SlideShare uma empresa Scribd logo
1 de 15
Baixar para ler offline
Representing molecules as atomic‐scale electrical 
    circuits with fluctuating‐charge models

                                           +                 +

                                           ‐                 ‐


                                               q1            q2



                            Jiahao Chen
             Department of Chemistry and Beckman Institute
               University of Illinois at Urbana‐Champaign
                    APS Meeting P19.5, 2007‐03‐07
  Acknowledgments                          Funding
  •Todd Martínez                           •NSF DMR‐03 25939 ITR
  •Martínez Group members                  •DOE DE‐FG02‐05ER46260
Polarization and charge transfer in 
         molecular mechanics (MM)
    • Want to describe both polarization and charge 
      transfer with reasonable computational cost
    • Common models to describe polarization:
         – Charge‐on‐spring/Drude oscillator, e.g. Drude (1902)
         – Point‐polarizable dipole, e.g. Vesely (1977)
         – Chemical potential equilibration (CPE), a.k.a. 
           fluctuating‐charge: Rappé and Goddard (1991); Rick, 
           Stuart and Berne (1994)
    • Only CPE models can account for both effects

P. Drude, The Theory of Optics, Longmans, Green and Co., New York (1902); F.J. Vesely, 
J. Comp. Phys. 24 (1977), 361‐371;  A. K. Rappé, W. A. Goddard, III, J. Phys. Chem. 95
(1991), 3358‐3363; S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101 (1994), 6141‐6156.
A simple DC circuit


DC source +   capacitor
        V            C
          ‐



              ground
               0 V
A simple DC circuit
                                    What is the charge q on C?
                                        energy depleted   energy gain
                                        from DC source    of capacitor
 DC source +   capacitor   charge
         V
           ‐
                      C    q         E = −qV + 1 C −1 q 2
                                               2
                                    ∂E          −1
                                       = −V + C q = 0
               ground               ∂q
                0 V                 ∴q =VC
   This Hamiltonian approach works for molecules too:
fluctuating‐charge/electronegativity equilibration models
CPE models: The QEq model
QEq model for a diatomic molecule
                                                              source capacitance
                                                               term     term
electronegativity                                           X           1 2
                    +                   +
            χ1                                χ2
                                                   E   =      qi χi + ηi qi
                                                          i
                                                                        2
                    ‐                   ‐
                         Coulomb                            1X              Coulomb
                        interaction
                                                         +         qi qj Jij term
     chemical                                               2
     hardness η q            J12                   ∂E           i6=j
               1 1                    η2 q2            =μ
                                                   ∂qi


                 chemical
                           μ
                 potential


A. K. Rappé, W. A. Goddard III, J. Phys. Chem. 95 (1991), 3358‐3363.
QEq: wrong NaCl dissociation
        1.0
                    q/e                    equilibrium geometry
        0.9

        0.8
                    +     +
        0.7         ‐     ‐

        0.6

        0.5                                                             QEq
        0.4                                                               QEq, R → ∞
        0.3                                                                +                 +
                                                                           ‐       J12 → 0   ‐
        0.2

        0.1
                                             ab initio DMA0
                                          CASSCF(8/5)/6‐31G*
        0.0
              0.0             1.0   2.0      3.0    4.0    5.0    6.0      7.0   R/Å   8.0




DMA0 = distributed multipole analysis restricted to point charges only
CASSCF = complete active space self‐consistent field method
The QTPIE model: Motivation
                                                                   X
 1. Introduce charge transfer variables                     qi =       pji
                  X        1 2 X                           j
       EQEq   =    qi χi + ηi qi +        qi qj Jij
                 i
                           2
                                     i6=j
                X           X1                   1X
              =    pji χi +       ηi pji pki +      pki plj Jij
                ij
                                2                2
                                 ijk                     ijkl

 2. Introduce overlap integral: explicit notion of distance
                  X                    X1                   1X
    EQTPIE    =         pji χi Sij +           ηi pji pki +    pki plj Jij
                   ij
                                             2              2
                                       ijk                  ijkl
    ∂EQTPIE
            =0
      ∂pji



J. Chen, T. J. Martínez, Chem. Phys. Lett., in press.
QTPIE: Correct NaCl asymptote
      1.0

      0.9
                  q/e               equilibrium geometry

      0.8

      0.7

      0.6

      0.5                                                        QEq
      0.4

      0.3
                                                                 QTPIE
      0.2

      0.1
                                                                 ab initio
      0.0
            0.0         1.0   2.0     3.0    4.0     5.0   6.0         7.0   R/Å   8.0




