SlideShare uma empresa Scribd logo
1 de 97
Baixar para ler offline
CENG6504: Finite Element Methods
Plane Frame Member
Dr. Tesfaye Alemu
1
Learning Objectives
• To derive the two-dimensional arbitrarily oriented
beam element stiffness matrix
• To demonstrate solutions of rigid plane frames by
the direct stiffness method
• To describe how to handle inclined or skewed
supports
Plane Frame and Grid Equations
2
Plane Frame and Grid Equations
Many structures, such as buildings and bridges, are
composed of frames and/or grids.
This chapter develops the equations and methods for solution
of plane frames and grids.
First, we will develop the stiffness matrix for a beam element
arbitrarily oriented in a plane. 3
Plane Frame and Grid Equations
Many structures, such as buildings and bridges, are
composed of frames and/or grids.
We will then include the axial nodal displacement degree of
freedom in the local beam element stiffness matrix.
4
Plane Frame and Grid Equations
Many structures, such as buildings and bridges, are
composed of frames and/or grids.
Then we will combine these results to develop the stiffness
matrix, including axial deformation effects, for an arbitrarily
oriented beam element.
We will also consider frames with inclined or skewed supports.5
Plane Frame and Grid Equations
Two-Dimensional Arbitrarily Oriented Beam Element
The local degrees of freedom may be related to the global
degrees of freedom by:
where T has been expanded to include axial effects
1 1
1 1
1 1
2 2
2 2
2 2
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
u u
C S
v v
S C
u u
C S
v v
S C
 
 

   
 
   
 
 
   
 

   
 

   
 

   
 
   
  

   
 
  
   
 
d Td
6
Plane Frame and Grid Equations
Two-Dimensional Arbitrarily Oriented Beam Element
Substituting the above transformation T into the general form
of the stiffness matrix gives:
 
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2
2 2
2 2
2 2
2
12 12 6 12 12 6
12 6 12 12 6
6 6
4 2
12 12 6
12 6
4
I I I I I I
AC S A CS S AC S A CS S
L L
L L L L
I I I I I
AS C C A CS AS C C
L L
L L L
I I
E I S C I
k L L
L
I I I
AC S A CS S
L
L L
I I
symmetric AS C C
L
L
I
      
       
     

     
   
    
   
   


 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

7
Plane Frame and Grid Equations
Two-Dimensional Arbitrarily Oriented Beam Element
The analysis of a rigid plane frame can be accomplished by
applying stiffness matrix.
A rigid plane frame is: a series of beam elements rigidly
connected to each other; that is, the original angles made
between elements at their joints remain unchanged after the
deformation.
8
Plane Frame and Grid Equations
Two-Dimensional Arbitrarily Oriented Beam Element
Furthermore, moments are transmitted from one element to
another at the joints.
Hence, moment continuity exists at the rigid joints.
9
Plane Frame and Grid Equations
Two-Dimensional Arbitrarily Oriented Beam Element
In addition, the element centroids, as well as the applied
loads, lie in a common plane.
We observe that the element stiffnesses of a frame are
functions of E, A, L, I, and the angle of orientation  of the
element with respect to the global-coordinate axes.
10
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Consider the frame shown in the figure below.
The frame is fixed at nodes 1 and 4 and subjected to a
positive horizontal force of 10,000 lb applied at node 2 and to
a positive moment of 5,000 lb-in applied at node 3.
11
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Consider the frame shown in the figure below.
Let E = 30 x 106 psi and A = 10 in2 for all elements, and let I =
200 in4 for elements 1 and 3, and I = 100 in4 for element 2.
12
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 1: The angle between x and x’ is 90°
0 1
C S
 
 
2
2
2
12 12(200)
0.167
120
I
in
L
 
6
3
30 10
250,000
120
E lb
in
L

 
3
6 6(200)
10.0
120
I
in
L
 
13
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 1: The angle between x and x’ is 90°
1 1 1 2 2 2
(1)
0.167 0 10 0.167 0 10
0 10 0 0 10 0
10 0 800 10 0 400
250,000
0.167 0 10 0.167 0 10
0 10 0 0 10 0
10 0 400 10 0 800
u v u v
lb
in
 
  
 
 

 
 

  

 
 

 

 
k
14
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 2: The angle between x and x’ is 0°
1 0
C S
 
 
2
2
2
12 12(100)
0.0835
120
I
in
L
 
6
3
30 10
250,000
120
E lb
in
L

 
3
6 6(100)
5.0
120
I
in
L
 
15
2 2 2 3 3 3
(2)
10 0 0 10 0 0
0 0.0835 5 0 0.0835 5
0 5 400 0 5 200
250,000
10 0 0 10 0 0
0 0.0835 5 0 0.0835 5
0 5 200 0 5 400
u v u v
lb
in
 

 
 
 
 

  

 
 
 
 

 
k
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 2: The angle between x and x’ is 0°
16
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 3: The angle between x and x’ is 270°
0 1
C S
  
 
2
2
2
12 12(200)
0.167
120
I
in
L
 
6
3
30 10
250,000
120
E lb
in
L

 
3
6 6(200)
10.0
120
I
in
L
 
17
3 3 3 4 4 4
(3)
0.167 0 10 0.167 0 10
0 10 0 0 10 0
10 0 800 10 0 400
250,000
0.167 0 10 0.167 0 10
0 10 0 0 10 0
10 0 400 10 0 800
u v u v
lb
in
 

 
 

 
 

  
  
 
 

 

 
k
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 3: The angle between x and x’ is 270°
18
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
The boundary conditions for this problem are:
1 1 1 4 4 4 0
u v u v
 
     
After applying the boundary conditions the global beam
equations reduce to:
2
2
2
5
3
3
3
10,000 10.167 0 10 10 0 0
0 0 10.0835 5 0 0.0835 5
0 10 5 1200 0 5 200
2.5 10
0 10 0 0 10.167 0 10
0 0 0.0835 5 0 10.0835 5
5,000 0 5 200 10 5 1200
u
v
u
v


  
   
 
   
  
   
 
   

 
   
 

   
 
   
 
  
   
 

     
2 2 2 3 3 3
u v u v
 
19
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Solving the above equations gives: 2
2
2
3
3
3
0.211
0.00148
0.00153
0.209
0.00148
0.00149
u in
v in
rad
u in
v in
rad


   
   
   
   


   
   
   

   

 
 
y
20
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Solving the above equations gives:
y
21
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 1: The element force-displacement equations can
be obtained using f’ = k’Td. Therefore, Td is:
1
1
1
2
2
2
0
0 1 0 0 0 0
0
1 0 0 0 0 0
0
0 0 1 0 0 0
0.211
0 0 0 0 1 0
0.00148
0 0 0 1 0 0
0.00153
0 0 0 0 0 1
u
v
u in
v in
rad



 
 
 
  
  
 
 

 
  
  
 
 
 
  

 
 
 
   
Td
0 1
C S
 
0
0
0
0.00148
0.211
0.00153
in
in
rad
 
 
 
 
  
 
 

 

 
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
T
C S
S C
 
 

 
 
  
 
 

 
 
22
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 1: Recall the elemental stiffness matrix is:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
(1) 5
10 0 0 10 0 0 0
0 0.167 10 0 0.167 10 0
0 10 800 0 10 400 0
2.5 10
10 0 0 10 0 10 0.00148
0 0.167 10 0 0.167 10 0.211
0 10 400 0 10 800 0.00153
in
in
rad

   
   

   
   

 
    
 
  
 
 
 
   
 
 
 
   
f k Td
The local force-displacement equations are:
 
 
4 6
2 3
3
200 30 10
3,472.22
120
lb
in
in psi
EI
C
L in

  
 
2 6
6
1
10 30 10
2.5 10
120
lb
in
in psi
AE
C
L in

   
23
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 1: Simplifying the above equations gives:
1
1
1
2
2
2
3,700
4,990
376
3,700
4,990
223
x
y
x
y
f lb
f lb
m k in
f lb
f lb
m k in
 
   
   

   

   


   

   
   
 
   
 
 
 
24
2
2
2
3
3
3
0.211
1 0 0 0 0 0
0.00148
0 1 0 0 0 0
0.00153
0 0 1 0 0 0
0.209
0 0 0 1 0 0
0.00148
0 0 0 0 1 0
0.00149
0 0 0 0 0 1
u in
v in
rad
u in
v in
rad



 
 
 
  
 
 
 
 
 
  
  
 
 
 
   
 
 
 
   
Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 2: The element force-displacement equations can
be obtained using f’ = k’Td. Therefore, Td is:
1 0
C S
 
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
T
C S
S C
 
 

 
 
  
 
 

 
 
0.211
0.00148
0.00153
0.209
0.00148
0.00149
in
in
rad
in
in
rad
 
 
 
 

  
 
 

 

