SlideShare uma empresa Scribd logo
1 de 26
Question 3 a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part A a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. ,[object Object],[object Object],[object Object],[object Object],This question involves fundamental knowledge on derivatives.
Intro. a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. The derivative of any constant is zero. So the derivative of 5, 10, 11 is “zero.” To understand this, graph y=5, y=10, and y=11. They all have no slope, so the derivative is zero. The derivative of any variable to the exponent “1” is “1”. To understand this, graph y=x. X is the variable. You should see through rise over run that the slope is “1.” Y=x is also just another form of y=mx+b where m=1. Common Notation This is a common form of Leibniz’s Notation. This is Lagrange’s notation, also known as prime notation.
Intro. It is hard to explain this stuff since I’m fairly new to this stuff, so I won’t go into very much detail. Power Rule The derivative of a power of x is equal to the product of the exponent times x with an exponent reduced by 1 For example: Let’s find the derivative of x^6 You can see that n=6. The derivative of x^6 is 6x^5. Now let’s proceed to my question.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. First, you put the equation into general form. f(x) = 3(x-2)^2 + 2 f(x) = 3(x^2 -4x +4) + 2 f(x) = 3x^2 -12x + 12 + 2 f(x) = 3x^2 -12x + 14 Now, we can find the derivative of this equation. f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 The exponent on each reduces by one and you multiply the base by the original exponent. The derivative of any constant is zero like mentioned earlier.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. So this is the equation to obtain the slope of a line tangent to any point on f(x). f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 We want the line tangent when x=4, so we plug in 4 for x. f 1 (4) = 6(4) – 12 = 24 – 12 = 12 This is just the slope, but we need to find the equation. If you think about it, we can use the point-slope formula
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y-Y1 = M(X-X1) The point when x=4 is found on both graphs obviously. However, we need the y-coordinate of the point. What we do is plug 4 into the original equation, not the derivative one because that equation determines slopes. f(x) = 3x^2 -12x + 14 f(4) = 3(4^2) -12(4) + 14 f(4) = 48 – 48 +14 f(4) = 14 Therefore, the point is (4,14). Now let’s plug that in.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y – 14 = 12(X-4) Y – 14 = 12x – 48 Y  = 12x – 48 + 14 Y = 12x – 34 This is the equation of the line tangent to f(x) when x=4. Let’s take a look at a graph to see this.
Part A End a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. You can see that at (4,14), the line  Y = 12x – 34  touches  f(x) = 3x^2 -12x + 14
Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . We now have two functions: g(x) = squareroot[x] f(x) = 3(x-2)^2 + 2 Let’s start by finding the line tangent to g(x) when x=4.
Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . g(x) = squareroot[x] We have x already, which is 4, so let’s find y. g(4) = squareroot[4] g(4) = +2 and -2 Oh snap, that’s two values. This is because for every x value on the graph, there are 2 y values, excluding the vertex. Now let’s obtain the slope
Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . We must find the derivative of g(x) g(x) = squareroot[x] g 1 (x) = (1/2)x^(-1/2) The squareroot of x is equal to x^(1/2). We multiply that exponent by x and subtract 1 from ½ which gives us -1/2. Now we plug in x to obtain the slope. g 1 (x) = (1/2)x^(-1/2) g 1 (4) = (1/2)4^(-1/2) *exponents first* *bedmas* g 1 (4) = (1/2)(1/-2) or (1/2)(1/2) g 1 (4) = (1/-4) or (1/4) Okay, so these are our slopes. Now we find the equations.
Part B What a great slope we have ! Slope = +1/4 and -1/4 Now let’s use the point-slope formula to solve for the equation. Earlier, we obtained 2 y values, +2 and -2. We have four possibilities for the equation now. Y-Y1 = M(X-X1) Let’s use 2 as our y value with the 2 slopes Y – 2 = ¼(x-4) Y = (x/4) + 1 Or Y – 2 = -¼(x-4) Y = (-x/4) + 3 Let’s use -2 as our y value with the 2 slopes Y + 2 = ¼(x-4) Y = (x/4) - 3 Or Y + 2 = -¼(x-4) Y = (-x/4) - 1 Amazingly, the equations in the black are the correct ones. The next slide shows a graph.
Part B
Part B We know the derivative of f(x) from earlier, except not the y-value when x=16. f 1 (x) = 6x – 12 f(x) = 3(x-2)^2 + 2 Let’s find the y-value f(16) = 3(16-2)^2 + 2 f(16) = 3(14)^2 + 2 f(16) = 3(16-2)^2 + 2 f(16) = 590 Therefore, the point is (16, 590). Now we need to obtain the slope. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part B We use the derivative of f(x) to find the slope. f 1 (x) = 6x – 12 Plug in 16 for X f 1 (16) = 6(16) – 12 f 1 (16) = 96 – 12 f 1 (16) = 84 Now that we have the slope and 2 points, we can find the equation of the line. Y-Y1 = M(X-X1) Y-590 = 84(x-16) Y = 84x – 1344 + 590 Y = 84x – 754 Great. This is the equation of the line tangent to f(x) when x=16. Let’s see a graph to verify this. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part B The graphs are very ugly, but you can see that the equations are correct. Now we must find the points of intersection between the tangent lines!
Part B Here are the three equations of tangent lines we have. To find the points of intersection, we make two equations equal other because at that specific point, they share the same coordinate. For example, making the y’s equal other shows which values of y are shared amongst the graphs. From g(x), we have: 1) Y = (x/4) + 1 2) Y = (-x/4) - 1 From f(x), we have: 3) Y = 84x – 754 There are going to be three intersections because each of these graphs are lines that never end. I assigned each of the equations numbers to show which intersections I’ll be finding.
Part B 1,2 1) Y = (x/4) + 1 2) Y = (-x/4) – 1 (x/4) + 1 = (-x/4) – 1 (x/4) – (-x/4) = – 1 -1 2x/4 = -2 X = -4 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=-4 Y = (-4/4) + 1 Y = 0 Our first point of intersection is (-4,0)
 
