SlideShare uma empresa Scribd logo
1 de 15
A presentation by: AKASH SOOD




                                   For : MALWA Inst. of Tech. & Mgmt.



Submitted to :
      Mechanical Deptt.
•   Introduction and Defining
•   Types of Cycles
•   Ideal Rankine Cycle
•   Reheat Rankine Cycle
•   Regeneration Rankine Cycle
•   Why we use Rankine Cycle?
•   Conclusion
•   Query




              • A presentation by: AKASH SOOD
• Who is Rankine and What is Rankine Cycle?
• A Scottish CIVIL ENGINEER, physicist and
  mathematician. He was a founding contributor,
  with Rudolf Clausius and William Thomson, to
  the science of thermodynamics, particularly
  focusing on the first of the three
  thermodynamic laws.
• The Rankine cycle is a cycle that converts heat
  into work. The heat is supplied externally to a William John Macquorn
                                                  Rankine
  closed loop, which usually uses water. This
  cycle generates about 90% of all electric power
  used throughout the world.



                • A presentation by: AKASH SOOD
• Ideal Rankine Cycle

• Re-heat Rankine Cycle

• Re-generation Rankine Cycle


        • A presentation by: AKASH SOOD
Qin

           2                         3
                     Boiler                       Wout


Win   Compressor
      (pump)                        Turbine
                   Heat exchanger

       1                                      4



                    Qout
       • A presentation by: AKASH SOOD
• In a real Rankine cycle, the compression by the pump and the
  expansion in the turbine are not ISENTROPIC. In other words, these
  processes are NON-REVERSIBLE and entropy is increased during
  the two processes. This somewhat increases the power required by
  the pump and decreases the power generated by the turbine.

• So, the other Engineer’s and Sir Rankine make it modify.




               • A presentation by: AKASH SOOD
• Energy analysis: steady flow process, no generation, neglect
  KE and PE changes for all four devices,
• 0 = (net heat transfer in) - (net work out) + (net energy flow in)
• 0 = (qin - qout) - (Wout - Win) + (hin - hout)
• PROCESS:
• 1-2: Pump (q=0)  Wpump = h2 - h1 = v(P2-P1)
• 2-3: Boiler(W=0)  qin = h3 - h2
• 3-4: Turbine(q=0)  Wout = h3 - h4
                                                T
• 4-1: Condenser(W=0)  qout = h4 - h1

• Thermal efficiency h = Wnet/qin =
• 1 - qout/qin = 1 - (h4-h1)/(h3-h2)

• Wnet = Wout - Win = (h3-h4) - (h2-h1)
                                                                       s
Real (Non-Ideal
       Rankine Cycle)


               Sir
             Rankine



Re-heat                Re-generation

 • A presentation by: AKASH SOOD
• The optimal way of
                                          high-P    Low-P
  increasing the boiler                   turbine   turbine
  pressure but not
  increase the moisture
  content in the exiting      boiler
  vapor is to reheat the
  vapor after it exits from
  a first-stage turbine and
  redirect this reheated
  vapor into a second
  turbine.                              pump

                                                     condenser



                • A presentation by: AKASH SOOD
high-P    Low-P        T   high-P
          turbine   turbine          turbine
                                               low-P
boiler                                         turbine




         pump

                     condenser
                                                   s
         • A presentation by: AKASH SOOD
• Energy analysis: Heat transfer and work output both
  change
        qin = qprimary + qreheat = (h3-h2) + (h5-h4)
        Wout = Wturbine1 + Wturbine2 = (h3-h4) + (h5-h6)
Efficiency :

                     : Work Done/Heat Supplied




             • A presentation by: AKASH SOOD
• Use regenerator to heat up the liquid (feedwater) leaving
  the pump before sending it to the boiler, therefore, increase
  the averaged temperature (efficiency as well) during heat
  addition in the boiler.
 Lower temp                      higher temp
 heat addition                   heat addition           5
                 3
T                            T                               Extract steam from
                                                             turbine to provide
            2’                       4                       heat source in the
                                                         6   regenerator
                                 2
                                         3
    2

