SlideShare uma empresa Scribd logo
1 de 6
Skeletal Physiology

Bone Homeostasis
  Bones have 5 different function to help keep homeostasis. Support, Protection,
Movement, Mineral Storage, and Hematopoiesis.
   · Support – Bones are the framework of the body. They help keep shape and
      alignment of the body.
   · Protection- The bones help protect different organs in the body such as the skull
       with the brain and ribs with the heart and lungs.
   · Movement – Without bones the muscles couldn’t attach to anything. The bones act
      as levers to help movement. When the muscles retract they move the bone at the
      joint.
   · Mineral Storage- Bones serve as a “Bank” for certain minerals like calcium,
      phosphorus, and other minerals. Blood calcium levels highly depend on the
      calcium movement rate between the blood and bones.
   · Hematopoiesis – Blood cell formation is a process carried by red bone marrow. In
      adults, they’re located in the ends of long bones, skull, pelvis, and the ribs.
    Intramembranous and Endochondral Ossification are made in two different ways.
The intramembranous ossification takes place in a connective tissue membrane. They
create Osteoblasts. Clusters of them are called centers of ossification. They release
matrix material and collagenous fibrils. Eventually, Calcification of the organic bone
matrix will occur when complex calcium salts are deposited. Endochondral ossifications
are formed in cartilage models. Bone is deposited by osteoblasts which different from
cells on the inner surface of the periosteum. When a blood vessel enters the rapidly
changing cartilage model at the midpoint of the diaphysis.
         Bone fracture repair is a process by which the body heals the tissues and
removes the dead bone. The repair process is initiated by vascular damage. The body
will either remove dead bone or use it to hold a repair tissue called a “Callus” in place.
Fractures cause hemorrhage or pooling of blood at the injury. The blood clot is called a
fracture hematoma. If the fracture is aligned and immobilized the callus tissue will model
and be replaced with bone. Vitos is a skeletal repair material that consists of calcium
and a sponge like matrix. It helps the callus immobilize the fracture and helps it receive
nutrients. Then soon it will all be replaced with actual bone and be fixed.
Compare the classification of joints according to both structure and function.
- There are Fibrous Joints and Cartilaginous Joints. There are three types of Fibrous
Joints the Syndesmoses joint, the sutures joint and the Gomphoses joints. There are
two types of Cartilaginous Joints the Synchondroses joint and the Symphyses joint.
Some examples are-
   ·Syndesmoses Joints are between distal ands of radius and ulna
   · Sutures Joints are between the skull bones
   ·Gomphoses Joints are between roots of teeth and jaw bone
   ·Synchondroses are the costal cartilage attachments of first rib to sternum
   ·Symphyses are the joints between bodies of vertebrae
       -The structures of the Cartilaginous Joints are more about articulating bones and
       the Fibrous Joints structures are more towards the connecting bone and roots.
13. Identify the types of movement at synovial joints and give examples of specific joints
where each occurs
- There are 3 types of Synovial joints the Uniaxial, Biaxial and Multiaxial
- Uniaxial are the Hinge and Pivot
- Biaxial are the Saddle and Condyloid
- Multiaxial are the Ball and Socket, and Gliding
Movements:
Hinge- around one axis only, flexion and extension only, ex. Elbow joint
Pivot- around one axis only, rotation, ex. Joint between first and second cervical
vertebrae
Saddle- around two axes, flexion and extension, ex. Thumb joint between metacarpal
and carpal bone
Condyloid- around two axes, flexion, adduction in other plane, ex. Joint between radius
and carpal bone
Ball and Socket- around many axes, widest range of movements, ex. Shoulder joint
Gliding- around many axes, gliding movements, ex. Joints between carpal and tarsal
bones
1.Identify each of the major constituents of bone as a tissue and discuss how structural
    organization contributes to function.
       ·Composition of bone matrix
-inorganic salts: are needle like crystals, they are oriented in the microscopic
       spaces between the collagen fibers in the bone matrix so that they can most
       effectively resist stress and mechanical deformation.
       -organic matrix: the organic matrix of bone and other connective tissues is a
       composite of collagenous fibers and an amorphous mixture of protein and
       polysaccharides called ground substance. The ground substance of bones
       provide support and adhesion between cellular and fibrous elements and also
       serves an active role in many cellular metabolic functions necessary for
       growth, repair, and remolding.
   ·Compact bone
       - compact bone: contains many cylinder shaped structural units called
       osteons , or haversian systems. There are four types of structures that make
       up the haversian system.
               -First type is: lamellae_-_concentric, cylinder shaped layers of
       calcified matrix.
              -Second type is: lacunae_-_Latin for “little lakes” small spaces
       containing tissue fluid in which bone cells lie imprisoned between the hard
       layers of the lamellae.
               -Third type is: canaliculi _-_ ultra small canals radiating in all
       directions from the lacunae and connecting them to each other and into a
       larger canal, known as the heversian canal.
              -Fourth type is: haversian canal_-_extends lengthwise through the
       center of each haversian systems; contains blood vessels, lymphatic vessels,
       and nerves from the haversian canal; nutrients and oxygen move through
       canaliculi to the lacunae and their bone cells- a short distance of about 0.1
       mm or less.
2.Identify by name and discuss each of the major components of a Haversian
    system.