Part B 1,3 1) Y = (x/4) + 1 3) Y = 84x - 754 (x/4) + 1 = 84x – 754 (x/4) – (84x) = – 754 – 1 (x – 336x)/4 = -755 x(1 – 336) = -3020 x(-335) = -3020 x = 604/67 This is approximately 9.0149 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=604/67 Y = ((604/67)/4) + 1 Y = 151/67 + 67/67 Y = 218/67 This approximately equals 3.2537 Our second point of intersection is ( 604/67 , 218/67)
Part B
Part B 2,3 2) Y = (-x/4) - 1 3) Y = 84x - 754 (-x/4) - 1 = 84x – 754 (-x/4) – (84x) = – 754 + 1 (-x – 336x)/4 = -753 -337X = -3012 x = 3012/337 This approximately equals 8.9377 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=3012/337 Y = (-(3012/337)/4) + 1 Y = -753/337 - 337/337 Y = - 1090/337 This approximately equals -3.2344 Our third point of intersection is ( 3012/337 , 1090/337 )
Part B
Part B Alright, so our final step is to find the equations of the circles where their origins are the intersections we found. Each circle has a radius of 5. This is perhaps the HARDEST part of the problem because it requires so much work to get this far. Our points of intersection are: ( -4 , 0 ) ( 604/67 , 218/67 ) ( 3012/337 , 1090/337 ) The radius is 5. Now we just plug them into the equation: (x-h)^2 + (y-k)^2 = r^2 (x+4)^2 + (y-0)^2 = 25 (x-604/67)^2 + (y-218/67)^2 = 25 (x-3012/337)^2 + (y-1090/337)^2 = 25
Congratulations! You finished question 3!

Mais conteúdo relacionado

Mais procurados

4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
math123b
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates
math267
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
math260
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and lines
math123a
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5
smktsj2
 
3.2 properties of division and roots
3.2 properties of division and roots3.2 properties of division and roots
3.2 properties of division and roots
math260
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
math123b
 
2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functions
math260
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
indu psthakur
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
math123c
 

Mais procurados (20)

Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
Presentation on calculus
Presentation on calculusPresentation on calculus
Presentation on calculus
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and lines
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
3.2 properties of division and roots
3.2 properties of division and roots3.2 properties of division and roots
3.2 properties of division and roots
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functions
 
Assignmen ts --x
Assignmen ts  --xAssignmen ts  --x
Assignmen ts --x
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 

Destaque (8)

Solution 4
Solution 4Solution 4
Solution 4
 
Solution 1
Solution 1Solution 1
Solution 1
 
Problem 1
Problem 1Problem 1
Problem 1
 
Solution 4
Solution 4Solution 4
Solution 4
 
Problem 4
Problem 4Problem 4
Problem 4
 
Problem 3
Problem 3Problem 3
Problem 3
 
Chapter 13: Species Interaction, Population Dynamics and Natural Selection
Chapter 13: Species Interaction, Population Dynamics and Natural SelectionChapter 13: Species Interaction, Population Dynamics and Natural Selection
Chapter 13: Species Interaction, Population Dynamics and Natural Selection
 
Solution 3 3
Solution 3 3Solution 3 3
Solution 3 3
 

Semelhante a Solution 3

Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
RyanWatt
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
Vine Gonzales
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
Chek Wei Tan
 