                                     1               7
        1            4                                       s
                         s
                                     Use regenerator to heat up the feedwater
Open FWH
                                 T




boiler
              Open
              FWH


         Pump 2

                  Pump 1
                           condenser   s
• Energy analysis: Heat transfer and work output both
  change
•                Energy analysis:
  qin = h5-h4, qout = (1-y)(h7-h1),
  Wturbine, out = (h5-h6) + (1-y)(h6-h7)
  Wpump, in      = (1-y)Wpump1 + Wpump2
                 = (1-y)(h2-h1) + (h4-h3)

Efficiency :
                    : Work Done/Heat Supplied
In general, the more feedwater heaters, the better the cycle
  efficiency.
               • A presentation by: AKASH SOOD
Rankine cycle

Mais conteúdo relacionado

Mais procurados (20)

Steam Boilers OR Steam Generators
Steam Boilers OR Steam GeneratorsSteam Boilers OR Steam Generators
Steam Boilers OR Steam Generators
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Gas turbine
Gas turbineGas turbine
Gas turbine
 
Thermodynamic cycles
Thermodynamic cycles Thermodynamic cycles
Thermodynamic cycles
 
Diesel cycle
Diesel cycleDiesel cycle
Diesel cycle
 
Power cycles
Power cyclesPower cycles
Power cycles
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 
Ideal reheat rankine cycle
Ideal reheat rankine cycleIdeal reheat rankine cycle
Ideal reheat rankine cycle
 
Steam Turbines
Steam TurbinesSteam Turbines
Steam Turbines
 
Steam Turbines
Steam Turbines Steam Turbines
Steam Turbines
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power Plant
 
Ppt on boilers
Ppt on boilersPpt on boilers
Ppt on boilers
 
Ash handling system
Ash handling systemAsh handling system
Ash handling system
 
Condenser in thermal power plants
Condenser in thermal power plantsCondenser in thermal power plants
Condenser in thermal power plants
 
Brayton cycle
Brayton cycleBrayton cycle
Brayton cycle
 
power plant engineering
power plant engineeringpower plant engineering
power plant engineering
 
Boiler
BoilerBoiler
Boiler
 
Modern thermal power plant
Modern thermal power plantModern thermal power plant
Modern thermal power plant
 
BOILER DRAUGHT
BOILER DRAUGHTBOILER DRAUGHT
BOILER DRAUGHT
 
STEAM NOZZLES
STEAM NOZZLESSTEAM NOZZLES
STEAM NOZZLES
 

Destaque

Rankine cycle power plant
Rankine cycle   power plantRankine cycle   power plant
Rankine cycle power plantDeeSolar
 
Tutorial questions reheat rankine cycle
Tutorial  questions   reheat rankine cycleTutorial  questions   reheat rankine cycle
Tutorial questions reheat rankine cycleIbrahim AboKhalil
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycleAslam K
 
MET 401 Chapter 2 improvement_to_rankine_cycle
MET 401 Chapter 2 improvement_to_rankine_cycleMET 401 Chapter 2 improvement_to_rankine_cycle
MET 401 Chapter 2 improvement_to_rankine_cycleIbrahim AboKhalil
 
thermodynamics of power plant
thermodynamics of power plantthermodynamics of power plant
thermodynamics of power plantupasana_panigrahi
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier applicationdaudsangeenkhan
 

Destaque (9)

Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 
Rankine cycle power plant
Rankine cycle   power plantRankine cycle   power plant
Rankine cycle power plant
 
Tutorial questions reheat rankine cycle
Tutorial  questions   reheat rankine cycleTutorial  questions   reheat rankine cycle
Tutorial questions reheat rankine cycle
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 
MET 401 Chapter 2 improvement_to_rankine_cycle
MET 401 Chapter 2 improvement_to_rankine_cycleMET 401 Chapter 2 improvement_to_rankine_cycle
MET 401 Chapter 2 improvement_to_rankine_cycle
 
thermodynamics of power plant
thermodynamics of power plantthermodynamics of power plant
thermodynamics of power plant
 
Steam turbine
Steam turbineSteam turbine
Steam turbine
 
Steam power plants
Steam power plantsSteam power plants
Steam power plants
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier application
 

Semelhante a Rankine cycle

RANKINE CYCLE-DEMO.pptx
RANKINE CYCLE-DEMO.pptxRANKINE CYCLE-DEMO.pptx
RANKINE CYCLE-DEMO.pptxluciojrruiz1
 