compact bone: contains many cylinder shaped structural units called osteons , or
haversian systems. There are four types of structures that make up the haversian
system.
-First type is: lamellae_-_concentric, cylinder shaped layers of calcified matrix.
-Second type is: lacunae_-_Latin for “little lakes” small spaces containing tissue
fluid in which bone cells lie imprisoned between the hard layers of the lamellae.
-Third type is: canaliculi _-_ ultra small canals radiating in all directions from the
lacunae and connecting them to each other and into a larger canal, known as the
heversian canal.-Fourth type is: haversian canal_-_extends lengthwise through
the center of each haversian systems; contains blood vessels, lymphatic vessels,
and nerves from the haversian canal; nutrients and oxygen move through canaliculi
to the lacunae and their bone cells- a short distance of about 0.1 mm or less.
3.List and describe the function of the three major types of cells found in bones.
·The three major types of cells are found in bone : osteoblasts (bone-forming
              cells) , osteoclasts (bone-reabsorbing cells), and osteocytes (mature bone
              cells). All bone surfaces are covered with continuous layer of cells that is
              critical to the survival of bone.
              -The osteoblasts are small cells that synthesize ans secrete a specialized
              organic matrix, called osteoid, that is an important part of the ground
              substance of bone.
              -osteoclasts are giant multinucleate cells that are responsible for the
              active erosion of bone minerals, they are formed by fusion of several
              precursor cells and contain large numbers of mitochondria and lysomes.
              -osteoblasts are mature non dividing osteoblasts that have become
              surrounded by matrix and now lie within lacunae.
Hyaline Cartilage - provides firm support with some pliability. It covers the ends of the
long bones as articular cartilage , providing springy pads that absorb compression at
joints . Has resilient cushioning properties ; resists compressive stress. Supports the
tips of the nose , connects the ribs to the sternum , and supports most of the respiratory
system passages. The skeletal hyaline comes during childhood as the epiphyseal plates
, provide for continued growth in length. Covers the ends of long bones in joint cavities ;
forms costal cartilages of ribs , nose , trachea , and larynx.
Elastic Cartilage - Found where strength and exceptional stretch ability are needed.
Elastic cartilage forms the skeletons of the external ear and the epiglottis. Maintain the
shape of a structure while allowing great flexibility.
Similar to hyaline but more elastic fibers in matrix.
Fibrocartilage- Compressible and resists tension well , found where strong support and
the ability to with strand heavy pressure are required. EX: the spongy cartilage of the
knee , Intervertebral discs Strength with the ability to absorb compressive shock.
Less firm than the hyaline; thick collagen fibers predominate.
11) Growth of Cartilage
Interstitial Growth: The cartilage cells within the substance of the tissue mass divide and
begin to secrete additional matrix. Internal division of chondrocytes is possible because
of the soft, pliable nature of cartilage tissue. This type of growth is mostly seen during
childhood and early adolescence, when the majority of the cartilage is still soft and
capable of expansion from within
Appositional Growth: This occurs when chondrocytes in the deep layer of the
perichondrium begin to divide and secrete additional matrix. The new matrix is then
deposited on the surface of the cartilage, causing it to increase in size. This type of
growth is unusual in early childhood but, once it starts it continues beyond adolescence
and throughout an individual’s life.
12) Classification of joints
Joints are classified into 3 major categories using a structural or a functional scheme. If
a structural classification is employed, joints are named according to the type of
connective tissue that joins the bones together, (fibrous and cartilaginous) or by the
presence of a fluid-filled joint capsule. (synovial joints)
If a functional classification scheme is used, joints are divided into three classes
according to the degree of movement they permit. (synarthroses, amphiarthroses, and
diarthroses) (Immovable, slightly movable and freely moveable)
Fibrous joints are synarthroses. The articulating surfaces of these joints fit closely
together.
The three types of fibrous joints are:
Syndesmoses- Joints on which fibrous bands connect two bones
Sutures- Found only in the skull, teeth like projections jut out from adjacent bones and
interlock with each other with only a thin layer of fibrous tissue between them.
Gomphoses: unique joints that occur between the root of a tooth and the alveolar
process of the mandible and maxilla.
Cartilaginous Joints are amphiarthroses: The bones that articulate to form a
cartilaginous joint are joined together by either hyaline cartilage or fibrocartilage. There
are two types of these
Sychondroses: Joints that are characterized by the presence hyaline cartilage between
articulating bones
Symphyses: a joint in which a pad or disk of fibrocartilage connects two bones
Synovial joints are diarthroses
They are the body’s most moveable, numerous and the most anatomically complex
joints.
Seven types of structures for synovial joins
joint capsules, synovial membrane, articular cartilage, joint cavity, menisci (articular
disks), ligaments and bursea
Synovial joints are divided into three main groups: Uniaxial, biaxial, and multiaxial
Uniaxial joints: Synovial Joints that permit movement around only one axis and in only
one plane. EX: Hinge Joints and Pivot Joints
Biaxial joints: Diaphroses that permit movement around two perpendicular axes in two
perpendicular planes EX: Saddle Joints and Condyloid Joints
Multiaxial Joints: Joints that permit movement around three or more axes and in three or
more planes EX: Ball and Socket joints and Gliding joints