Solving Linear Equations
Solving Linear EquationsSolving Linear Equations
Solving Linear Equations
taco40
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntions
suefee
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
swartzje
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Developing Expert Voices
Developing Expert VoicesDeveloping Expert Voices
Developing Expert Voices
suzanne
 

Semelhante a Solution 3 (20)

Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
 
Function
FunctionFunction
Function
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Solving Linear Equations
Solving Linear EquationsSolving Linear Equations
Solving Linear Equations
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntions
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntions
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Developing Expert Voices
Developing Expert VoicesDeveloping Expert Voices
Developing Expert Voices
 
Algebra 2. 9.16 Quadratics 2
Algebra 2.  9.16 Quadratics 2Algebra 2.  9.16 Quadratics 2
Algebra 2. 9.16 Quadratics 2
 
Solving quadratics by graphing
Solving quadratics by graphingSolving quadratics by graphing
Solving quadratics by graphing
 

Mais de aldrins

Mais de aldrins (10)

Problem 4
Problem 4Problem 4
Problem 4
 
Solution 2
Solution 2Solution 2
Solution 2
 
Solution 3
Solution 3Solution 3
Solution 3
 
Problem 3
Problem 3Problem 3
Problem 3
 
Problem 2
Problem 2Problem 2
Problem 2
 
Solution 1
Solution 1Solution 1
Solution 1
 
Problem 1
Problem 1Problem 1
Problem 1
 
Scribe
ScribeScribe
Scribe
 
Scribe
ScribeScribe
Scribe
 
Sup
SupSup
Sup
 

Último

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

Solution 3

  • 1. Question 3 a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 2.
  • 3. Intro. a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. The derivative of any constant is zero. So the derivative of 5, 10, 11 is “zero.” To understand this, graph y=5, y=10, and y=11. They all have no slope, so the derivative is zero. The derivative of any variable to the exponent “1” is “1”. To understand this, graph y=x. X is the variable. You should see through rise over run that the slope is “1.” Y=x is also just another form of y=mx+b where m=1. Common Notation This is a common form of Leibniz’s Notation. This is Lagrange’s notation, also known as prime notation.
  • 4. Intro. It is hard to explain this stuff since I’m fairly new to this stuff, so I won’t go into very much detail. Power Rule The derivative of a power of x is equal to the product of the exponent times x with an exponent reduced by 1 For example: Let’s find the derivative of x^6 You can see that n=6. The derivative of x^6 is 6x^5. Now let’s proceed to my question.
  • 5. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. First, you put the equation into general form. f(x) = 3(x-2)^2 + 2 f(x) = 3(x^2 -4x +4) + 2 f(x) = 3x^2 -12x + 12 + 2 f(x) = 3x^2 -12x + 14 Now, we can find the derivative of this equation. f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 The exponent on each reduces by one and you multiply the base by the original exponent. The derivative of any constant is zero like mentioned earlier.
  • 6. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. So this is the equation to obtain the slope of a line tangent to any point on f(x). f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 We want the line tangent when x=4, so we plug in 4 for x. f 1 (4) = 6(4) – 12 = 24 – 12 = 12 This is just the slope, but we need to find the equation. If you think about it, we can use the point-slope formula
  • 7. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y-Y1 = M(X-X1) The point when x=4 is found on both graphs obviously. However, we need the y-coordinate of the point. What we do is plug 4 into the original equation, not the derivative one because that equation determines slopes. f(x) = 3x^2 -12x + 14 f(4) = 3(4^2) -12(4) + 14 f(4) = 48 – 48 +14 f(4) = 14 Therefore, the point is (4,14). Now let’s plug that in.
  • 8. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y – 14 = 12(X-4) Y – 14 = 12x – 48 Y = 12x – 48 + 14 Y = 12x – 34 This is the equation of the line tangent to f(x) when x=4. Let’s take a look at a graph to see this.
  • 9. Part A End a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. You can see that at (4,14), the line Y = 12x – 34 touches f(x) = 3x^2 -12x + 14
  • 10. Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . We now have two functions: g(x) = squareroot[x] f(x) = 3(x-2)^2 + 2 Let’s start by finding the line tangent to g(x) when x=4.