 
25
(2) 5
10 0 0 10 0 0 0.211
0 0.0833 5 0 0.0833 5 0.00148
0 5 400 0 5 200 0.00153
2.5 10
10 0 0 10 0 0 0.209
0 0.0833 5 0 0.0833 5 0.00148
0 5 200 0 5 400 0.00149
in
in
rad
in
in
rad

   
   

   
   
 
 
    
 
  
 
 
 
   
 
 
 
   
f k Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 2: The local force-displacement equations are:
The local force-displacement equations are:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
 
2 6
6
1
10 30 10
2.5 10
120
lb
in
in psi
AE
C
L in

   
 
 
4 6
2 3
3
100 30 10
1,736.11
120
lb
in
in psi
EI
C
L in

  
26
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 2: Simplifying the above equations gives:
2
2
2
3
3
3
5,010
3,700
223
5,010
3,700
221
x
y
x
y
f lb
f lb
m k in
f lb
f lb
m k in

   
   
 
   

   
 

   
 
   
   

   
  
 
 
27
3
3
3
4
4
4
0.209
0 1 0 0 0 0
0.00148
1 0 0 0 0 0
0.00149
0 0 1 0 0 0
0
0 0 0 0 1 0
0
0 0 0 1 0 0
0
0 0 0 0 0 1
u in
v in
rad
u
v



  
 
 
   
 
 
 
 
 
  
  
  
 
 
  
 
 

   
Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 3: The element force-displacement equations can
be obtained using f’ = k’Td. Therefore, Td is:
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
T
C S
S C
 
 

 
 
  
 
 

 
 
0 1
C S
  
0.00148
0.209
0.00149
0
0
0
in
in
rad
 
 
 
 

  
 
 
 
 
28
(3) 5
10 0 0 10 0 0 0.00148
0 0.167 10 0 0.167 10 0.209
0 10 800 0 10 400 0.00149
2.5 10
10 0 0 10 0 10 0
0 0.167 10 0 0.167 10 0
0 10 400 0 10 800 0
in
in
rad

   
   

   
   
 
 
    
 
  
 
 
 
  
 
 

   
f k Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 3: The local force-displacement equations are:
The local force-displacement equations are:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
 
2 6
6
1
10 30 10
2.5 10
120
lb
in
in psi
AE
C
L in

   
 
 
4 6
2 3
3
200 30 10
3,472.22
120
lb
in
in psi
EI
C
L in

  
29
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Element 3: Simplifying the above equations gives:
3
3
3
4
4
4
3,700
5,010
226
3,700
5,010
375
x
y
x
y
f lb
f lb
m k in
f lb
f lb
m k in

   
   

   

   


   
 
   
   
 
   
 
 
 
30
Plane Frame and Grid Equations
Rigid Plane Frame Example 1
Check the equilibrium of all the elements:
31
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Consider the frame shown in the figure below.
The frame is fixed at nodes 1 and 3 and subjected to a
positive distributed load of 1,000 lb/ft applied along element 2.
Let E = 30 x 106 psi and A = 100 in2 for all elements, and
let I = 1,000 in4 for all elements. 32
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
First we need to replace the distributed load with a set of
equivalent nodal forces and moments acting at nodes 2 and 3.
For a beam with both end fixed, subjected to a uniform
distributed load, w, the nodal forces and moments are:
2 3
(1,000 / )40
20
2 2
y y
wL lb ft ft
f f k
      
2 2
2 3
(1,000 / )(40 )
133,333
12 12
wL lb ft ft
m m lb ft
        
1,600 k in
 
33
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
If we consider only the parts of the stiffness matrix associated
with the three degrees of freedom at node 2, we get:
Element 1: The angle between x and x’ is 45º
0.707 0.707
C S
 
 
2
2
2
12 12(1,000)
0.0463
12 30 2
I
in
L
 

6
3
30 10
58.93
12 30 2
E k
in
L

 

3
6 6(1,000)
11.785
12 30 2
I
in
L
 

34
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
If we consider only the parts of the stiffness matrix associated
with the three degrees of freedom at node 2, we get:
Element 1: The angle between x and x’ is 45º
2 2 2
(1)
50.02 49.98 8.33
58.93 49.98 50.02 8.33
8.33 8.33 4000
u v
k
in

 
 
 
 
 

 
k
2 2 2
(1)
2,948 2,945 491
2,945 2,948 491
491 491 235,700
u v
k
in

 
 
 
 
 

 
k
35
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
If we consider only the parts of the stiffness matrix associated
with the three degrees of freedom at node 2, we get:
Element 2: The angle between x and x’ is 0º
1 0
C S
 
 
2
2
2
12 12(1,000)
0.0521
12 40
I
in
L
 

6
3
30 10
52.5
12 40
E k
in
L

 

3
6 6(1,000)
12.5
12 40
I
in
L
 

36
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
If we consider only the parts of the stiffness matrix associated
with the three degrees of freedom at node 2, we get:
Element 2: The angle between x and x’ is 0º
2 2 2
(2)
100 0 0
62.50 0 0.052 12.5
0 12.5 4,000
u v
k
in

 
 

 
 
 
k
2 2 2
(2)
6,250 0 0
0 3.25 781.25
0 781.25 250,000
u v
k
in

 
 

 
 
 
k
37
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
The global beam equations reduce to:
2
2
2
0 9,198 2,945 491
20 2,945 2,951 290
1,600 491 290 485,700
u
k v
k in 
     
   
 
 
   
 
   
 
 
     
Solving the above equations gives:
2
2
2
0.0033
0.0097
0.0033
u in
v in
rad

   
   
 
   
   

   
Nodal equivalent forces
38
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
2
2
2
0.0033
0.0097
0.0033
u in
v in
rad

   
   
 
   
   

   
y
39
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
y
40
0.707 0.707 0 0 0 0 0
0.707 0.707 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.707 0.707 0 0.0033
0 0 0 0.707 0.707 0 0.0097
0 0 0 0 0 1 0.0033
in
in
rad
   
   

   
   
  
 
 
 
 
 
 
 
 

   
Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Element 1: The element force-displacement equations can be
obtained using f’ = k’Td. Therefore, Td is:
0
0
0
0.00452
0.0092
0.0033
in
in
rad
 
 
 
 
  

 
 

 

 
Recall the elemental stiffness matrix is a function of
values C1, C2, and L
 
6
2 3
3
30 10 (1,000)
0.2273
12 30 2
k
in
EI
C
L

  

6
1
(100)30 10
5,893
12 30 2
k
in
AE
C
L

  

41
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Element 1: The local force-displacement equations are:
Simplifying the above equations gives:
(1)
5,893 0 10 5,893 0 0 0
0 2.730 694.8 0 2.730 694.8 0
10 694.8 117,900 0 694.8 117,000 0
5,893 0 0 5,983 0 0 0.00452
0 2.730 694.8 0 2.730 694.8 0.0092
0 694.8 117,000 0 694.8 235,800 0.0033
in
in
rad

  
  

  
  

 
  
 
 
 
 
   
 
 
 
f k Td





 
 
 
 
1
1
1
2
2
2
26.64
2.268
389.1
26.64
2.268
778.2
x
y
x
y
f k
f k
m k in
f k
f k
m k in

   
   
 
   

   
 

   
 
   
   

   
  
 
  42
1 0 0 0 0 0 0.0033
0 1 0 0 0 0 0.0097
0 0 1 0 0 0 0.0033
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
in
in
rad
   
   

   
   

  
 
 
 
 
 
 
 
   
Td
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Element 2: The element force-displacement equations can be
obtained using f’ = k’Td. Therefore, Td is:
Recall the elemental stiffness matrix is a function of
values C1, C2, and L
 
6
2 3
3
30 10 (1,000)
0.2713
12 40
k
in
EI
C
L

  

6
1
(100)30 10
6,250
12 40
k
in
AE
C
L

  

0.0033
0.0097
0.0033
0
0
0
in
in
rad
 
 

 
 

  
 
 
 
 
43
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Element 2: The local force-displacement equations are:
Simplifying the above equations gives:
20.63
2.58
832.57
20.63
2.58
412.50
k
k
k in
k
k
k in
 
 

 
 
 
    

 
 
 
 
 
k d
(2)
6,250 0 0 6,250 0 0 0.0033
0 3.25 781.1 0 3.25 781.1 0.0097
0 781.1 250,000 0 781.1 125,000 0.0033
6,250 0 0 6,250 0 0 0
0 3.25 781.1 0 3.25 781.1 0
0 781.1 125,000 0 781.1 250,00 0
in
in
rad
 
   
   
 
   
  
 
 
   
 
 
 

 
  

 

  
f k Td





44
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
Element 2: To obtain the actual element local forces, we must
subtract the equivalent nodal forces.
2
2
2
3
3
3
20.63 0
2.58 20
832.57 1600
20.63 0
2.58 20
412.50 1600
x
y
x
y
f k
f k k
m k in k in
f k
f k k
m k in k in