   1. List the four types of bones and give examples of each
          1. Long Bones --- Femur is a good example.
          2. Short Bones -- Carpals.
          3. Irregular bones -- vertebrae.
4. Flat bones -- The bones of the skull are a prime example.
         5. Sesamoid bones -- High-stress bones encased in tendons, connective
              tissue, etc. Kneecaps are an example.
   2. Identify the six major structures of a typical long bone.
         1. Long bones have greater length than width and consist of a shaft and a
              variable number of endings (extremities).
         2. They are usually somewhat curved for strength.
         3. Examples include femur, tibia, fibula, humerus, ulna and radius.
         4. Articulatory (or articular) cartilage reduces friction and absorbs shock at
              freely moveable joints.
         5. Endosteum is the membrane that lines the cavity of a bone.
         6. Periosteum is a tough fibrous membrane that surrounds the outside of
              bones wherever they are not covered by articulatory cartilage.
         7. In adults the medullary cavity contains fatty yellow bone marrow.

3 Collective Questions

http://www.ehow.com/facts_5847486_changes-skeletal-system-due-age.html

•Cancer treatment may generate a need for a bone marrow transplant. Osteoporosis is
a condition characterized by an excessive loss of calcium in bone. These 2 conditions
are disruptions or failures of 2 bone functions. Identify these 2 functions and explain
what their normal function should be.

      The lack of bone marrow in Osteoporosis is because of the lack of function from
the bone to make enough bone marrow, as compared to bone cancer, which
compromises the ability of the bone to make healthy bone marrow.

•Explain why a bone fracture along the epiphyseal plate may have serious implications
among children and young adults.