  • 11. Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . g(x) = squareroot[x] We have x already, which is 4, so let’s find y. g(4) = squareroot[4] g(4) = +2 and -2 Oh snap, that’s two values. This is because for every x value on the graph, there are 2 y values, excluding the vertex. Now let’s obtain the slope
  • 12. Part B b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . We must find the derivative of g(x) g(x) = squareroot[x] g 1 (x) = (1/2)x^(-1/2) The squareroot of x is equal to x^(1/2). We multiply that exponent by x and subtract 1 from ½ which gives us -1/2. Now we plug in x to obtain the slope. g 1 (x) = (1/2)x^(-1/2) g 1 (4) = (1/2)4^(-1/2) *exponents first* *bedmas* g 1 (4) = (1/2)(1/-2) or (1/2)(1/2) g 1 (4) = (1/-4) or (1/4) Okay, so these are our slopes. Now we find the equations.
  • 13. Part B What a great slope we have ! Slope = +1/4 and -1/4 Now let’s use the point-slope formula to solve for the equation. Earlier, we obtained 2 y values, +2 and -2. We have four possibilities for the equation now. Y-Y1 = M(X-X1) Let’s use 2 as our y value with the 2 slopes Y – 2 = ¼(x-4) Y = (x/4) + 1 Or Y – 2 = -¼(x-4) Y = (-x/4) + 3 Let’s use -2 as our y value with the 2 slopes Y + 2 = ¼(x-4) Y = (x/4) - 3 Or Y + 2 = -¼(x-4) Y = (-x/4) - 1 Amazingly, the equations in the black are the correct ones. The next slide shows a graph.
  • 15. Part B We know the derivative of f(x) from earlier, except not the y-value when x=16. f 1 (x) = 6x – 12 f(x) = 3(x-2)^2 + 2 Let’s find the y-value f(16) = 3(16-2)^2 + 2 f(16) = 3(14)^2 + 2 f(16) = 3(16-2)^2 + 2 f(16) = 590 Therefore, the point is (16, 590). Now we need to obtain the slope. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 16. Part B We use the derivative of f(x) to find the slope. f 1 (x) = 6x – 12 Plug in 16 for X f 1 (16) = 6(16) – 12 f 1 (16) = 96 – 12 f 1 (16) = 84 Now that we have the slope and 2 points, we can find the equation of the line. Y-Y1 = M(X-X1) Y-590 = 84(x-16) Y = 84x – 1344 + 590 Y = 84x – 754 Great. This is the equation of the line tangent to f(x) when x=16. Let’s see a graph to verify this. b) The points of intersection between the lines tangent to g(x) when x=4 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 17. Part B The graphs are very ugly, but you can see that the equations are correct. Now we must find the points of intersection between the tangent lines!
  • 18. Part B Here are the three equations of tangent lines we have. To find the points of intersection, we make two equations equal other because at that specific point, they share the same coordinate. For example, making the y’s equal other shows which values of y are shared amongst the graphs. From g(x), we have: 1) Y = (x/4) + 1 2) Y = (-x/4) - 1 From f(x), we have: 3) Y = 84x – 754 There are going to be three intersections because each of these graphs are lines that never end. I assigned each of the equations numbers to show which intersections I’ll be finding.
  • 19. Part B 1,2 1) Y = (x/4) + 1 2) Y = (-x/4) – 1 (x/4) + 1 = (-x/4) – 1 (x/4) – (-x/4) = – 1 -1 2x/4 = -2 X = -4 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=-4 Y = (-4/4) + 1 Y = 0 Our first point of intersection is (-4,0)
  • 20.  
  • 21. Part B 1,3 1) Y = (x/4) + 1 3) Y = 84x - 754 (x/4) + 1 = 84x – 754 (x/4) – (84x) = – 754 – 1 (x – 336x)/4 = -755 x(1 – 336) = -3020 x(-335) = -3020 x = 604/67 This is approximately 9.0149 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=604/67 Y = ((604/67)/4) + 1 Y = 151/67 + 67/67 Y = 218/67 This approximately equals 3.2537 Our second point of intersection is ( 604/67 , 218/67)
  • 23. Part B 2,3 2) Y = (-x/4) - 1 3) Y = 84x - 754 (-x/4) - 1 = 84x – 754 (-x/4) – (84x) = – 754 + 1 (-x – 336x)/4 = -753 -337X = -3012 x = 3012/337 This approximately equals 8.9377 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=3012/337 Y = (-(3012/337)/4) + 1 Y = -753/337 - 337/337 Y = - 1090/337 This approximately equals -3.2344 Our third point of intersection is ( 3012/337 , 1090/337 )
  • 25. Part B Alright, so our final step is to find the equations of the circles where their origins are the intersections we found. Each circle has a radius of 5. This is perhaps the HARDEST part of the problem because it requires so much work to get this far. Our points of intersection are: ( -4 , 0 ) ( 604/67 , 218/67 ) ( 3012/337 , 1090/337 ) The radius is 5. Now we just plug them into the equation: (x-h)^2 + (y-k)^2 = r^2 (x+4)^2 + (y-0)^2 = 25 (x-604/67)^2 + (y-218/67)^2 = 25 (x-3012/337)^2 + (y-1090/337)^2 = 25