+δ; α+β+2δ ; β+γ+2δ)<br />A continuación planteamos un sistema de ecuaciones:<br />α+γ+δ = 0<br />α+β+2δ = 0<br />β+γ+2δ = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema         de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas <br />soluciones:<br />1      0      1      1       0             0      1     -1     1       0     0      0      2      1       01      0      1      1       00      1      0      2       0 0      1      1      2       0<br />                                                           ≈<br />                                                  F2 = F2 – F1                                                                     Э ∞ soluciones                                          <br />                                                  F3 = F3 – F2<br />Como existen infinitas soluciones, entonces B es linealmente dependiente (LD).<br />Dado C = {(1-x-x2 , 1+x+x2 , -1+x+x2)}. Determinar si C es LI o LD.<br />Primero realizamos la combinación lineal de C con el cero vector:<br />(0,0,0) = α(1-x-x2) + β(1+x+x2) + γ(-1+x+x2)<br />(0,0,0) = (α-αx-αx2) + (β+βx+βx2) + (-γ+γx+γx2)<br />(0,0,0) = (α+β-γ , -αx+βx+γx , -αx2+βx2+γx2)<br />A continuación planteamos un sistema de ecuaciones:<br />α+β-γ = 0<br />-α+β+γ = 0<br />-α+β+γ = 0<br />Colocamos las ecuaciones en una matriz; como es una matriz cuadrada, encontramos el determinante por el método de la estrella:<br /> 1        1       -1         0-1        1        1         0-1        1        1         0<br />|C| =                                                                      |C| = 0<br />Como el determinante de C es igual a cero, entonces existen infinitas soluciones; esto quiere decir que D es linealmente dependiente (LD).<br />Dado S = {(1,1,0) , (0,1,1) , (1.0.1)}. Determinar si S es LI o LD.<br />Primero realizamos la combinación lineal de S con el cero vector:<br />(0,0,0) = α(1,1,0) + β(0,1,1) + γ(1,0,1)<br />(0,0,0) = (α,α,0) + (0,β,β) + (γ,0,γ)<br />(0,0,0) = (α+γ ; α+β ; β+γ)<br />A continuación planteamos un sistema de ecuaciones:<br />α+γ = 0<br />α+β = 0<br />β+γ = 0<br />Colocamos las ecuaciones en una matriz; como es una matriz cuadrada, encontramos el determinante por el método de la estrella:<br />1     0     1        01     1     0        00     1     1        0<br /> <br />|A| =                                                                 |A| = 2<br />                                                                         Э ! solución <br />Como el determinante de A es diferente de cero , entonces existe única solución; esto quiere decir que S es linealmente independiente (LI).<br />Dado A = {(1,1,0) , (3,4,2)}. Determinar si A es LI o LD.<br />Primero realizamos la combinación lineal de A con el cero vector:<br />(0,0,0) = α(1,1,0) + β(3,4,2)<br />(0,0,0) = (α,α,0) + (3β,4β,2β)<br />(0,0,0) = (α+3β ; α+4β ; 2β)<br />A continuación planteamos un sistema de ecuaciones:<br />α+3β = 0<br />α+4β = 0<br />2β = 0 <br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema         de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />1      3        00      1        00      0        01      3        01      4        00     2         0<br />                                          ≈<br />                                   F2 = F2 –F1                                                                                Э ! solución <br />                                  F3 = F3 – 2F2<br />Como existe única solución (la trivial), entonces A es linealmente independiente (LI).<br />Dado D = {t2+1 , t-2 , t+3 }. Determinar si D es LI o LD.<br />Primero realizamos la combinación lineal de D con el cero vector:<br />(0,0,0) = α(t2+1) + β(t-2) + γ(t+3)<br />(0,0,0) = (αt2+α) + (βt-2β) + (γt+3γ)<br />(0,0,0) = (α-2β+3γ ; βt+γt ; αt2)<br />A continuación planteamos un sistema de ecuaciones:<br />α-2β+3γ = 0 <br />β+γ = 0<br />α = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema         de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />1     -2      3        00      1       1        00      0      -5       01     -2      3        00      1       1        00      2      -3       01     -2      3        00      1       1        01      0       0        0<br />                                                   ≈                                                                ≈    <br />                                           F3 = F3 – F1                                               F3 = F3 – 2F2<br /> Э ! solución. Como existe única solución (la trivial), entonces D es linealmente independiente (LI). <br />
Ejercicios propuestos de dependencia e independencia lineal
Ejercicios propuestos de dependencia e independencia lineal