        The Epiphyseal plate is located near the head of the epiphyseal bone and the
reason a fracture among the plate would be cause for concern in young adults and
children is because of the function of the epiphyseal plate. As a person grows, the plate
of cartilage develops in to a line of bone. If a person were to be severely injured while
growing, growth could be stopped, causing the child to be shorter than they were
intended to grow.

•During the aging process, adults face the issue of a changing skeletal framework.
Describe these changes and explain how these skeletal framework changes affect the
health of older adults.

        The changes of skeletal framework could affect people greatly as they progress
in to older age these include bone density loss, spine and feet compressing and
becoming weaker, and joints becoming less flexible.

Mais conteúdo relacionado

Mais procurados

Parts of adult & young bone, 123
Parts of adult & young bone, 123Parts of adult & young bone, 123
Parts of adult & young bone, 123
Fati Naqvi
 
Artifact #2 skeletal physiology
Artifact #2 skeletal physiologyArtifact #2 skeletal physiology
Artifact #2 skeletal physiology
cz0634bn
 
04 cartilages and bone
04 cartilages and bone04 cartilages and bone
04 cartilages and bone
Richard Ayisa
 
Development,structure and organization of bone
Development,structure and organization of boneDevelopment,structure and organization of bone
Development,structure and organization of bone
adityachakri
 
Topic 2 & 3 Pj
Topic 2 & 3 PjTopic 2 & 3 Pj
Topic 2 & 3 Pj
zue5588
 

Mais procurados (20)

Cartilage,bone,ct
Cartilage,bone,ctCartilage,bone,ct
Cartilage,bone,ct
 
Cartilages and bones
Cartilages and bonesCartilages and bones
Cartilages and bones
 
Parts of adult & young bone, 123
Parts of adult & young bone, 123Parts of adult & young bone, 123
Parts of adult & young bone, 123
 
Artifact #2 skeletal physiology
Artifact #2 skeletal physiologyArtifact #2 skeletal physiology
Artifact #2 skeletal physiology
 
Bones and cartilage
Bones and cartilageBones and cartilage
Bones and cartilage
 
04 cartilages and bone
04 cartilages and bone04 cartilages and bone
04 cartilages and bone
 
Introduction, structure, functions and nutrition of
Introduction, structure, functions and nutrition ofIntroduction, structure, functions and nutrition of
Introduction, structure, functions and nutrition of
 
Cartilage and bone capture
Cartilage and bone captureCartilage and bone capture
Cartilage and bone capture
 
Bone & Cartilage Histology
Bone & Cartilage HistologyBone & Cartilage Histology
Bone & Cartilage Histology
 
Development,structure and organization of bone
Development,structure and organization of boneDevelopment,structure and organization of bone
Development,structure and organization of bone
 
Anatomy And Physiology of cartilage
Anatomy And Physiology of cartilage Anatomy And Physiology of cartilage
Anatomy And Physiology of cartilage
 
Histology of Bone
Histology of BoneHistology of Bone
Histology of Bone
 
Cartilage Histology
Cartilage HistologyCartilage Histology
Cartilage Histology
 
Cartilage & bones
Cartilage & bonesCartilage & bones
Cartilage & bones
 
Cartilage and joints
Cartilage and jointsCartilage and joints
Cartilage and joints
 
cartilage structure and function
cartilage structure and functioncartilage structure and function
cartilage structure and function
 
structure of bone
structure of bonestructure of bone
structure of bone
 
Topic 2 & 3 Pj
Topic 2 & 3 PjTopic 2 & 3 Pj
Topic 2 & 3 Pj
 
Dental crown & bridge courses
Dental crown & bridge coursesDental crown & bridge courses
Dental crown & bridge courses
 
Skeletal system
Skeletal systemSkeletal system
Skeletal system
 

Destaque (7)

Flight or flee artifact 10.29.12
Flight or flee artifact 10.29.12Flight or flee artifact 10.29.12
Flight or flee artifact 10.29.12
 