     
     
  
     

     
   
 
     
 
     
     
 
     
   
   
 
20.63
17.42
767.4
20.63
22.58
2,013
k
k
k in
k
k
k in
 
 
 
 

  

 
 
 
 
 
0
 
f kd f
45
Plane Frame and Grid Equations
Rigid Plane Frame Example 2
The local forces in both elements are:
Element 2
Element 1
46
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
In this example, we will illustrate the equivalent joint force
replacement method for a frame subjected to a load acting on
an element instead of at one of the joints of the structure.
Since no distributed loads are present, the point of application
of the concentrated load could be treated as an extra joint in
the analysis. 47
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
In this example, we will illustrate the equivalent joint force
replacement method for a frame subjected to a load acting on
an element instead of at one of the joints of the structure.
This approach has the disadvantage of increasing the total
number of joints, as well as the size of the total structure
stiffness matrix K. 48
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
In this example, we will illustrate the equivalent joint force
replacement method for a frame subjected to a load acting on
an element instead of at one of the joints of the structure.
For small structures solved by computer, this does not pose a
problem.
49
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
In this example, we will illustrate the equivalent joint force
replacement method for a frame subjected to a load acting on
an element instead of at one of the joints of the structure.
However, for very large structures, this might reduce the
maximum size of the structure that could be analyzed.
50
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
In this example, we will illustrate the equivalent joint force
replacement method for a frame subjected to a load acting on
an element instead of at one of the joints of the structure.
The frame is fixed at nodes 1, 2, and 3 and subjected to a
concentrated load of 15 k applied at mid-length of element 1.
Let E = 30 x 106 psi, A = 8 in2, and let I = 800 in4 for all
elements. 51
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
1. Express the applied load in the
element 1 local coordinate
system (here x’ is directed from
node 1 to node 4).
2. Next, determine the equivalent
joint forces at each end of
element 1, using the Table D-1
in Appendix D.
52
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
53
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
3. Then transform the equivalent joint forces from the local
coordinate system forces into the global coordinate system
forces, using the equation: f = TTf
These global joint forces are:
4. Then we analyze the structure, using the equivalent joint
forces (plus actual joint forces, if any) in the usual manner.
5. The final internal forces developed at the ends of each
element may be obtained by subtracting Step 2 joint forces
from Step 4 joint forces. 54
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 1: The angle between x and x’ is 63.43º (from nodes 1 to 4)
0.447 0.895
C S
 
3
6 6(800)
8.95
12 44.7
I
in
L
 

6
3
30 10
55.9
12 44.7
E k
in
L

 

4 4 4
(1)
90.0 178 448
178 359 244
448 244 179,000
u v
k
in

 
 
 
 
 

 
k
 
2
2
2
12 12(800)
0.0334
12 44.7
I
in
L
 

55
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 2: The angle between x and x’ is 116.57º (from nodes 2 to 4)
0.447 0.895
C S
  
3
6 6(800)
8.95
12 44.7
I
in
L
 

6
3
30 10
55.9
12 44.7
E k
in
L

 

4 4 4
(2)
90.0 178 448
178 359 244
448 244 179,000
u v
k
in


 
 
 
 
 
 
k
 
2
2
2
12 12(800)
0.0334
12 44.7
I
in
L
 

56
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 3: The angle between x and x’ is 0º (from nodes 4 to 3)
1 0
C S
 
3
6 6(800)
8.0
12 50
I
in
L
 

6
3
30 10
50.0
12 50
E k
in
L

 

4 4 4
(3)
400 0 0
0 1.334 400
0 400 160,000
u v
k
in

 
 

 
 
 
k
 
2
2
2
12 12(800)
0.0267
12 50
I
in
L
 

57
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
The global beam equations reduce to:
4
4
4
7.5 582 0 896
0 0 719 400
900 896 400 518,000
k u
v
k in 

     
   
 

   
 
   
 
 
     
Solving the above equations gives:
4
4
4
0.0103
0.000956
0.00172
u in
v in
rad


   
   

   
   

   
58
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 1: The element force-displacement equations can be
obtained using f’ = k’Td 0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
0.447 0.895
C S
 
1
1
1
4
4
4
0.447 0.895 0 0 0 0
0.895 0.447 0 0 0 0
0 0 1 0 0 0
0 0 0 0.447 0.895 0
0 0 0 0.895 0.447 0
0 0 0 0 0 1
u
v
u
v


 
 
 
 
  
 
 
 
  
 
 
 
 
 

 
 
   
Td
0
0
0
0.00374
0.00963
0.00172
in
in
rad
 
 
 
 
  

 
 
 

 
0
0
0
0.0103
0.000956
0.00172
in
in
rad
 
 
 
 
 

 
 
 

  59
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 1: Recall the elemental stiffness matrix is:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
6
1
(8)30 10
447.2
12 44.72
k
in
AE
C
L

  
  
6
2 3
3
30 10 (800)
0.155
12 44.72
k
in
EI
C
L

  

60
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 1: The local force-displacement equations are:
(1)
447 0 0 447 0 0 0
0 1.868 500.5 0 1.868 500.5 0
0 500.5 179,000 0 500.5 89,490 0
447 0 0 447 0 0 0.00374
0 1.868 500.5 0 1.868 500.5 0.00963
0 500.5 89,490 0 500.5 179,000 0.00172
in
in
rad

   
   

   
   

 
   
 
 
 
 

 
  

 
 
   
f k Td


(1)
1.67
0.88
158
1.67
0.88
311
k
k
k in
k
k
k in
 
 

 
 
 
  
   

 
 
 
 
 
f k d
(1)

k Td
61
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 1: To obtain the actual element local forces, we must
subtract the equivalent nodal forces.
1
1
1
4
4
4
1.67 3.36
0.88 6.71
158 900
1.67 3.36
0.88 6.71
311 900
x
y
x
y
f k k
f k k
m k in k in
f k k
f k k
m k in k in
 
     
     
 
     

     
  
 
     
  
     
     

     
    
   
 
0
 
f kd f
5.03
7.59
1,058
1.68
5.83
589
k
k
k in
k
k
k in
 
 

 
 
 
  
 
 

 

 
62
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 2: The element force-displacement equations can be
obtained using f’ = k’Td 0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
0.447 0.895
C S
  
2
2
2
4
4
4
0.447 0.895 0 0 0 0
0.895 0.447 0 0 0 0
0 0 1 0 0 0
0 0 0 0.447 0.895 0
0 0 0 0.895 0.447 0
0 0 0 0 0 1
u
v
u
v


  
 
 
 
   
 
 
 
  
 
  
 
 
 
 
 
 
   
Td
0
0
0
0.00546
0.00879
0.00172
in
in
rad
 
 
 
 
  
 
 
 

 
0
0
0
0.0103
0.000956
0.00172
in
in
rad
 
 
 
 
 

 
 
 

  63
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 2: Recall the elemental stiffness matrix is:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
6
1
(8)30 10
447.2
12 44.72
k
in
AE
C
L

  
  
6
2 3
3
30 10 (800)
0.155
12 44.72
k
in
EI
C
L

  

64
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 2: The local force-displacement equations are:
(2)
447 0 0 447 0 0 0
0 1.868 500.5 0 1.868 500.5 0
0 500.5 179,000 0 500.5 89,490 0
447 0 0 447 0 0 0.00546
0 1.868 500.5 0 1.868 500.5 0.00879
0 500.5 89,490 0 500.5 179,000 0.00172
in
in
rad

   
   

   
   

 
   
 
  
 
 
 
  

 
 
   
f k Td

(2)
2.44
0.877
158
2.44
0.877
312
k
k
k in
k
k
k in

 
 

 
 
 
  
   
 
 
 
 
 
f k d
(2)

k Td
65
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 2: Since there are no applied loads on element 2,
there are no equivalent nodal forces to account for.
Therefore, the above equations are the final local nodal forces
(2)
2.44
0.877
158
2.44
0.877
312
k
k
k in
k
k
k in

 
 

 
 
 
  
   
 
 
 
 
 
f k d
66
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 3: The element force-displacement equations can be
obtained using f’ = k’Td 0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
1 0
C S
 
4
4
4
3
3
3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
u
v
u
v


 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
   
Td
0.0103
0.000956
0.00172
0
0
0
in
in
rad

 
 
 
 

  
 
 
 
 
0.0103
0.000956
0.00172
0
0
0
in
in
rad

 
 
 
 

 
 
 
 
  67
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 3: Recall the elemental stiffness matrix is:
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
6
1
(8)30 10
400
12 50
k
in
AE
C
L

  
  
6
2 3
3
30 10 (800)
0.111
12 50
k
in
EI
C
L

  