Mais conteúdo relacionado

Mais procurados

Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Diego Salazar
 
Combinacion lineal ejercicios
Combinacion lineal ejerciciosCombinacion lineal ejercicios
Combinacion lineal ejerciciosalgebra
 
Clasificación de las ecuaciones diferenciales
Clasificación de las ecuaciones diferencialesClasificación de las ecuaciones diferenciales
Clasificación de las ecuaciones diferencialesjesusamigable
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler seralb
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalalgebra
 
Ejemplos de ejercicios bernoulli
Ejemplos de ejercicios bernoulliEjemplos de ejercicios bernoulli
Ejemplos de ejercicios bernoulliCarol Ramos
 
Ecuaciones diferenciales de coeficientes por operador anular
Ecuaciones diferenciales de coeficientes por operador anularEcuaciones diferenciales de coeficientes por operador anular
Ecuaciones diferenciales de coeficientes por operador anularsheep242
 
Producto vectorial
Producto vectorialProducto vectorial
Producto vectorialalex0002
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesDiego Salazar
 
Limites de funciones
Limites de funcionesLimites de funciones
Limites de funcionesBartoluco
 
Calculo linea recta minimos cuadrados
Calculo linea recta minimos cuadradosCalculo linea recta minimos cuadrados
Calculo linea recta minimos cuadradosFIDEL GUEVARA LARA
 
Dependencia lineal
Dependencia linealDependencia lineal
Dependencia linealrosy
 
Distribución normal
Distribución normalDistribución normal
Distribución normalANAALONSOSAN
 

Mais procurados (20)

Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano
 
Espacios vectoriales
Espacios vectorialesEspacios vectoriales
Espacios vectoriales
 
Combinacion lineal ejercicios
Combinacion lineal ejerciciosCombinacion lineal ejercicios
Combinacion lineal ejercicios
 
Clasificación de las ecuaciones diferenciales
Clasificación de las ecuaciones diferencialesClasificación de las ecuaciones diferenciales
Clasificación de las ecuaciones diferenciales
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
 
Ejemplos de ejercicios bernoulli
Ejemplos de ejercicios bernoulliEjemplos de ejercicios bernoulli
Ejemplos de ejercicios bernoulli
 
Ecuaciones diferenciales de coeficientes por operador anular
Ecuaciones diferenciales de coeficientes por operador anularEcuaciones diferenciales de coeficientes por operador anular
Ecuaciones diferenciales de coeficientes por operador anular
 
Derivada Parcial
Derivada ParcialDerivada Parcial
Derivada Parcial
 
Producto vectorial
Producto vectorialProducto vectorial
Producto vectorial
 
Interpolacion newton
Interpolacion newtonInterpolacion newton
Interpolacion newton
 
espacios vectoriales
espacios vectorialesespacios vectoriales
espacios vectoriales
 
Ecuaciones diferenciales
Ecuaciones diferenciales Ecuaciones diferenciales
Ecuaciones diferenciales
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de Soluciones
 
Limites de funciones
Limites de funcionesLimites de funciones
Limites de funciones
 
Calculo linea recta minimos cuadrados
Calculo linea recta minimos cuadradosCalculo linea recta minimos cuadrados
Calculo linea recta minimos cuadrados
 
Producto interno
Producto internoProducto interno
Producto interno
 
Limites
LimitesLimites
Limites
 
Dependencia lineal
Dependencia linealDependencia lineal
Dependencia lineal
 
Distribución normal
Distribución normalDistribución normal
Distribución normal
 

Semelhante a Ejercicios propuestos de dependencia e independencia lineal

Dependencia e independencia_lineal
Dependencia e independencia_linealDependencia e independencia_lineal
Dependencia e independencia_linealalgebra
 