Flight or flee
Flight or fleeFlight or flee
Flight or flee
 
Are you going to flight or flee
Are you going to flight or fleeAre you going to flight or flee
Are you going to flight or flee
 
How does it work artifact 10.16.12
How does it work artifact 10.16.12How does it work artifact 10.16.12
How does it work artifact 10.16.12
 
03.17.09(a): Cerebellum
03.17.09(a): Cerebellum03.17.09(a): Cerebellum
03.17.09(a): Cerebellum
 
Cerebellum Anatomy and Physiology
Cerebellum Anatomy and PhysiologyCerebellum Anatomy and Physiology
Cerebellum Anatomy and Physiology
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
 

Semelhante a Skeletal physiology

Cartilage & bone connective tissue
Cartilage & bone connective tissueCartilage & bone connective tissue
Cartilage & bone connective tissue
guesta1e33cdf
 
Bone tissue to skeletal system ppt
Bone tissue to skeletal system pptBone tissue to skeletal system ppt
Bone tissue to skeletal system ppt
Devron Jeko
 
Skeletal goes musical artifact 2
Skeletal goes musical artifact 2Skeletal goes musical artifact 2
Skeletal goes musical artifact 2
777notw777
 

Semelhante a Skeletal physiology (20)

Bones and its structure in detail with two different form of bone formation
Bones and its structure in detail with  two different form of bone formationBones and its structure in detail with  two different form of bone formation
Bones and its structure in detail with two different form of bone formation
 
Anatomy and Physiology on the musculoskeletal system
Anatomy and Physiology on the musculoskeletal system Anatomy and Physiology on the musculoskeletal system
Anatomy and Physiology on the musculoskeletal system
 
The musculoskeletal system Anatomy and physiology
The musculoskeletal system Anatomy and physiologyThe musculoskeletal system Anatomy and physiology
The musculoskeletal system Anatomy and physiology
 
SWERNY SKELETAL 1.pdf
SWERNY SKELETAL 1.pdfSWERNY SKELETAL 1.pdf
SWERNY SKELETAL 1.pdf
 
Bone structure and type
Bone structure and typeBone structure and type
Bone structure and type
 
Cartilage & bone connective tissue
Cartilage & bone connective tissueCartilage & bone connective tissue
Cartilage & bone connective tissue
 
Bone tissue
Bone tissueBone tissue
Bone tissue
 
Bone tissue to skeletal system ppt
Bone tissue to skeletal system pptBone tissue to skeletal system ppt
Bone tissue to skeletal system ppt
 
The skeletal system
The skeletal systemThe skeletal system
The skeletal system
 
Introduction to osteology
Introduction to osteologyIntroduction to osteology
Introduction to osteology
 
Introduction to osteology
Introduction to osteologyIntroduction to osteology
Introduction to osteology
 
Skeletal goes musical artifact 2
Skeletal goes musical artifact 2Skeletal goes musical artifact 2
Skeletal goes musical artifact 2
 
Basic ap chapter 6 powerpoint 2017
Basic ap chapter 6 powerpoint 2017Basic ap chapter 6 powerpoint 2017
Basic ap chapter 6 powerpoint 2017
 
Bone development and morphology / dental crown & bridge courses
Bone development and morphology / dental crown & bridge coursesBone development and morphology / dental crown & bridge courses
Bone development and morphology / dental crown & bridge courses
 
Skeletalsystem
SkeletalsystemSkeletalsystem
Skeletalsystem
 
The skeletal system
The skeletal systemThe skeletal system
The skeletal system
 
Skeletal_System.ppt
Skeletal_System.pptSkeletal_System.ppt
Skeletal_System.ppt
 
skeletal
skeletalskeletal
skeletal
 
skeletal system
skeletal systemskeletal system
skeletal system
 
Bone physiologynew /certified fixed orthodontic courses by Indian dental acad...
Bone physiologynew /certified fixed orthodontic courses by Indian dental acad...Bone physiologynew /certified fixed orthodontic courses by Indian dental acad...
Bone physiologynew /certified fixed orthodontic courses by Indian dental acad...
 