QTPIE prediction improved over QEq without reoptimizing
   parameters, but variation is still slower than ab initio
Water fragments correctly
        • Asymmetric dissociation: correct asymptotics, charge 
          transfer on OH fragment retained
1.0
         q/e    equilibrium geometry


                                     ab initio                     R
0.5
                         QEq
                                                                                   R/Å
                     QTPIE
0.0
       0.5     1.0       1.5   2.0       2.5     3.0   3.5   4.0       4.5   5.0     5.5


‐0.5




‐1.0
Water parameters transferable
1.0        • Parameters transferable across geometries
           q/e                                                          1.0
                                                                                   q/e
0.8
                                                   O         H          0.8
0.6                                                                                                                               O   H
                                                         H              0.6
0.4
                                                                        0.4
                                                                                                                              H
                 DMA
0.2                                                                     0.2         DMA
0.0                                                              QEq 0.0                                                                  QEq
                                                         R/Å     QTPIE                                                                R/Å QTPIE
‐0.2 0.5           1.5     2.5         3.5         4.5
                                                                 QTPIE‐0.2 0.5      1.0   1.5   2.0   2.5   3.0   3.5   4.0       4.5   5.0
                                                                                                                                          QTPIE
‐0.4                                                             DMA ‐0.4                                                                 DMA
‐0.6                                                                    ‐0.6

‐0.8                                                             QEq    ‐0.8                                                              QEq
‐1.0                                                                    ‐1.0
1.0                                                                      1.0
           q/e                                                                     q/e
0.8                                                                      0.8
                                             O       H                                                                            O   H
0.6                                                                      0.6                                              H
0.4                                          H                           0.4

0.2
                 DMA                                                     0.2         DMA
0.0                                                          QEq         0.0                                                              QEq
                                                   R/Å       QTPIE                                                                    R/Å QTPIE
‐0.2 0.5          1.5    2.5     3.5         4.5                        ‐0.2 0.5    1.0   1.5   2.0   2.5   3.0   3.5   4.0       4.5   5.0
                                                                                                                                          QTPIE
                                                             QTPIE
‐0.4                                                         DMA        ‐0.4
                                                                                                                                          DMA
‐0.6                                                                    ‐0.6

‐0.8                                                         QEq        ‐0.8                                                              QEq
‐1.0                                                                    ‐1.0
Dipole polarizability of phenol
  • Response of dipole moment to external electric 
    field



  • QTPIE: overestimates less than QEq
           QEq     QTPIE      ab initio*
      x 24.6244     13.0298     13.6758
      y 20.3270     10.7566     12.3621
      z   0.0000    0.0000       6.9981    (ų)


*ab initio method: MP2/aug‐cc‐pVDZ
Conclusions
• Fluctuating‐charge models are analogous to DC 
  electrical circuits
• QTPIE (our new charge model) predicts correct 
  dissociation behavior of atomic charges
• Explicit distance cutoff for electronegativities
  improves qualitative behavior




               Thank You
QEq v. ab initio charges
1.2
            q/e



                                     equilibrium geometry
1.0




0.8


                                                                              QEq
0.6

                                        Mulliken
                         ab initio
0.4                                         DMA
                         charges
                                     Ideal dipole

0.2




0.0
      0.0         1.0         2.0        3.0        4.0     5.0   6.0   7.0   R/Å   8.0
QEq1, a fluctuating charge model
    • Given geometry, find charge distribution
                     energy to charge atom      Coulomb interaction
                                                                                   q1
                                                                         q2


                                                                              q3


    • Minimization with fixed total charge                          q4                  q5
      defines Lagrange multiplier μ




1. A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358‐3363.
QTPIE: charge transfer with 
 polarization current equilibration
• Shift focus to charge transfer variables pji:
   – Charge accounting: where it came from, where it’s 
     going                                         p      12




                                                    p23


                                                          p34
                                                            p45

   – Explicitly penalize long‐distance charge transfer

Mais conteúdo relacionado

Destaque

Group meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electronsGroup meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electrons
Jiahao Chen
 
Resolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge modelsResolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge models
Jiahao Chen
 