Espacio vectorial Y COMBINACION LINEAL
Espacio vectorial Y COMBINACION LINEALEspacio vectorial Y COMBINACION LINEAL
Espacio vectorial Y COMBINACION LINEALMiguel Vasquez
 
Ejercicios de espacios vectoriales
Ejercicios de espacios vectorialesEjercicios de espacios vectoriales
Ejercicios de espacios vectorialesluiszamudiobalan
 
Al examen sustitutorio solucionario (1)
Al examen sustitutorio   solucionario (1)Al examen sustitutorio   solucionario (1)
Al examen sustitutorio solucionario (1)henrry_T_17
 
Ed Variacion De Parametros
Ed Variacion De ParametrosEd Variacion De Parametros
Ed Variacion De Parametroseduardolomeli
 
Linealización de sistemas de primer orden
Linealización de sistemas de primer ordenLinealización de sistemas de primer orden
Linealización de sistemas de primer ordenAngel Vázquez Patiño
 
Estructuras algebraicas, vectores y espacios vectoriales(4)
Estructuras algebraicas, vectores y espacios vectoriales(4)Estructuras algebraicas, vectores y espacios vectoriales(4)
Estructuras algebraicas, vectores y espacios vectoriales(4)Jorge Garcia
 
Calculo 3 ejer 1
Calculo 3 ejer 1Calculo 3 ejer 1
Calculo 3 ejer 1izarra1530
 
Tema 1-ejercicios resuelto 2024.........
Tema 1-ejercicios resuelto  2024.........Tema 1-ejercicios resuelto  2024.........
Tema 1-ejercicios resuelto 2024.........JosLuisRoqueHuamani
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]daferro
 
Examen Álgebra Lineal 2P 2017 IT
Examen Álgebra Lineal 2P 2017 ITExamen Álgebra Lineal 2P 2017 IT
Examen Álgebra Lineal 2P 2017 ITAngel Guale
 
grossman
grossmangrossman
grossmandarkeco
 
Solucion Ex 2ª Ev 2ºBach
Solucion Ex 2ª Ev 2ºBachSolucion Ex 2ª Ev 2ºBach
Solucion Ex 2ª Ev 2ºBachantoniocossio
 

Semelhante a Ejercicios propuestos de dependencia e independencia lineal (20)

Dependencia e independencia_lineal
Dependencia e independencia_linealDependencia e independencia_lineal
Dependencia e independencia_lineal
 
Espacio vectorial Y COMBINACION LINEAL
Espacio vectorial Y COMBINACION LINEALEspacio vectorial Y COMBINACION LINEAL
Espacio vectorial Y COMBINACION LINEAL
 
Ejercicios de espacios vectoriales
Ejercicios de espacios vectorialesEjercicios de espacios vectoriales
Ejercicios de espacios vectoriales
 
Rel2
Rel2Rel2
Rel2
 
Ejercicios Matemáticas Resueltos 1º LADE
Ejercicios Matemáticas Resueltos 1º LADEEjercicios Matemáticas Resueltos 1º LADE
Ejercicios Matemáticas Resueltos 1º LADE
 
Al examen sustitutorio solucionario (1)
Al examen sustitutorio   solucionario (1)Al examen sustitutorio   solucionario (1)
Al examen sustitutorio solucionario (1)
 
Ed Variacion De Parametros
Ed Variacion De ParametrosEd Variacion De Parametros
Ed Variacion De Parametros
 
Liapunov
LiapunovLiapunov
Liapunov
 
Linealización de sistemas de primer orden
Linealización de sistemas de primer ordenLinealización de sistemas de primer orden
Linealización de sistemas de primer orden
 
Semana 10 2018-garcia-listo
Semana 10 2018-garcia-listoSemana 10 2018-garcia-listo
Semana 10 2018-garcia-listo
 