Skeletal physiology

  • 1. Skeletal Physiology Bone Homeostasis Bones have 5 different function to help keep homeostasis. Support, Protection, Movement, Mineral Storage, and Hematopoiesis. · Support – Bones are the framework of the body. They help keep shape and alignment of the body. · Protection- The bones help protect different organs in the body such as the skull with the brain and ribs with the heart and lungs. · Movement – Without bones the muscles couldn’t attach to anything. The bones act as levers to help movement. When the muscles retract they move the bone at the joint. · Mineral Storage- Bones serve as a “Bank” for certain minerals like calcium, phosphorus, and other minerals. Blood calcium levels highly depend on the calcium movement rate between the blood and bones. · Hematopoiesis – Blood cell formation is a process carried by red bone marrow. In adults, they’re located in the ends of long bones, skull, pelvis, and the ribs. Intramembranous and Endochondral Ossification are made in two different ways. The intramembranous ossification takes place in a connective tissue membrane. They create Osteoblasts. Clusters of them are called centers of ossification. They release matrix material and collagenous fibrils. Eventually, Calcification of the organic bone matrix will occur when complex calcium salts are deposited. Endochondral ossifications are formed in cartilage models. Bone is deposited by osteoblasts which different from cells on the inner surface of the periosteum. When a blood vessel enters the rapidly changing cartilage model at the midpoint of the diaphysis. Bone fracture repair is a process by which the body heals the tissues and removes the dead bone. The repair process is initiated by vascular damage. The body will either remove dead bone or use it to hold a repair tissue called a “Callus” in place. Fractures cause hemorrhage or pooling of blood at the injury. The blood clot is called a fracture hematoma. If the fracture is aligned and immobilized the callus tissue will model and be replaced with bone. Vitos is a skeletal repair material that consists of calcium and a sponge like matrix. It helps the callus immobilize the fracture and helps it receive nutrients. Then soon it will all be replaced with actual bone and be fixed. Compare the classification of joints according to both structure and function.
  • 2. - There are Fibrous Joints and Cartilaginous Joints. There are three types of Fibrous Joints the Syndesmoses joint, the sutures joint and the Gomphoses joints. There are two types of Cartilaginous Joints the Synchondroses joint and the Symphyses joint. Some examples are- ·Syndesmoses Joints are between distal ands of radius and ulna · Sutures Joints are between the skull bones ·Gomphoses Joints are between roots of teeth and jaw bone ·Synchondroses are the costal cartilage attachments of first rib to sternum ·Symphyses are the joints between bodies of vertebrae -The structures of the Cartilaginous Joints are more about articulating bones and the Fibrous Joints structures are more towards the connecting bone and roots. 13. Identify the types of movement at synovial joints and give examples of specific joints where each occurs - There are 3 types of Synovial joints the Uniaxial, Biaxial and Multiaxial - Uniaxial are the Hinge and Pivot - Biaxial are the Saddle and Condyloid - Multiaxial are the Ball and Socket, and Gliding Movements: Hinge- around one axis only, flexion and extension only, ex. Elbow joint Pivot- around one axis only, rotation, ex. Joint between first and second cervical vertebrae Saddle- around two axes, flexion and extension, ex. Thumb joint between metacarpal and carpal bone Condyloid- around two axes, flexion, adduction in other plane, ex. Joint between radius and carpal bone Ball and Socket- around many axes, widest range of movements, ex. Shoulder joint Gliding- around many axes, gliding movements, ex. Joints between carpal and tarsal bones 1.Identify each of the major constituents of bone as a tissue and discuss how structural organization contributes to function. ·Composition of bone matrix