What's next in Julia
What's next in JuliaWhat's next in Julia
What's next in Julia
Jiahao Chen
 

Destaque (15)

Group meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electronsGroup meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electrons
 
Understanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseUnderstanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II database
 
Dynamical localization in the microwave ionization of Rydberg atoms
Dynamical localization in the microwave ionization of Rydberg atomsDynamical localization in the microwave ionization of Rydberg atoms
Dynamical localization in the microwave ionization of Rydberg atoms
 
Python as number crunching code glue
Python as number crunching code gluePython as number crunching code glue
Python as number crunching code glue
 
Technical computing in Julia
Technical computing in JuliaTechnical computing in Julia
Technical computing in Julia
 
Contrasts
ContrastsContrasts
Contrasts
 
QTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systemsQTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systems
 
Polarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamicsPolarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamics
 
this talk has only three equations
this talk has only three equationsthis talk has only three equations
this talk has only three equations
 
Resolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge modelsResolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge models
 
Julia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysisJulia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysis
 
Programming languages: history, relativity and design
Programming languages: history, relativity and designProgramming languages: history, relativity and design
Programming languages: history, relativity and design
 
What's next in Julia
What's next in JuliaWhat's next in Julia
What's next in Julia
 
Methods for computing partial charges
Methods for computing partial chargesMethods for computing partial charges
Methods for computing partial charges
 
Julia: compiler and community
Julia: compiler and communityJulia: compiler and community
Julia: compiler and community
 

Semelhante a Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
carlosgalup
 
Parameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. TajkhorshidParameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. Tajkhorshid
TCBG
 
Lecture6
Lecture6Lecture6
Lecture6
voracle
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
Faysal Khan
 

Semelhante a Representing molecules as atomic-scale electrical circuits with fluctuating-charge models (20)

CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
CP Violation in B meson and Belle
CP Violation in B meson and BelleCP Violation in B meson and Belle
CP Violation in B meson and Belle
 
Equations
EquationsEquations
Equations
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Parameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. TajkhorshidParameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. Tajkhorshid
 
Lecture6
Lecture6Lecture6
Lecture6
 
Computazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. MataloniComputazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. Mataloni
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 
Lecture12
Lecture12Lecture12
Lecture12
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
Presentation
PresentationPresentation
Presentation
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Lecture10
Lecture10Lecture10
Lecture10
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 