Estructuras algebraicas, vectores y espacios vectoriales(4)
Estructuras algebraicas, vectores y espacios vectoriales(4)Estructuras algebraicas, vectores y espacios vectoriales(4)
Estructuras algebraicas, vectores y espacios vectoriales(4)
 
Calculo 3 ejer 1
Calculo 3 ejer 1Calculo 3 ejer 1
Calculo 3 ejer 1
 
Complejos
ComplejosComplejos
Complejos
 
Tema 1-ejercicios resuelto 2024.........
Tema 1-ejercicios resuelto  2024.........Tema 1-ejercicios resuelto  2024.........
Tema 1-ejercicios resuelto 2024.........
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]
 
Examen Álgebra Lineal 2P 2017 IT
Examen Álgebra Lineal 2P 2017 ITExamen Álgebra Lineal 2P 2017 IT
Examen Álgebra Lineal 2P 2017 IT
 
Tema 3 (parte i)
Tema 3 (parte i)Tema 3 (parte i)
Tema 3 (parte i)
 
grossman
grossmangrossman
grossman
 
Solucion Ex 2ª Ev 2ºBach
Solucion Ex 2ª Ev 2ºBachSolucion Ex 2ª Ev 2ºBach
Solucion Ex 2ª Ev 2ºBach
 
Sev resueltos
Sev resueltosSev resueltos
Sev resueltos
 

Mais de algebra

Valores y vectores propios teoria
Valores y vectores propios teoriaValores y vectores propios teoria
Valores y vectores propios teoriaalgebra
 
Matriz asociada[1]
Matriz asociada[1]Matriz asociada[1]
Matriz asociada[1]algebra
 
Operaciones elementales
Operaciones elementalesOperaciones elementales
Operaciones elementalesalgebra
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matricesalgebra
 
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...algebra
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matrizalgebra
 
Forma escalonada de una matriz preguntas
Forma escalonada de una matriz preguntasForma escalonada de una matriz preguntas
Forma escalonada de una matriz preguntasalgebra
 
Evaluación forma escalonada reducida por filas de una matriz
Evaluación forma escalonada reducida por filas de una matrizEvaluación forma escalonada reducida por filas de una matriz
Evaluación forma escalonada reducida por filas de una matrizalgebra
 
Ejercicios resueltos y explicados operaciones con matrices
Ejercicios resueltos y explicados operaciones con matricesEjercicios resueltos y explicados operaciones con matrices
Ejercicios resueltos y explicados operaciones con matricesalgebra
 
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...algebra
 
Ejercicios propuestos y evaluacion operaciones elementales
Ejercicios propuestos y evaluacion operaciones elementalesEjercicios propuestos y evaluacion operaciones elementales
Ejercicios propuestos y evaluacion operaciones elementalesalgebra
 
Ejercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesEjercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesalgebra
 
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...algebra
 
Metodos de resolucion gauss jordan
Metodos de resolucion  gauss jordanMetodos de resolucion  gauss jordan
Metodos de resolucion gauss jordanalgebra
 
Metodo de gauss
Metodo de gaussMetodo de gauss
Metodo de gaussalgebra
 
Solucion del sistema de ecuaciones
Solucion del sistema de ecuacionesSolucion del sistema de ecuaciones
Solucion del sistema de ecuacionesalgebra
 
Ejercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramerEjercicios resueltos metodo de cramer
Ejercicios resueltos metodo de crameralgebra
 
Ejercicios propuestos metodo gauss jordan
Ejercicios propuestos metodo gauss jordanEjercicios propuestos metodo gauss jordan
Ejercicios propuestos metodo gauss jordanalgebra
 
Ejercicios metodo gauss jordan
Ejercicios metodo gauss jordanEjercicios metodo gauss jordan
Ejercicios metodo gauss jordanalgebra
 
Ejercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanEjercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanalgebra
 

Mais de algebra (20)

Valores y vectores propios teoria
Valores y vectores propios teoriaValores y vectores propios teoria
Valores y vectores propios teoria
 
Matriz asociada[1]
Matriz asociada[1]Matriz asociada[1]
Matriz asociada[1]
 