  • 3. -inorganic salts: are needle like crystals, they are oriented in the microscopic spaces between the collagen fibers in the bone matrix so that they can most effectively resist stress and mechanical deformation. -organic matrix: the organic matrix of bone and other connective tissues is a composite of collagenous fibers and an amorphous mixture of protein and polysaccharides called ground substance. The ground substance of bones provide support and adhesion between cellular and fibrous elements and also serves an active role in many cellular metabolic functions necessary for growth, repair, and remolding. ·Compact bone - compact bone: contains many cylinder shaped structural units called osteons , or haversian systems. There are four types of structures that make up the haversian system. -First type is: lamellae_-_concentric, cylinder shaped layers of calcified matrix. -Second type is: lacunae_-_Latin for “little lakes” small spaces containing tissue fluid in which bone cells lie imprisoned between the hard layers of the lamellae. -Third type is: canaliculi _-_ ultra small canals radiating in all directions from the lacunae and connecting them to each other and into a larger canal, known as the heversian canal. -Fourth type is: haversian canal_-_extends lengthwise through the center of each haversian systems; contains blood vessels, lymphatic vessels, and nerves from the haversian canal; nutrients and oxygen move through canaliculi to the lacunae and their bone cells- a short distance of about 0.1 mm or less. 2.Identify by name and discuss each of the major components of a Haversian system. compact bone: contains many cylinder shaped structural units called osteons , or haversian systems. There are four types of structures that make up the haversian system. -First type is: lamellae_-_concentric, cylinder shaped layers of calcified matrix. -Second type is: lacunae_-_Latin for “little lakes” small spaces containing tissue fluid in which bone cells lie imprisoned between the hard layers of the lamellae. -Third type is: canaliculi _-_ ultra small canals radiating in all directions from the lacunae and connecting them to each other and into a larger canal, known as the heversian canal.-Fourth type is: haversian canal_-_extends lengthwise through the center of each haversian systems; contains blood vessels, lymphatic vessels, and nerves from the haversian canal; nutrients and oxygen move through canaliculi to the lacunae and their bone cells- a short distance of about 0.1 mm or less. 3.List and describe the function of the three major types of cells found in bones.
  • 4. ·The three major types of cells are found in bone : osteoblasts (bone-forming cells) , osteoclasts (bone-reabsorbing cells), and osteocytes (mature bone cells). All bone surfaces are covered with continuous layer of cells that is critical to the survival of bone. -The osteoblasts are small cells that synthesize ans secrete a specialized organic matrix, called osteoid, that is an important part of the ground substance of bone. -osteoclasts are giant multinucleate cells that are responsible for the active erosion of bone minerals, they are formed by fusion of several precursor cells and contain large numbers of mitochondria and lysomes. -osteoblasts are mature non dividing osteoblasts that have become surrounded by matrix and now lie within lacunae. Hyaline Cartilage - provides firm support with some pliability. It covers the ends of the long bones as articular cartilage , providing springy pads that absorb compression at joints . Has resilient cushioning properties ; resists compressive stress. Supports the tips of the nose , connects the ribs to the sternum , and supports most of the respiratory system passages. The skeletal hyaline comes during childhood as the epiphyseal plates , provide for continued growth in length. Covers the ends of long bones in joint cavities ; forms costal cartilages of ribs , nose , trachea , and larynx. Elastic Cartilage - Found where strength and exceptional stretch ability are needed. Elastic cartilage forms the skeletons of the external ear and the epiglottis. Maintain the shape of a structure while allowing great flexibility. Similar to hyaline but more elastic fibers in matrix. Fibrocartilage- Compressible and resists tension well , found where strong support and the ability to with strand heavy pressure are required. EX: the spongy cartilage of the knee , Intervertebral discs Strength with the ability to absorb compressive shock. Less firm than the hyaline; thick collagen fibers predominate. 11) Growth of Cartilage Interstitial Growth: The cartilage cells within the substance of the tissue mass divide and begin to secrete additional matrix. Internal division of chondrocytes is possible because of the soft, pliable nature of cartilage tissue. This type of growth is mostly seen during childhood and early adolescence, when the majority of the cartilage is still soft and capable of expansion from within Appositional Growth: This occurs when chondrocytes in the deep layer of the perichondrium begin to divide and secrete additional matrix. The new matrix is then deposited on the surface of the cartilage, causing it to increase in size. This type of growth is unusual in early childhood but, once it starts it continues beyond adolescence and throughout an individual’s life. 12) Classification of joints