Rankinecycle 120509124313-phpapp02 (3)
Rankinecycle 120509124313-phpapp02 (3)Rankinecycle 120509124313-phpapp02 (3)
Rankinecycle 120509124313-phpapp02 (3)yamini champaneri
 
Power plant engineering
Power plant engineeringPower plant engineering
Power plant engineeringJAGADEESAN M
 
Supercritical steam generators
Supercritical steam generatorsSupercritical steam generators
Supercritical steam generatorsAshutosh Katti
 
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptx
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptxConventional Thermal Power Plants_PEC417_Rankine Cycle.pptx
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptxMariaSarwat
 
t-s-h-p.pdf
t-s-h-p.pdft-s-h-p.pdf
t-s-h-p.pdfnskfeb
 
unit-iii-170707102605.pdf
unit-iii-170707102605.pdfunit-iii-170707102605.pdf
unit-iii-170707102605.pdfsamy709581
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III sureshkcet
 
ThermoDynamics (Working of steam power plant and rankine cyle)
ThermoDynamics (Working of steam power plant and rankine cyle)ThermoDynamics (Working of steam power plant and rankine cyle)
ThermoDynamics (Working of steam power plant and rankine cyle)Graphic Era University.
 
Steam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of BoilerSteam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of BoilerMulugeta Wotango
 
Types of thermodynamic Cycles for Power Generator
Types of thermodynamic Cycles for Power GeneratorTypes of thermodynamic Cycles for Power Generator
Types of thermodynamic Cycles for Power GeneratorOsamaButt23
 
steam Power Plant Lectures h.pdf
steam Power Plant Lectures     h.pdfsteam Power Plant Lectures     h.pdf
steam Power Plant Lectures h.pdfMahamad Jawhar
 
Vapor_power cycles KM.pptx ..
Vapor_power cycles KM.pptx            ..Vapor_power cycles KM.pptx            ..
Vapor_power cycles KM.pptx ..happycocoman
 

Semelhante a Rankine cycle (20)

Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 
RANKINE CYCLE-DEMO.pptx
RANKINE CYCLE-DEMO.pptxRANKINE CYCLE-DEMO.pptx
RANKINE CYCLE-DEMO.pptx
 
Rankine Cycle
Rankine CycleRankine Cycle
Rankine Cycle
 
Rankinecycle 120509124313-phpapp02 (3)
Rankinecycle 120509124313-phpapp02 (3)Rankinecycle 120509124313-phpapp02 (3)
Rankinecycle 120509124313-phpapp02 (3)
 
Power plant cycle
Power plant cyclePower plant cycle
Power plant cycle
 
Power plant engineering
Power plant engineeringPower plant engineering
Power plant engineering
 
Supercritical steam generators
Supercritical steam generatorsSupercritical steam generators
Supercritical steam generators
 
Ideal rankine cycle
Ideal rankine cycle Ideal rankine cycle
Ideal rankine cycle
 
Power cycles 1
Power cycles 1Power cycles 1
Power cycles 1
 
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptx
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptxConventional Thermal Power Plants_PEC417_Rankine Cycle.pptx
Conventional Thermal Power Plants_PEC417_Rankine Cycle.pptx
 
t-s-h-p.pdf
t-s-h-p.pdft-s-h-p.pdf
t-s-h-p.pdf
 
unit-iii-170707102605.pdf
unit-iii-170707102605.pdfunit-iii-170707102605.pdf
unit-iii-170707102605.pdf
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III
 
ThermoDynamics (Working of steam power plant and rankine cyle)
ThermoDynamics (Working of steam power plant and rankine cyle)ThermoDynamics (Working of steam power plant and rankine cyle)
ThermoDynamics (Working of steam power plant and rankine cyle)
 
Steam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of BoilerSteam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of Boiler
 
Types of thermodynamic Cycles for Power Generator
Types of thermodynamic Cycles for Power GeneratorTypes of thermodynamic Cycles for Power Generator
Types of thermodynamic Cycles for Power Generator
 
Vapur power cycle
Vapur power cycleVapur power cycle
Vapur power cycle
 
steam Power Plant Lectures h.pdf
steam Power Plant Lectures     h.pdfsteam Power Plant Lectures     h.pdf
steam Power Plant Lectures h.pdf
 
thermo course.ppt
thermo course.pptthermo course.ppt
thermo course.ppt
 
Vapor_power cycles KM.pptx ..
Vapor_power cycles KM.pptx            ..Vapor_power cycles KM.pptx            ..
Vapor_power cycles KM.pptx ..
 