68
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 3: The local force-displacement equations are:
(3)
400 0 0 400 0 0 0.0103
0 1.335 400 0 1.335 400 0.000956
0 400 160,000 0 400 80,000 0.00172
400 0 0 400 0 0 0
0 1.335 400 0 1.335 400 0
0 400 80,000 0 400 160,000 0
in
in
rad
 
   
   

   
   
 
 
   
 
  
 
 
 
  
 
 

   
f k Td
(3)
4.12
0.687
275
4.12
0.687
137
k
k
k in
k
k
k in

 
 

 
 
 
  
   
 
 
 
 
 
f k d
(3)

k Td
69
Plane Frame and Grid Equations
Rigid Plane Frame Example 3
Element 3: Since there are no applied loads on element 3,
there are no equivalent nodal forces to account for.
Therefore, the above equations are the final local nodal forces
70
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
The frame shown below is fixed at nodes 2 and 3 and subjected
to a concentrated load of 500 kN applied at node 1.
For the bar, A = 1 x 10-3 m2, for the beam, A = 2 x 10-3 m2,
I = 5 x 10-5 m4, and L = 3 m. Let E = 210 GPa for both
elements.
Bar
Beam
71
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Element 1: The angle between x and x’ is 0º
1 0
C S
 
5
4 3
6 6(5 10 )
10
3
I
m
L



 
6
6 3
210 10
70 10 /
3
E
kN m
L

  
(1) 3
1 1 1
2 0 0
70 10 0 0.067 0.10
0 0.10 0.20
u v
kN
m

 
 
 
 
 
 
k
5
5 2
2 2
12 12(5 10 )
6.67 10
(3)
I
m
L



  
72
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Element 2: The angle between x and x’ is 45º
0.707 0.707
C S
 
 
2
1 1
3 2 6
(2)
10 210 10 0.5 0.5
4.24 0.5 0.5
kN
m kN
m
u v
m
m

  
  
 
k
1 1
(2) 3 0.354 0.354
70 10
0.354 0.354
kN
m
u v
 
   
 
k
73
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Assembling the elemental stiffness matrices we obtain the
global stiffness matrix:
3
2.354 0.354 0
70 10 0.354 0.421 0.10
0 0.10 0.20
kN
m
 
 
 
 
 
 
K
The global equations are:
1
3
1
1
0 2.354 0.354 0
500 70 10 0.354 0.421 0.10
0 0 0.10 0.20
kN
m
u
kN v

     
   
 
  
   
 
   
 
     
74
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Solving the above equations gives:
1
1
1
0.00388
0.0225
0.0113
u m
v m
rad

   
   
 
   
   
   
75
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Bar Element: The bar element force-displacement equations
can be obtained using f’ = k’Td
0.707 0.707
C S
 
1
1 1
3 3
3
1 1 0 0
1 1 0 0
x
x
u
f v
C S
AE
f u
L C S
v
 
 
 
       

   
   
 
   
   
 
 
 
1 1 1 670
x
AE
f Cu Sv kN
L
    
 
3 1 1 670
x
AE
f Cu Sv kN
L
    
76
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
1
0
C
S


1
1
1
2
2
2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
u
v
u
v


 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
   
d Td
0.00388
0.0225
0.0113
0
0
0
m
m
rad
 
 

 
 
  
 
 
 
 
0.00388
0.0225
0.0113
0
0
0
m
m
rad
 
 

 
 
 
 
 
 
 
Beam Element: The bar element force-displacement equations
can be obtained using f’ = k’Td
77
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Beam Element: The bar element force-displacement equations
can be obtained using f’ = k’Td
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
6
3
1
(0.002)210 10
140 10
3
kN
m
AE
C
L

   
 
6 5
2 3
3
210 10 (5 10 )
388.89
3
kN
m
EI
C
L

 
  
78
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
Beam Element: The bar element force-displacement equations
can be obtained using f’ = k’Td
3
(1)
2 0 0 2 0 0 0.00388
0 0.067 0.10 0 0.067 0.10 0.0225
0 0.10 0.20 0 0.10 0.10 0.0113
70 10
2 0 0 2 0 0 0
0 0.067 0.10 0 0.067 0.10 0
0 0.10 0.10 0 0.10 0.20 0
m
m
kN m

   
   
 
   
   
 
  
    
 
  
 
 
 
  
 
 

   
f k d
1
1
1
(1)
2
2
2
473
26.5
0.0
473
26.5
78.3
x
y
x
y
f kN
f kN
m
f kN
f kN
m kN m

   
   
 
   

   
  
   
 
   
   

   
  
 
 
f
(1)

k 
d
79
Plane Frame and Grid Equations
Rigid Plane Frame Example 4
80
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
The frame is fixed at nodes 1 and 3 and subjected to a moment
of 20 kN-m applied at node 2
Assume A = 2 x 10-2 m2, I = 2 x 10-4 m4, and E = 210 GPa for all
elements.
81
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
Element 1: The angle between x and x’ is 90º
0 1
C S
 
4
4 3
6 6(2 10 )
3 10
4
I
m
L



  
3
6
7
210 10
5.25 10
4
kN
m
E
L

  
2 2 2
(1) 5
0.015 0 0.03
5.25 10 0 2 0
0.03 0 0.08
u v
kN
m

 
 
 
 
 
 
k
4
4 2
2 2
12 12(2 10 )
1.5 10
(4)
I
m
L



  
The parts of k associated
with node 2 are:
82
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
Element 2: The angle between x and x’ is 0º
1 0
C S
 
4
4 3
6 6(2 10 )
2.4 10
5
I
m
L



  
3
6
7
210 10
4.2 10
5
kN
m
E
L

  
2 2 2
(2) 5
2 0 0
4.2 10 0 0.0096 0.024
0 0.024 0.08
u v
kN
m

 
 
 
 
 
 
k
4
4 2
2 2
12 12(2 10 )
9.6 10
(5)
I
m
L



  
The parts of k associated
with node 2 are:
83
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
Assembling the elemental stiffness matrices we obtain the
global stiffness matrix:
6
0.8480 0 0.0158
10 0 1.0500 0.0101
0.0158 0.0101 0.0756
kN
m
 
 

 
 
 
K
The global equations are:
2
6
2
2
0 0.8480 0 0.0158
0 10 0 1.0500 0.0101
20 0.0158 0.0101 0.0756
u
v
kN m 
     
   
 

   
 
   
 

     
84
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
Solving the above equations gives:
6
2
6
2
4
2
4.95 10
2.56 10
2.66 10
u m
v m
rad




 
 
 
 
 
  
   
   

   
85
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
0
1
C
S


1
1
1
2
2
2
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
u
v
u
v


 
 
 
 
  
 
 
 
    
 
 
 
 
 

 
 
   
d Td 6
6
4
0
0
0
2.56 10
4.95 10
2.66 10
m
m
rad



 
 
 
 
  
 
 
 

 

 
6
6
4
0
0
0
4.95 10
2.56 10
2.66 10
m
m
rad



 
 
 
 
 
 
 
 
 
 

 
Element 1: The element force-displacement equations can be
obtained using f’ = k’Td
86
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
2 6
6
1
(2 10 )210 10
1.05 10
4
kN
m
AE
C
L

 
   
 
6 5
2 3
3
210 10 (5 10 )
388.89
3
kN
m
EI
C
L

 
  
Element 1: The element force-displacement equations can be
obtained using f’ = k’Td
87
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
3
(1) 6
6
4
200 0 0 200 0 0 0
0 1.5 3 0 1.5 3 0
0 3 8 0 3 4 0
5.25 10
200 0 0 200 0 0 2.56 10
0 1.5 3 0 1.5 3 4.95 10
0 3 4 0 3 8 2.66 10
m
m
rad




   
   

   
   

  
    
 
  
 
 
 
 
   
 
 
 
   
f k d
1
1
1
(1)
2
2
2
2.69
4.2
5.59
2.69
4.2
11.17
x
y
x
y
f kN
f kN
m kN m
f kN
f kN
m kN m

   
   

   

   

  
   
 
   
   
 
   
 
 
 
f
Element 1: The element force-displacement equations can be
obtained using f’ = k’Td
(1
)

k 
d
88
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
C S
S C
C S
S C
 
 

 
 
  
 
 

 
 
T
1
0
C
S


2
2
2
3
3
3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
u
v
u
v


 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
   
d Td
6
6
4
4.95 10
2.56 10
2.66 10
0
0
0
m
m
rad



 
 
 
 
 
 

  
 
 
 
 
6
6
4
4.95 10
2.56 10
2.66 10
0
0
0
m
m
rad



 
 
 
 
 
 

 
 
 
 
 
Element 2: The element force-displacement equations can be
obtained using f’ = k’Td
89
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
1 1
2 2 2 2
2 2
2 2 2 2
1 1
2 2 2 2
2 2
2 2 2 2
0 0 0 0
0 12 6 0 12 6
0 6 4 0 6 2
0 0 0 0
0 12 6 0 12 6
0 6 2 0 6 4
C C
C LC C LC
LC C L LC C L
C C
C LC C LC
LC C L LC C L