Último

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 

Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

  • 1. Representing molecules as atomic‐scale electrical  circuits with fluctuating‐charge models + + ‐ ‐ q1 q2 Jiahao Chen Department of Chemistry and Beckman Institute University of Illinois at Urbana‐Champaign APS Meeting P19.5, 2007‐03‐07 Acknowledgments Funding •Todd Martínez •NSF DMR‐03 25939 ITR •Martínez Group members •DOE DE‐FG02‐05ER46260
  • 2. Polarization and charge transfer in  molecular mechanics (MM) • Want to describe both polarization and charge  transfer with reasonable computational cost • Common models to describe polarization: – Charge‐on‐spring/Drude oscillator, e.g. Drude (1902) – Point‐polarizable dipole, e.g. Vesely (1977) – Chemical potential equilibration (CPE), a.k.a.  fluctuating‐charge: Rappé and Goddard (1991); Rick,  Stuart and Berne (1994) • Only CPE models can account for both effects P. Drude, The Theory of Optics, Longmans, Green and Co., New York (1902); F.J. Vesely,  J. Comp. Phys. 24 (1977), 361‐371;  A. K. Rappé, W. A. Goddard, III, J. Phys. Chem. 95 (1991), 3358‐3363; S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101 (1994), 6141‐6156.
  • 3. A simple DC circuit DC source + capacitor V C ‐ ground 0 V
  • 4. A simple DC circuit What is the charge q on C? energy depleted energy gain from DC source of capacitor DC source + capacitor charge V ‐ C q E = −qV + 1 C −1 q 2 2 ∂E −1 = −V + C q = 0 ground ∂q 0 V ∴q =VC This Hamiltonian approach works for molecules too: fluctuating‐charge/electronegativity equilibration models
  • 5. CPE models: The QEq model QEq model for a diatomic molecule source capacitance term term electronegativity X 1 2 + + χ1 χ2 E = qi χi + ηi qi i 2 ‐ ‐ Coulomb 1X Coulomb interaction + qi qj Jij term chemical 2 hardness η q J12 ∂E i6=j 1 1 η2 q2 =μ ∂qi chemical μ potential A. K. Rappé, W. A. Goddard III, J. Phys. Chem. 95 (1991), 3358‐3363.
  • 6. QEq: wrong NaCl dissociation 1.0 q/e equilibrium geometry 0.9 0.8 + + 0.7 ‐ ‐ 0.6 0.5 QEq 0.4 QEq, R → ∞ 0.3 + + ‐ J12 → 0 ‐ 0.2 0.1 ab initio DMA0 CASSCF(8/5)/6‐31G* 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 R/Å 8.0 DMA0 = distributed multipole analysis restricted to point charges only CASSCF = complete active space self‐consistent field method
  • 7. The QTPIE model: Motivation X 1. Introduce charge transfer variables qi = pji X 1 2 X j EQEq = qi χi + ηi qi + qi qj Jij i 2 i6=j X X1 1X = pji χi + ηi pji pki + pki plj Jij ij 2 2 ijk ijkl 2. Introduce overlap integral: explicit notion of distance X X1 1X EQTPIE = pji χi Sij + ηi pji pki + pki plj Jij ij 2 2 ijk ijkl ∂EQTPIE =0 ∂pji J. Chen, T. J. Martínez, Chem. Phys. Lett., in press.
  • 8. QTPIE: Correct NaCl asymptote 1.0 0.9 q/e equilibrium geometry 0.8 0.7 0.6 0.5 QEq 0.4 0.3 QTPIE 0.2 0.1 ab initio 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 R/Å 8.0 QTPIE prediction improved over QEq without reoptimizing parameters, but variation is still slower than ab initio
  • 9. Water fragments correctly • Asymmetric dissociation: correct asymptotics, charge  transfer on OH fragment retained 1.0 q/e equilibrium geometry ab initio R 0.5 QEq R/Å QTPIE 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ‐0.5 ‐1.0
  • 10. Water parameters transferable 1.0 • Parameters transferable across geometries q/e 1.0 q/e 0.8 O H 0.8 0.6 O H H 0.6 0.4 0.4 H DMA 0.2 0.2 DMA 0.0 QEq 0.0 QEq R/Å QTPIE R/Å QTPIE ‐0.2 0.5 1.5 2.5 3.5 4.5 QTPIE‐0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 QTPIE ‐0.4 DMA ‐0.4 DMA ‐0.6 ‐0.6 ‐0.8 QEq ‐0.8 QEq ‐1.0 ‐1.0 1.0 1.0 q/e q/e 0.8 0.8 O H O H 0.6 0.6 H 0.4 H 0.4 0.2 DMA 0.2 DMA 0.0 QEq 0.0 QEq R/Å QTPIE R/Å QTPIE ‐0.2 0.5 1.5 2.5 3.5 4.5 ‐0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 QTPIE QTPIE ‐0.4 DMA ‐0.4 DMA ‐0.6 ‐0.6 ‐0.8 QEq ‐0.8 QEq ‐1.0 ‐1.0
  • 11. Dipole polarizability of phenol • Response of dipole moment to external electric  field • QTPIE: overestimates less than QEq QEq QTPIE ab initio* x 24.6244 13.0298 13.6758 y 20.3270 10.7566 12.3621 z 0.0000 0.0000 6.9981 (ų) *ab initio method: MP2/aug‐cc‐pVDZ
  • 12. Conclusions • Fluctuating‐charge models are analogous to DC  electrical circuits • QTPIE (our new charge model) predicts correct  dissociation behavior of atomic charges • Explicit distance cutoff for electronegativities improves qualitative behavior Thank You
  • 13. QEq v. ab initio charges 1.2 q/e equilibrium geometry 1.0 0.8 QEq 0.6 Mulliken ab initio 0.4 DMA charges Ideal dipole 0.2 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 R/Å 8.0
  • 14. QEq1, a fluctuating charge model • Given geometry, find charge distribution energy to charge atom Coulomb interaction q1 q2 q3 • Minimization with fixed total charge  q4 q5 defines Lagrange multiplier μ 1. A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358‐3363.
  • 15. QTPIE: charge transfer with  polarization current equilibration • Shift focus to charge transfer variables pji: – Charge accounting: where it came from, where it’s  going p 12 p23 p34 p45 – Explicitly penalize long‐distance charge transfer