Mais de Akash Sood

Projection of planes 041
Projection of planes 041Projection of planes 041
Projection of planes 041Akash Sood
 
Projection of planes 038
Projection of planes 038Projection of planes 038
Projection of planes 038Akash Sood
 
Projection of planes 033
Projection of planes 033Projection of planes 033
Projection of planes 033Akash Sood
 
Projection of planes 027
Projection of planes 027Projection of planes 027
Projection of planes 027Akash Sood
 
Projection of planes 023
Projection of planes 023Projection of planes 023
Projection of planes 023Akash Sood
 
Projection of planes 010
Projection of planes 010Projection of planes 010
Projection of planes 010Akash Sood
 
Projection of planes 009
Projection of planes 009Projection of planes 009
Projection of planes 009Akash Sood
 
Projection of planes 008
Projection of planes 008Projection of planes 008
Projection of planes 008Akash Sood
 
Projection of planes 006
Projection of planes 006Projection of planes 006
Projection of planes 006Akash Sood
 
Projection of planes 003
Projection of planes 003Projection of planes 003
Projection of planes 003Akash Sood
 
Projection of planes 004
Projection of planes 004Projection of planes 004
Projection of planes 004Akash Sood
 
Projection of planes 002
Projection of planes 002Projection of planes 002
Projection of planes 002Akash Sood
 
Projection of planes 001
Projection of planes 001Projection of planes 001
Projection of planes 001Akash Sood
 
Projection of planes 007
Projection of planes 007Projection of planes 007
Projection of planes 007Akash Sood
 
Projection of planes 039
Projection of planes 039Projection of planes 039
Projection of planes 039Akash Sood
 
Projection of planes 037
Projection of planes 037Projection of planes 037
Projection of planes 037Akash Sood
 
Projection of planes 035
Projection of planes 035Projection of planes 035
Projection of planes 035Akash Sood
 
Projection of planes 034
Projection of planes 034Projection of planes 034
Projection of planes 034Akash Sood
 
Projection of planes 032
Projection of planes 032Projection of planes 032
Projection of planes 032Akash Sood
 
Projection of planes 030
Projection of planes 030Projection of planes 030
Projection of planes 030Akash Sood
 

Mais de Akash Sood (20)

Projection of planes 041
Projection of planes 041Projection of planes 041
Projection of planes 041
 
Projection of planes 038
Projection of planes 038Projection of planes 038
Projection of planes 038
 
Projection of planes 033
Projection of planes 033Projection of planes 033
Projection of planes 033
 
Projection of planes 027
Projection of planes 027Projection of planes 027
Projection of planes 027
 
Projection of planes 023
Projection of planes 023Projection of planes 023
Projection of planes 023
 
Projection of planes 010
Projection of planes 010Projection of planes 010
Projection of planes 010
 
Projection of planes 009
Projection of planes 009Projection of planes 009
Projection of planes 009
 
Projection of planes 008
Projection of planes 008Projection of planes 008
Projection of planes 008
 
Projection of planes 006
Projection of planes 006Projection of planes 006
Projection of planes 006
 
Projection of planes 003
Projection of planes 003Projection of planes 003
Projection of planes 003
 
Projection of planes 004
Projection of planes 004Projection of planes 004
Projection of planes 004
 
Projection of planes 002
Projection of planes 002Projection of planes 002
Projection of planes 002
 
Projection of planes 001
Projection of planes 001Projection of planes 001
Projection of planes 001
 
Projection of planes 007
Projection of planes 007Projection of planes 007
Projection of planes 007
 
Projection of planes 039
Projection of planes 039Projection of planes 039
Projection of planes 039
 
Projection of planes 037
Projection of planes 037Projection of planes 037
Projection of planes 037
 
Projection of planes 035
Projection of planes 035Projection of planes 035
Projection of planes 035
 
Projection of planes 034
Projection of planes 034Projection of planes 034
Projection of planes 034
 
Projection of planes 032
Projection of planes 032Projection of planes 032
Projection of planes 032
 
Projection of planes 030
Projection of planes 030Projection of planes 030
Projection of planes 030
 