 
 

 
 

   

 
 
  
 

 
k
2 6
6
1
(2 10 )210 10
0.84 10
5
kN
m
AE
C
L

 
   
 
6 4
2 3
3
210 10 (2 10 )
336
5
kN
m
EI
C
L

 
  
Element 2: The element force-displacement equations can be
obtained using f’ = k’Td
90
Plane Frame and Grid Equations
Rigid Plane Frame Example 5
6
6
4
3
(2)
200 0 0 200 0 0 4.95 10
0 0.96 2.40 0 0.96 2.40 2.56 10
0 2.40 8 0 2.40 4 2.66 10
4.2 10
200 0 0 200 0 0 0
0 0.96 2.40 0 0.96 2.40 0
0 2.40 4 0 2.40 8 0
m
m
rad



  
 
 
 
 
  
 
 
 
 
 
  
    
 
  
 
 
 
  
 
 

   
f k d
2
2
2
(2)
3
3
3
4.16
2.69
8.92
4.16
2.69
4.47
x
y
x
y
f kN
f kN
m kN m
f kN
f kN
m kN m

   
   
 
   

   

  
   
 
   
   

   
 
 
 
f
Element 2: The element force-displacement equations can be
obtained using f’ = k’Td
(2)

k 
d
91
Plane Frame and Grid Equations
Inclined or Skewed Supports
If a support is inclined, or skewed, at some angle  for the
global x axis, as shown below.
The boundary conditions on the displacements are not in the
global x-y directions but in the x’-y’ directions.
92
Plane Frame and Grid Equations
Inclined or Skewed Supports
Therefore, the relationship between of the components of the
displacement in the local and the global coordinate systems at
node 3 is:
3 3
3 3
3 3
' cos sin 0
' sin cos 0
' 0 0 1
u u
v v
 
 
 
     
   
 
 
   
 
   
 
     
We can rewrite the above expression as:
 
3
cos sin 0
sin cos 0
0 0 1
t
 
 
 
 
 
 
 
 
   
3 3 3
' [ ]
d t d

93
Plane Frame and Grid Equations
Inclined or Skewed Supports
We must transform the local boundary condition of v’3 = 0 (in
local coordinates) into the global x-y system.
94
Plane Frame and Grid Equations
Inclined or Skewed Supports
We can apply this sort of transformation to the entire
displacement vector as:
where the matrix [Ti] is:
       
' [ ] or [ ] '
T
i i
d T d d T d
 
3
[ ] [0] [0]
[ ] [0] [ ] [0]
[0] [0] [ ]
i
I
T I
t
 
 

 
 
 
Both the identity matrix [I] and the matrix [t3] are 3 x 3 matrices.
95
Plane Frame and Grid Equations
Inclined or Skewed Supports
The force vector can be transformed by using the same
transformation.
In global coordinates, the force-displacement equations are:
   
' [ ]
i
f T f

By using the relationship between the local and the global
displacements, the force-displacement equations become:
   
[ ]
f K d

   
[ ] [ ][ ]
i i
T f T K d

Applying the skewed support transformation to both sides of the
force-displacement equation gives:
   
[ ] [ ][ ][ ] '
T
i i i
T f T K T d
    
' [ ][ ][ ] '
T
i i
f T K T d
 
96
Plane Frame and Grid Equations
Inclined or Skewed Supports
Therefore the global equations become:
1 1
1 1
1 1
2 2
2 2
2 2
3 3
3 3
3 3
[ ][ ][ ]
' '
' '
x
y
x
T
i i
y
x
y
F u
F v
M
F u
T K T
F v
M
F u
F v
M



   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
Elemental
coordinates
97

Mais conteúdo relacionado

Semelhante a Lecture 5.pdf

StructuralTheoryClass2.ppt
StructuralTheoryClass2.pptStructuralTheoryClass2.ppt
StructuralTheoryClass2.pptChristopherArce4
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorberEcway Technologies
 
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfvijayvijay327286
 
ResearchPoster_Davis_2013
ResearchPoster_Davis_2013ResearchPoster_Davis_2013
ResearchPoster_Davis_2013Emmanuel Flores
 
FEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.pptFEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.pptPraveen Kumar
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Mustefa Jibril
 
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...IJMER
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationmayur1347
 
Asymptotic analysis
Asymptotic analysisAsymptotic analysis
Asymptotic analysisshankar g
 
Serr calculation
Serr calculationSerr calculation
Serr calculationvlpham
 
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesCs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesGirish Zope
 
Direct integration method
Direct integration methodDirect integration method
Direct integration methodMahdi Damghani
 

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure


Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure


Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure
AsuSSEBENA
 
Beam and Grid Sabin Presentation.pptx
Beam and Grid Sabin Presentation.pptxBeam and Grid Sabin Presentation.pptx
Beam and Grid Sabin Presentation.pptxSabin Acharya
 
Chapter 5-cables and arches
Chapter 5-cables and archesChapter 5-cables and arches
Chapter 5-cables and archesISET NABEUL
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 

Semelhante a Lecture 5.pdf (20)

StructuralTheoryClass2.ppt
StructuralTheoryClass2.pptStructuralTheoryClass2.ppt
StructuralTheoryClass2.ppt
 
Buckling and tension.pptx
Buckling and tension.pptxBuckling and tension.pptx
Buckling and tension.pptx
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorber
 
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
 
ResearchPoster_Davis_2013
ResearchPoster_Davis_2013ResearchPoster_Davis_2013
ResearchPoster_Davis_2013
 
FEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.pptFEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.ppt
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...
 
solution for 2D truss1
solution for 2D truss1solution for 2D truss1
solution for 2D truss1
 
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...
Deformation Analysis of a Triangular Mild Steel Plate Using CST as Finite Ele...
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Asymptotic analysis
Asymptotic analysisAsymptotic analysis
Asymptotic analysis
 
Serr calculation
Serr calculationSerr calculation
Serr calculation
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
 
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesCs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
 
Direct integration method
Direct integration methodDirect integration method
Direct integration method
 

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure


Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure


Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure

 
Beam and Grid Sabin Presentation.pptx
Beam and Grid Sabin Presentation.pptxBeam and Grid Sabin Presentation.pptx
Beam and Grid Sabin Presentation.pptx
 
Chapter 5-cables and arches
Chapter 5-cables and archesChapter 5-cables and arches
Chapter 5-cables and arches
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 

Último

Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 

Último (20)

Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 

Lecture 5.pdf

  • 1. CENG6504: Finite Element Methods Plane Frame Member Dr. Tesfaye Alemu 1
  • 2. Learning Objectives • To derive the two-dimensional arbitrarily oriented beam element stiffness matrix • To demonstrate solutions of rigid plane frames by the direct stiffness method • To describe how to handle inclined or skewed supports Plane Frame and Grid Equations 2
  • 3. Plane Frame and Grid Equations Many structures, such as buildings and bridges, are composed of frames and/or grids. This chapter develops the equations and methods for solution of plane frames and grids. First, we will develop the stiffness matrix for a beam element arbitrarily oriented in a plane. 3
  • 4. Plane Frame and Grid Equations Many structures, such as buildings and bridges, are composed of frames and/or grids. We will then include the axial nodal displacement degree of freedom in the local beam element stiffness matrix. 4
  • 5. Plane Frame and Grid Equations Many structures, such as buildings and bridges, are composed of frames and/or grids. Then we will combine these results to develop the stiffness matrix, including axial deformation effects, for an arbitrarily oriented beam element. We will also consider frames with inclined or skewed supports.5
  • 6. Plane Frame and Grid Equations Two-Dimensional Arbitrarily Oriented Beam Element The local degrees of freedom may be related to the global degrees of freedom by: where T has been expanded to include axial effects 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 u u C S v v S C u u C S v v S C                                                                      d Td 6
  • 7. Plane Frame and Grid Equations Two-Dimensional Arbitrarily Oriented Beam Element Substituting the above transformation T into the general form of the stiffness matrix gives:   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 12 12 6 12 12 6 12 6 12 12 6 6 6 4 2 12 12 6 12 6 4 I I I I I I AC S A CS S AC S A CS S L L L L L L I I I I I AS C C A CS AS C C L L L L L I I E I S C I k L L L I I I AC S A CS S L L L I I symmetric AS C C L L I                                                                                          7
  • 8. Plane Frame and Grid Equations Two-Dimensional Arbitrarily Oriented Beam Element The analysis of a rigid plane frame can be accomplished by applying stiffness matrix. A rigid plane frame is: a series of beam elements rigidly connected to each other; that is, the original angles made between elements at their joints remain unchanged after the deformation. 8
  • 9. Plane Frame and Grid Equations Two-Dimensional Arbitrarily Oriented Beam Element Furthermore, moments are transmitted from one element to another at the joints. Hence, moment continuity exists at the rigid joints. 9
  • 10. Plane Frame and Grid Equations Two-Dimensional Arbitrarily Oriented Beam Element In addition, the element centroids, as well as the applied loads, lie in a common plane. We observe that the element stiffnesses of a frame are functions of E, A, L, I, and the angle of orientation  of the element with respect to the global-coordinate axes. 10
  • 11. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Consider the frame shown in the figure below. The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force of 10,000 lb applied at node 2 and to a positive moment of 5,000 lb-in applied at node 3. 11
  • 12. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Consider the frame shown in the figure below. Let E = 30 x 106 psi and A = 10 in2 for all elements, and let I = 200 in4 for elements 1 and 3, and I = 100 in4 for element 2. 12
  • 13. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 1: The angle between x and x’ is 90° 0 1 C S     2 2 2 12 12(200) 0.167 120 I in L   6 3 30 10 250,000 120 E lb in L    3 6 6(200) 10.0 120 I in L   13
  • 14. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 1: The angle between x and x’ is 90° 1 1 1 2 2 2 (1) 0.167 0 10 0.167 0 10 0 10 0 0 10 0 10 0 800 10 0 400 250,000 0.167 0 10 0.167 0 10 0 10 0 0 10 0 10 0 400 10 0 800 u v u v lb in                              k 14
  • 15. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 2: The angle between x and x’ is 0° 1 0 C S     2 2 2 12 12(100) 0.0835 120 I in L   6 3 30 10 250,000 120 E lb in L    3 6 6(100) 5.0 120 I in L   15
  • 16. 2 2 2 3 3 3 (2) 10 0 0 10 0 0 0 0.0835 5 0 0.0835 5 0 5 400 0 5 200 250,000 10 0 0 10 0 0 0 0.0835 5 0 0.0835 5 0 5 200 0 5 400 u v u v lb in                            k Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 2: The angle between x and x’ is 0° 16
  • 17. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 3: The angle between x and x’ is 270° 0 1 C S      2 2 2 12 12(200) 0.167 120 I in L   6 3 30 10 250,000 120 E lb in L    3 6 6(200) 10.0 120 I in L   17
  • 18. 3 3 3 4 4 4 (3) 0.167 0 10 0.167 0 10 0 10 0 0 10 0 10 0 800 10 0 400 250,000 0.167 0 10 0.167 0 10 0 10 0 0 10 0 10 0 400 10 0 800 u v u v lb in                              k Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 3: The angle between x and x’ is 270° 18
  • 19. Plane Frame and Grid Equations Rigid Plane Frame Example 1 The boundary conditions for this problem are: 1 1 1 4 4 4 0 u v u v         After applying the boundary conditions the global beam equations reduce to: 2 2 2 5 3 3 3 10,000 10.167 0 10 10 0 0 0 0 10.0835 5 0 0.0835 5 0 10 5 1200 0 5 200 2.5 10 0 10 0 0 10.167 0 10 0 0 0.0835 5 0 10.0835 5 5,000 0 5 200 10 5 1200 u v u v                                                                   2 2 2 3 3 3 u v u v   19
  • 20. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Solving the above equations gives: 2 2 2 3 3 3 0.211 0.00148 0.00153 0.209 0.00148 0.00149 u in v in rad u in v in rad                                           y 20
  • 21. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Solving the above equations gives: y 21
  • 22. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 1: The element force-displacement equations can be obtained using f’ = k’Td. Therefore, Td is: 1 1 1 2 2 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0.211 0 0 0 0 1 0 0.00148 0 0 0 1 0 0 0.00153 0 0 0 0 0 1 u v u in v in rad                                                 Td 0 1 C S   0 0 0 0.00148 0.211 0.00153 in in rad                      0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C T C S S C                      22
  • 23. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 1: Recall the elemental stiffness matrix is: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k (1) 5 10 0 0 10 0 0 0 0 0.167 10 0 0.167 10 0 0 10 800 0 10 400 0 2.5 10 10 0 0 10 0 10 0.00148 0 0.167 10 0 0.167 10 0.211 0 10 400 0 10 800 0.00153 in in rad                                                    f k Td The local force-displacement equations are:     4 6 2 3 3 200 30 10 3,472.22 120 lb in in psi EI C L in       2 6 6 1 10 30 10 2.5 10 120 lb in in psi AE C L in      23
  • 24. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 1: Simplifying the above equations gives: 1 1 1 2 2 2 3,700 4,990 376 3,700 4,990 223 x y x y f lb f lb m k in f lb f lb m k in                                                24
  • 25. 2 2 2 3 3 3 0.211 1 0 0 0 0 0 0.00148 0 1 0 0 0 0 0.00153 0 0 1 0 0 0 0.209 0 0 0 1 0 0 0.00148 0 0 0 0 1 0 0.00149 0 0 0 0 0 1 u in v in rad u in v in rad                                                 Td Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 2: The element force-displacement equations can be obtained using f’ = k’Td. Therefore, Td is: 1 0 C S   0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C T C S S C                      0.211 0.00148 0.00153 0.209 0.00148 0.00149 in in rad in in rad                       25
  • 26. (2) 5 10 0 0 10 0 0 0.211 0 0.0833 5 0 0.0833 5 0.00148 0 5 400 0 5 200 0.00153 2.5 10 10 0 0 10 0 0 0.209 0 0.0833 5 0 0.0833 5 0.00148 0 5 200 0 5 400 0.00149 in in rad in in rad                                                     f k Td Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 2: The local force-displacement equations are: The local force-displacement equations are: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k   2 6 6 1 10 30 10 2.5 10 120 lb in in psi AE C L in          4 6 2 3 3 100 30 10 1,736.11 120 lb in in psi EI C L in     26
  • 27. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 2: Simplifying the above equations gives: 2 2 2 3 3 3 5,010 3,700 223 5,010 3,700 221 x y x y f lb f lb m k in f lb f lb m k in                                                  27
  • 28. 3 3 3 4 4 4 0.209 0 1 0 0 0 0 0.00148 1 0 0 0 0 0 0.00149 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 u in v in rad u v                                                  Td Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 3: The element force-displacement equations can be obtained using f’ = k’Td. Therefore, Td is: 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C T C S S C                      0 1 C S    0.00148 0.209 0.00149 0 0 0 in in rad                     28