  • 5. Joints are classified into 3 major categories using a structural or a functional scheme. If a structural classification is employed, joints are named according to the type of connective tissue that joins the bones together, (fibrous and cartilaginous) or by the presence of a fluid-filled joint capsule. (synovial joints) If a functional classification scheme is used, joints are divided into three classes according to the degree of movement they permit. (synarthroses, amphiarthroses, and diarthroses) (Immovable, slightly movable and freely moveable) Fibrous joints are synarthroses. The articulating surfaces of these joints fit closely together. The three types of fibrous joints are: Syndesmoses- Joints on which fibrous bands connect two bones Sutures- Found only in the skull, teeth like projections jut out from adjacent bones and interlock with each other with only a thin layer of fibrous tissue between them. Gomphoses: unique joints that occur between the root of a tooth and the alveolar process of the mandible and maxilla. Cartilaginous Joints are amphiarthroses: The bones that articulate to form a cartilaginous joint are joined together by either hyaline cartilage or fibrocartilage. There are two types of these Sychondroses: Joints that are characterized by the presence hyaline cartilage between articulating bones Symphyses: a joint in which a pad or disk of fibrocartilage connects two bones Synovial joints are diarthroses They are the body’s most moveable, numerous and the most anatomically complex joints. Seven types of structures for synovial joins joint capsules, synovial membrane, articular cartilage, joint cavity, menisci (articular disks), ligaments and bursea Synovial joints are divided into three main groups: Uniaxial, biaxial, and multiaxial Uniaxial joints: Synovial Joints that permit movement around only one axis and in only one plane. EX: Hinge Joints and Pivot Joints Biaxial joints: Diaphroses that permit movement around two perpendicular axes in two perpendicular planes EX: Saddle Joints and Condyloid Joints Multiaxial Joints: Joints that permit movement around three or more axes and in three or more planes EX: Ball and Socket joints and Gliding joints 1. List the four types of bones and give examples of each 1. Long Bones --- Femur is a good example. 2. Short Bones -- Carpals. 3. Irregular bones -- vertebrae.
  • 6. 4. Flat bones -- The bones of the skull are a prime example. 5. Sesamoid bones -- High-stress bones encased in tendons, connective tissue, etc. Kneecaps are an example. 2. Identify the six major structures of a typical long bone. 1. Long bones have greater length than width and consist of a shaft and a variable number of endings (extremities). 2. They are usually somewhat curved for strength. 3. Examples include femur, tibia, fibula, humerus, ulna and radius. 4. Articulatory (or articular) cartilage reduces friction and absorbs shock at freely moveable joints. 5. Endosteum is the membrane that lines the cavity of a bone. 6. Periosteum is a tough fibrous membrane that surrounds the outside of bones wherever they are not covered by articulatory cartilage. 7. In adults the medullary cavity contains fatty yellow bone marrow. 3 Collective Questions http://www.ehow.com/facts_5847486_changes-skeletal-system-due-age.html •Cancer treatment may generate a need for a bone marrow transplant. Osteoporosis is a condition characterized by an excessive loss of calcium in bone. These 2 conditions are disruptions or failures of 2 bone functions. Identify these 2 functions and explain what their normal function should be. The lack of bone marrow in Osteoporosis is because of the lack of function from the bone to make enough bone marrow, as compared to bone cancer, which compromises the ability of the bone to make healthy bone marrow. •Explain why a bone fracture along the epiphyseal plate may have serious implications among children and young adults. The Epiphyseal plate is located near the head of the epiphyseal bone and the reason a fracture among the plate would be cause for concern in young adults and children is because of the function of the epiphyseal plate. As a person grows, the plate of cartilage develops in to a line of bone. If a person were to be severely injured while growing, growth could be stopped, causing the child to be shorter than they were intended to grow. •During the aging process, adults face the issue of a changing skeletal framework. Describe these changes and explain how these skeletal framework changes affect the health of older adults. The changes of skeletal framework could affect people greatly as they progress in to older age these include bone density loss, spine and feet compressing and becoming weaker, and joints becoming less flexible.