Último

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 

Último (20)

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 

Rankine cycle

  • 1. A presentation by: AKASH SOOD For : MALWA Inst. of Tech. & Mgmt. Submitted to : Mechanical Deptt.
  • 2. Introduction and Defining • Types of Cycles • Ideal Rankine Cycle • Reheat Rankine Cycle • Regeneration Rankine Cycle • Why we use Rankine Cycle? • Conclusion • Query • A presentation by: AKASH SOOD
  • 3. • Who is Rankine and What is Rankine Cycle? • A Scottish CIVIL ENGINEER, physicist and mathematician. He was a founding contributor, with Rudolf Clausius and William Thomson, to the science of thermodynamics, particularly focusing on the first of the three thermodynamic laws. • The Rankine cycle is a cycle that converts heat into work. The heat is supplied externally to a William John Macquorn Rankine closed loop, which usually uses water. This cycle generates about 90% of all electric power used throughout the world. • A presentation by: AKASH SOOD
  • 4. • Ideal Rankine Cycle • Re-heat Rankine Cycle • Re-generation Rankine Cycle • A presentation by: AKASH SOOD
  • 5. Qin 2 3 Boiler Wout Win Compressor (pump) Turbine Heat exchanger 1 4 Qout • A presentation by: AKASH SOOD
  • 6. • In a real Rankine cycle, the compression by the pump and the expansion in the turbine are not ISENTROPIC. In other words, these processes are NON-REVERSIBLE and entropy is increased during the two processes. This somewhat increases the power required by the pump and decreases the power generated by the turbine. • So, the other Engineer’s and Sir Rankine make it modify. • A presentation by: AKASH SOOD
  • 7. • Energy analysis: steady flow process, no generation, neglect KE and PE changes for all four devices, • 0 = (net heat transfer in) - (net work out) + (net energy flow in) • 0 = (qin - qout) - (Wout - Win) + (hin - hout) • PROCESS: • 1-2: Pump (q=0)  Wpump = h2 - h1 = v(P2-P1) • 2-3: Boiler(W=0)  qin = h3 - h2 • 3-4: Turbine(q=0)  Wout = h3 - h4 T • 4-1: Condenser(W=0)  qout = h4 - h1 • Thermal efficiency h = Wnet/qin = • 1 - qout/qin = 1 - (h4-h1)/(h3-h2) • Wnet = Wout - Win = (h3-h4) - (h2-h1) s
  • 8. Real (Non-Ideal Rankine Cycle) Sir Rankine Re-heat Re-generation • A presentation by: AKASH SOOD
  • 9. • The optimal way of high-P Low-P increasing the boiler turbine turbine pressure but not increase the moisture content in the exiting boiler vapor is to reheat the vapor after it exits from a first-stage turbine and redirect this reheated vapor into a second turbine. pump condenser • A presentation by: AKASH SOOD
  • 10. high-P Low-P T high-P turbine turbine turbine low-P boiler turbine pump condenser s • A presentation by: AKASH SOOD
  • 11. • Energy analysis: Heat transfer and work output both change qin = qprimary + qreheat = (h3-h2) + (h5-h4) Wout = Wturbine1 + Wturbine2 = (h3-h4) + (h5-h6) Efficiency : : Work Done/Heat Supplied • A presentation by: AKASH SOOD
  • 12. • Use regenerator to heat up the liquid (feedwater) leaving the pump before sending it to the boiler, therefore, increase the averaged temperature (efficiency as well) during heat addition in the boiler. Lower temp higher temp heat addition heat addition 5 3 T T Extract steam from turbine to provide 2’ 4 heat source in the 6 regenerator 2 3 2 1 7 1 4 s s Use regenerator to heat up the feedwater
  • 13. Open FWH T boiler Open FWH Pump 2 Pump 1 condenser s
  • 14. • Energy analysis: Heat transfer and work output both change • Energy analysis: qin = h5-h4, qout = (1-y)(h7-h1), Wturbine, out = (h5-h6) + (1-y)(h6-h7) Wpump, in = (1-y)Wpump1 + Wpump2 = (1-y)(h2-h1) + (h4-h3) Efficiency : : Work Done/Heat Supplied In general, the more feedwater heaters, the better the cycle efficiency. • A presentation by: AKASH SOOD