  • 29. (3) 5 10 0 0 10 0 0 0.00148 0 0.167 10 0 0.167 10 0.209 0 10 800 0 10 400 0.00149 2.5 10 10 0 0 10 0 10 0 0 0.167 10 0 0.167 10 0 0 10 400 0 10 800 0 in in rad                                                   f k Td Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 3: The local force-displacement equations are: The local force-displacement equations are: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k   2 6 6 1 10 30 10 2.5 10 120 lb in in psi AE C L in          4 6 2 3 3 200 30 10 3,472.22 120 lb in in psi EI C L in     29
  • 30. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Element 3: Simplifying the above equations gives: 3 3 3 4 4 4 3,700 5,010 226 3,700 5,010 375 x y x y f lb f lb m k in f lb f lb m k in                                                30
  • 31. Plane Frame and Grid Equations Rigid Plane Frame Example 1 Check the equilibrium of all the elements: 31
  • 32. Plane Frame and Grid Equations Rigid Plane Frame Example 2 Consider the frame shown in the figure below. The frame is fixed at nodes 1 and 3 and subjected to a positive distributed load of 1,000 lb/ft applied along element 2. Let E = 30 x 106 psi and A = 100 in2 for all elements, and let I = 1,000 in4 for all elements. 32
  • 33. Plane Frame and Grid Equations Rigid Plane Frame Example 2 First we need to replace the distributed load with a set of equivalent nodal forces and moments acting at nodes 2 and 3. For a beam with both end fixed, subjected to a uniform distributed load, w, the nodal forces and moments are: 2 3 (1,000 / )40 20 2 2 y y wL lb ft ft f f k        2 2 2 3 (1,000 / )(40 ) 133,333 12 12 wL lb ft ft m m lb ft          1,600 k in   33
  • 34. Plane Frame and Grid Equations Rigid Plane Frame Example 2 If we consider only the parts of the stiffness matrix associated with the three degrees of freedom at node 2, we get: Element 1: The angle between x and x’ is 45º 0.707 0.707 C S     2 2 2 12 12(1,000) 0.0463 12 30 2 I in L    6 3 30 10 58.93 12 30 2 E k in L     3 6 6(1,000) 11.785 12 30 2 I in L    34
  • 35. Plane Frame and Grid Equations Rigid Plane Frame Example 2 If we consider only the parts of the stiffness matrix associated with the three degrees of freedom at node 2, we get: Element 1: The angle between x and x’ is 45º 2 2 2 (1) 50.02 49.98 8.33 58.93 49.98 50.02 8.33 8.33 8.33 4000 u v k in               k 2 2 2 (1) 2,948 2,945 491 2,945 2,948 491 491 491 235,700 u v k in               k 35
  • 36. Plane Frame and Grid Equations Rigid Plane Frame Example 2 If we consider only the parts of the stiffness matrix associated with the three degrees of freedom at node 2, we get: Element 2: The angle between x and x’ is 0º 1 0 C S     2 2 2 12 12(1,000) 0.0521 12 40 I in L    6 3 30 10 52.5 12 40 E k in L     3 6 6(1,000) 12.5 12 40 I in L    36
  • 37. Plane Frame and Grid Equations Rigid Plane Frame Example 2 If we consider only the parts of the stiffness matrix associated with the three degrees of freedom at node 2, we get: Element 2: The angle between x and x’ is 0º 2 2 2 (2) 100 0 0 62.50 0 0.052 12.5 0 12.5 4,000 u v k in             k 2 2 2 (2) 6,250 0 0 0 3.25 781.25 0 781.25 250,000 u v k in             k 37
  • 38. Plane Frame and Grid Equations Rigid Plane Frame Example 2 The global beam equations reduce to: 2 2 2 0 9,198 2,945 491 20 2,945 2,951 290 1,600 491 290 485,700 u k v k in                                    Solving the above equations gives: 2 2 2 0.0033 0.0097 0.0033 u in v in rad                         Nodal equivalent forces 38
  • 39. Plane Frame and Grid Equations Rigid Plane Frame Example 2 2 2 2 0.0033 0.0097 0.0033 u in v in rad                         y 39
  • 40. Plane Frame and Grid Equations Rigid Plane Frame Example 2 y 40
  • 41. 0.707 0.707 0 0 0 0 0 0.707 0.707 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.707 0.707 0 0.0033 0 0 0 0.707 0.707 0 0.0097 0 0 0 0 0 1 0.0033 in in rad                                          Td Plane Frame and Grid Equations Rigid Plane Frame Example 2 Element 1: The element force-displacement equations can be obtained using f’ = k’Td. Therefore, Td is: 0 0 0 0.00452 0.0092 0.0033 in in rad                       Recall the elemental stiffness matrix is a function of values C1, C2, and L   6 2 3 3 30 10 (1,000) 0.2273 12 30 2 k in EI C L      6 1 (100)30 10 5,893 12 30 2 k in AE C L      41
  • 42. Plane Frame and Grid Equations Rigid Plane Frame Example 2 Element 1: The local force-displacement equations are: Simplifying the above equations gives: (1) 5,893 0 10 5,893 0 0 0 0 2.730 694.8 0 2.730 694.8 0 10 694.8 117,900 0 694.8 117,000 0 5,893 0 0 5,983 0 0 0.00452 0 2.730 694.8 0 2.730 694.8 0.0092 0 694.8 117,000 0 694.8 235,800 0.0033 in in rad                                       f k Td              1 1 1 2 2 2 26.64 2.268 389.1 26.64 2.268 778.2 x y x y f k f k m k in f k f k m k in                                                  42
  • 43. 1 0 0 0 0 0 0.0033 0 1 0 0 0 0 0.0097 0 0 1 0 0 0 0.0033 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 in in rad                                        Td Plane Frame and Grid Equations Rigid Plane Frame Example 2 Element 2: The element force-displacement equations can be obtained using f’ = k’Td. Therefore, Td is: Recall the elemental stiffness matrix is a function of values C1, C2, and L   6 2 3 3 30 10 (1,000) 0.2713 12 40 k in EI C L      6 1 (100)30 10 6,250 12 40 k in AE C L      0.0033 0.0097 0.0033 0 0 0 in in rad                      43
  • 44. Plane Frame and Grid Equations Rigid Plane Frame Example 2 Element 2: The local force-displacement equations are: Simplifying the above equations gives: 20.63 2.58 832.57 20.63 2.58 412.50 k k k in k k k in                            k d (2) 6,250 0 0 6,250 0 0 0.0033 0 3.25 781.1 0 3.25 781.1 0.0097 0 781.1 250,000 0 781.1 125,000 0.0033 6,250 0 0 6,250 0 0 0 0 3.25 781.1 0 3.25 781.1 0 0 781.1 125,000 0 781.1 250,00 0 in in rad                                               f k Td      44
  • 45. Plane Frame and Grid Equations Rigid Plane Frame Example 2 Element 2: To obtain the actual element local forces, we must subtract the equivalent nodal forces. 2 2 2 3 3 3 20.63 0 2.58 20 832.57 1600 20.63 0 2.58 20 412.50 1600 x y x y f k f k k m k in k in f k f k k m k in k in                                                                          20.63 17.42 767.4 20.63 22.58 2,013 k k k in k k k in                        0   f kd f 45
  • 46. Plane Frame and Grid Equations Rigid Plane Frame Example 2 The local forces in both elements are: Element 2 Element 1 46
  • 47. Plane Frame and Grid Equations Rigid Plane Frame Example 3 In this example, we will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. Since no distributed loads are present, the point of application of the concentrated load could be treated as an extra joint in the analysis. 47
  • 48. Plane Frame and Grid Equations Rigid Plane Frame Example 3 In this example, we will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. This approach has the disadvantage of increasing the total number of joints, as well as the size of the total structure stiffness matrix K. 48
  • 49. Plane Frame and Grid Equations Rigid Plane Frame Example 3 In this example, we will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. For small structures solved by computer, this does not pose a problem. 49
  • 50. Plane Frame and Grid Equations Rigid Plane Frame Example 3 In this example, we will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. However, for very large structures, this might reduce the maximum size of the structure that could be analyzed. 50
  • 51. Plane Frame and Grid Equations Rigid Plane Frame Example 3 In this example, we will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. The frame is fixed at nodes 1, 2, and 3 and subjected to a concentrated load of 15 k applied at mid-length of element 1. Let E = 30 x 106 psi, A = 8 in2, and let I = 800 in4 for all elements. 51
  • 52. Plane Frame and Grid Equations Rigid Plane Frame Example 3 1. Express the applied load in the element 1 local coordinate system (here x’ is directed from node 1 to node 4). 2. Next, determine the equivalent joint forces at each end of element 1, using the Table D-1 in Appendix D. 52
  • 53. Plane Frame and Grid Equations Rigid Plane Frame Example 3 53
  • 54. Plane Frame and Grid Equations Rigid Plane Frame Example 3 3. Then transform the equivalent joint forces from the local coordinate system forces into the global coordinate system forces, using the equation: f = TTf These global joint forces are: 4. Then we analyze the structure, using the equivalent joint forces (plus actual joint forces, if any) in the usual manner. 5. The final internal forces developed at the ends of each element may be obtained by subtracting Step 2 joint forces from Step 4 joint forces. 54
  • 55. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 1: The angle between x and x’ is 63.43º (from nodes 1 to 4) 0.447 0.895 C S   3 6 6(800) 8.95 12 44.7 I in L    6 3 30 10 55.9 12 44.7 E k in L     4 4 4 (1) 90.0 178 448 178 359 244 448 244 179,000 u v k in               k   2 2 2 12 12(800) 0.0334 12 44.7 I in L    55
  • 56. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 2: The angle between x and x’ is 116.57º (from nodes 2 to 4) 0.447 0.895 C S    3 6 6(800) 8.95 12 44.7 I in L    6 3 30 10 55.9 12 44.7 E k in L     4 4 4 (2) 90.0 178 448 178 359 244 448 244 179,000 u v k in               k   2 2 2 12 12(800) 0.0334 12 44.7 I in L    56