Operaciones elementales
Operaciones elementalesOperaciones elementales
Operaciones elementales
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
 
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matriz
 
Forma escalonada de una matriz preguntas
Forma escalonada de una matriz preguntasForma escalonada de una matriz preguntas
Forma escalonada de una matriz preguntas
 
Evaluación forma escalonada reducida por filas de una matriz
Evaluación forma escalonada reducida por filas de una matrizEvaluación forma escalonada reducida por filas de una matriz
Evaluación forma escalonada reducida por filas de una matriz
 
Ejercicios resueltos y explicados operaciones con matrices
Ejercicios resueltos y explicados operaciones con matricesEjercicios resueltos y explicados operaciones con matrices
Ejercicios resueltos y explicados operaciones con matrices
 
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
 
Ejercicios propuestos y evaluacion operaciones elementales
Ejercicios propuestos y evaluacion operaciones elementalesEjercicios propuestos y evaluacion operaciones elementales
Ejercicios propuestos y evaluacion operaciones elementales
 
Ejercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesEjercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matrices
 
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...
Ejercicios propuestos matrices, conmutables, idempotentes, nilpotente,equival...
 
Metodos de resolucion gauss jordan
Metodos de resolucion  gauss jordanMetodos de resolucion  gauss jordan
Metodos de resolucion gauss jordan
 
Metodo de gauss
Metodo de gaussMetodo de gauss
Metodo de gauss
 
Solucion del sistema de ecuaciones
Solucion del sistema de ecuacionesSolucion del sistema de ecuaciones
Solucion del sistema de ecuaciones
 
Ejercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramerEjercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramer
 
Ejercicios propuestos metodo gauss jordan
Ejercicios propuestos metodo gauss jordanEjercicios propuestos metodo gauss jordan
Ejercicios propuestos metodo gauss jordan
 
Ejercicios metodo gauss jordan
Ejercicios metodo gauss jordanEjercicios metodo gauss jordan
Ejercicios metodo gauss jordan
 
Ejercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanEjercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordan
 

Último

Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...JohnRamos830530
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.FlorenciaCattelani
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxJorgeParada26
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estossgonzalezp1
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfvladimiroflores1
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxMiguelAtencio10
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxAlan779941
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfAnnimoUno1
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21mariacbr99
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanamcerpam
 

Último (11)

Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 

Ejercicios propuestos de dependencia e independencia lineal

  • 1. Ejercicios propuestos<br />Dado S = {(2,4) , (1,0) , (4,3)}. Determinar si S es LI o LD.<br />Primero realizamos la combinación lineal de S con el cero vector:<br />(0,0) = α(2,4) + β(1,0) + γ(4,3)<br />(0,0) = (2α,4α) + (β,0) + (4γ,3γ)<br />(0,0) = (2α+β+4γ ; 4α+3γ)<br />A continuación planteamos un sistema de ecuaciones:<br />2α+β+4γ = 0<br />4α+3γ = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />2 1 4 00 -2 -5 02 1 4 04 0 3 0 ≈<br /> F2 = F2 – 2F1 Э ∞ soluciones<br />Como existen infinitas soluciones, entonces S es linealmente dependiente (LD).<br />Dado B = {(1,1,0) , (0,1,1) , (1,0,1) , (1,2,2)}. Determinar si B es LI o LD.<br />Primero realizamos la combinación lineal de B con el cero vector:<br />(0,0,0) = α(1,1,0) + β(0,1,1) + γ(1,0,1) + δ(1,2,2)<br />(0,0,0) = (α,α,0) + (0,β,β) + (γ,0,γ) + (δ,2δ,2δ)<br />(0,0,0) = (α+γ+δ; α+β+2δ ; β+γ+2δ)<br />A continuación planteamos un sistema de ecuaciones:<br />α+γ+δ = 0<br />α+β+2δ = 0<br />β+γ+2δ = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas <br />soluciones:<br />1 0 1 1 0 0 1 -1 1 0 0 0 2 1 01 0 1 1 00 1 0 2 0 0 1 1 2 0<br /> ≈<br /> F2 = F2 – F1 Э ∞ soluciones <br /> F3 = F3 – F2<br />Como existen infinitas soluciones, entonces B es linealmente dependiente (LD).<br />Dado C = {(1-x-x2 , 1+x+x2 , -1+x+x2)}. Determinar si C es LI o LD.<br />Primero realizamos la combinación lineal de C con el cero vector:<br />(0,0,0) = α(1-x-x2) + β(1+x+x2) + γ(-1+x+x2)<br />(0,0,0) = (α-αx-αx2) + (β+βx+βx2) + (-γ+γx+γx2)<br />(0,0,0) = (α+β-γ , -αx+βx+γx , -αx2+βx2+γx2)<br />A continuación planteamos un sistema de ecuaciones:<br />α+β-γ = 0<br />-α+β+γ = 0<br />-α+β+γ = 0<br />Colocamos las ecuaciones en una matriz; como es una matriz cuadrada, encontramos el determinante por el método de la estrella:<br /> 1 1 -1 0-1 1 1 0-1 1 1 0<br />|C| = |C| = 0<br />Como el determinante de C es igual a cero, entonces existen infinitas soluciones; esto quiere decir que D es linealmente dependiente (LD).<br />Dado S = {(1,1,0) , (0,1,1) , (1.0.1)}. Determinar si S es LI o LD.<br />Primero realizamos la combinación lineal de S con el cero vector:<br />(0,0,0) = α(1,1,0) + β(0,1,1) + γ(1,0,1)<br />(0,0,0) = (α,α,0) + (0,β,β) + (γ,0,γ)<br />(0,0,0) = (α+γ ; α+β ; β+γ)<br />A continuación planteamos un sistema de ecuaciones:<br />α+γ = 0<br />α+β = 0<br />β+γ = 0<br />Colocamos las ecuaciones en una matriz; como es una matriz cuadrada, encontramos el determinante por el método de la estrella:<br />1 0 1 01 1 0 00 1 1 0<br /> <br />|A| = |A| = 2<br /> Э ! solución <br />Como el determinante de A es diferente de cero , entonces existe única solución; esto quiere decir que S es linealmente independiente (LI).<br />Dado A = {(1,1,0) , (3,4,2)}. Determinar si A es LI o LD.<br />Primero realizamos la combinación lineal de A con el cero vector:<br />(0,0,0) = α(1,1,0) + β(3,4,2)<br />(0,0,0) = (α,α,0) + (3β,4β,2β)<br />(0,0,0) = (α+3β ; α+4β ; 2β)<br />A continuación planteamos un sistema de ecuaciones:<br />α+3β = 0<br />α+4β = 0<br />2β = 0 <br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />1 3 00 1 00 0 01 3 01 4 00 2 0<br /> ≈<br /> F2 = F2 –F1 Э ! solución <br /> F3 = F3 – 2F2<br />Como existe única solución (la trivial), entonces A es linealmente independiente (LI).<br />Dado D = {t2+1 , t-2 , t+3 }. Determinar si D es LI o LD.<br />Primero realizamos la combinación lineal de D con el cero vector:<br />(0,0,0) = α(t2+1) + β(t-2) + γ(t+3)<br />(0,0,0) = (αt2+α) + (βt-2β) + (γt+3γ)<br />(0,0,0) = (α-2β+3γ ; βt+γt ; αt2)<br />A continuación planteamos un sistema de ecuaciones:<br />α-2β+3γ = 0 <br />β+γ = 0<br />α = 0<br />Resolvemos este sistema de ecuaciones por el método de gauss; es decir, colocando el sistema de ecuaciones en una matriz y escalonamos dicha matriz, para ver si esta tiene única o infinitas soluciones:<br />1 -2 3 00 1 1 00 0 -5 01 -2 3 00 1 1 00 2 -3 01 -2 3 00 1 1 01 0 0 0<br /> ≈ ≈ <br /> F3 = F3 – F1 F3 = F3 – 2F2<br /> Э ! solución. Como existe única solución (la trivial), entonces D es linealmente independiente (LI). <br />