  • 57. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 3: The angle between x and x’ is 0º (from nodes 4 to 3) 1 0 C S   3 6 6(800) 8.0 12 50 I in L    6 3 30 10 50.0 12 50 E k in L     4 4 4 (3) 400 0 0 0 1.334 400 0 400 160,000 u v k in             k   2 2 2 12 12(800) 0.0267 12 50 I in L    57
  • 58. Plane Frame and Grid Equations Rigid Plane Frame Example 3 The global beam equations reduce to: 4 4 4 7.5 582 0 896 0 0 719 400 900 896 400 518,000 k u v k in                                    Solving the above equations gives: 4 4 4 0.0103 0.000956 0.00172 u in v in rad                         58
  • 59. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 1: The element force-displacement equations can be obtained using f’ = k’Td 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 0.447 0.895 C S   1 1 1 4 4 4 0.447 0.895 0 0 0 0 0.895 0.447 0 0 0 0 0 0 1 0 0 0 0 0 0 0.447 0.895 0 0 0 0 0.895 0.447 0 0 0 0 0 0 1 u v u v                                          Td 0 0 0 0.00374 0.00963 0.00172 in in rad                      0 0 0 0.0103 0.000956 0.00172 in in rad                     59
  • 60. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 1: Recall the elemental stiffness matrix is: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 6 1 (8)30 10 447.2 12 44.72 k in AE C L        6 2 3 3 30 10 (800) 0.155 12 44.72 k in EI C L      60
  • 61. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 1: The local force-displacement equations are: (1) 447 0 0 447 0 0 0 0 1.868 500.5 0 1.868 500.5 0 0 500.5 179,000 0 500.5 89,490 0 447 0 0 447 0 0 0.00374 0 1.868 500.5 0 1.868 500.5 0.00963 0 500.5 89,490 0 500.5 179,000 0.00172 in in rad                                                 f k Td   (1) 1.67 0.88 158 1.67 0.88 311 k k k in k k k in                              f k d (1)  k Td 61
  • 62. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 1: To obtain the actual element local forces, we must subtract the equivalent nodal forces. 1 1 1 4 4 4 1.67 3.36 0.88 6.71 158 900 1.67 3.36 0.88 6.71 311 900 x y x y f k k f k k m k in k in f k k f k k m k in k in                                                                          0   f kd f 5.03 7.59 1,058 1.68 5.83 589 k k k in k k k in                         62
  • 63. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 2: The element force-displacement equations can be obtained using f’ = k’Td 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 0.447 0.895 C S    2 2 2 4 4 4 0.447 0.895 0 0 0 0 0.895 0.447 0 0 0 0 0 0 1 0 0 0 0 0 0 0.447 0.895 0 0 0 0 0.895 0.447 0 0 0 0 0 0 1 u v u v                                              Td 0 0 0 0.00546 0.00879 0.00172 in in rad                     0 0 0 0.0103 0.000956 0.00172 in in rad                     63
  • 64. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 2: Recall the elemental stiffness matrix is: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 6 1 (8)30 10 447.2 12 44.72 k in AE C L        6 2 3 3 30 10 (800) 0.155 12 44.72 k in EI C L      64
  • 65. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 2: The local force-displacement equations are: (2) 447 0 0 447 0 0 0 0 1.868 500.5 0 1.868 500.5 0 0 500.5 179,000 0 500.5 89,490 0 447 0 0 447 0 0 0.00546 0 1.868 500.5 0 1.868 500.5 0.00879 0 500.5 89,490 0 500.5 179,000 0.00172 in in rad                                                 f k Td  (2) 2.44 0.877 158 2.44 0.877 312 k k k in k k k in                              f k d (2)  k Td 65
  • 66. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 2: Since there are no applied loads on element 2, there are no equivalent nodal forces to account for. Therefore, the above equations are the final local nodal forces (2) 2.44 0.877 158 2.44 0.877 312 k k k in k k k in                              f k d 66
  • 67. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 3: The element force-displacement equations can be obtained using f’ = k’Td 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 1 0 C S   4 4 4 3 3 3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 u v u v                                        Td 0.0103 0.000956 0.00172 0 0 0 in in rad                      0.0103 0.000956 0.00172 0 0 0 in in rad                     67
  • 68. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 3: Recall the elemental stiffness matrix is: 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 6 1 (8)30 10 400 12 50 k in AE C L        6 2 3 3 30 10 (800) 0.111 12 50 k in EI C L      68
  • 69. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 3: The local force-displacement equations are: (3) 400 0 0 400 0 0 0.0103 0 1.335 400 0 1.335 400 0.000956 0 400 160,000 0 400 80,000 0.00172 400 0 0 400 0 0 0 0 1.335 400 0 1.335 400 0 0 400 80,000 0 400 160,000 0 in in rad                                                   f k Td (3) 4.12 0.687 275 4.12 0.687 137 k k k in k k k in                              f k d (3)  k Td 69
  • 70. Plane Frame and Grid Equations Rigid Plane Frame Example 3 Element 3: Since there are no applied loads on element 3, there are no equivalent nodal forces to account for. Therefore, the above equations are the final local nodal forces 70
  • 71. Plane Frame and Grid Equations Rigid Plane Frame Example 4 The frame shown below is fixed at nodes 2 and 3 and subjected to a concentrated load of 500 kN applied at node 1. For the bar, A = 1 x 10-3 m2, for the beam, A = 2 x 10-3 m2, I = 5 x 10-5 m4, and L = 3 m. Let E = 210 GPa for both elements. Bar Beam 71
  • 72. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Element 1: The angle between x and x’ is 0º 1 0 C S   5 4 3 6 6(5 10 ) 10 3 I m L      6 6 3 210 10 70 10 / 3 E kN m L     (1) 3 1 1 1 2 0 0 70 10 0 0.067 0.10 0 0.10 0.20 u v kN m              k 5 5 2 2 2 12 12(5 10 ) 6.67 10 (3) I m L       72
  • 73. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Element 2: The angle between x and x’ is 45º 0.707 0.707 C S     2 1 1 3 2 6 (2) 10 210 10 0.5 0.5 4.24 0.5 0.5 kN m kN m u v m m          k 1 1 (2) 3 0.354 0.354 70 10 0.354 0.354 kN m u v         k 73
  • 74. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Assembling the elemental stiffness matrices we obtain the global stiffness matrix: 3 2.354 0.354 0 70 10 0.354 0.421 0.10 0 0.10 0.20 kN m             K The global equations are: 1 3 1 1 0 2.354 0.354 0 500 70 10 0.354 0.421 0.10 0 0 0.10 0.20 kN m u kN v                                   74
  • 75. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Solving the above equations gives: 1 1 1 0.00388 0.0225 0.0113 u m v m rad                        75
  • 76. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Bar Element: The bar element force-displacement equations can be obtained using f’ = k’Td 0.707 0.707 C S   1 1 1 3 3 3 1 1 0 0 1 1 0 0 x x u f v C S AE f u L C S v                                        1 1 1 670 x AE f Cu Sv kN L        3 1 1 670 x AE f Cu Sv kN L      76
  • 77. Plane Frame and Grid Equations Rigid Plane Frame Example 4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 1 0 C S   1 1 1 2 2 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 u v u v                                          d Td 0.00388 0.0225 0.0113 0 0 0 m m rad                     0.00388 0.0225 0.0113 0 0 0 m m rad                    Beam Element: The bar element force-displacement equations can be obtained using f’ = k’Td 77
  • 78. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Beam Element: The bar element force-displacement equations can be obtained using f’ = k’Td 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 6 3 1 (0.002)210 10 140 10 3 kN m AE C L        6 5 2 3 3 210 10 (5 10 ) 388.89 3 kN m EI C L       78
  • 79. Plane Frame and Grid Equations Rigid Plane Frame Example 4 Beam Element: The bar element force-displacement equations can be obtained using f’ = k’Td 3 (1) 2 0 0 2 0 0 0.00388 0 0.067 0.10 0 0.067 0.10 0.0225 0 0.10 0.20 0 0.10 0.10 0.0113 70 10 2 0 0 2 0 0 0 0 0.067 0.10 0 0.067 0.10 0 0 0.10 0.10 0 0.10 0.20 0 m m kN m                                                     f k d 1 1 1 (1) 2 2 2 473 26.5 0.0 473 26.5 78.3 x y x y f kN f kN m f kN f kN m kN m                                                  f (1)  k  d 79
  • 80. Plane Frame and Grid Equations Rigid Plane Frame Example 4 80
  • 81. Plane Frame and Grid Equations Rigid Plane Frame Example 5 The frame is fixed at nodes 1 and 3 and subjected to a moment of 20 kN-m applied at node 2 Assume A = 2 x 10-2 m2, I = 2 x 10-4 m4, and E = 210 GPa for all elements. 81
  • 82. Plane Frame and Grid Equations Rigid Plane Frame Example 5 Element 1: The angle between x and x’ is 90º 0 1 C S   4 4 3 6 6(2 10 ) 3 10 4 I m L       3 6 7 210 10 5.25 10 4 kN m E L     2 2 2 (1) 5 0.015 0 0.03 5.25 10 0 2 0 0.03 0 0.08 u v kN m              k 4 4 2 2 2 12 12(2 10 ) 1.5 10 (4) I m L       The parts of k associated with node 2 are: 82
  • 83. Plane Frame and Grid Equations Rigid Plane Frame Example 5 Element 2: The angle between x and x’ is 0º 1 0 C S   4 4 3 6 6(2 10 ) 2.4 10 5 I m L       3 6 7 210 10 4.2 10 5 kN m E L     2 2 2 (2) 5 2 0 0 4.2 10 0 0.0096 0.024 0 0.024 0.08 u v kN m              k 4 4 2 2 2 12 12(2 10 ) 9.6 10 (5) I m L       The parts of k associated with node 2 are: 83
  • 84. Plane Frame and Grid Equations Rigid Plane Frame Example 5 Assembling the elemental stiffness matrices we obtain the global stiffness matrix: 6 0.8480 0 0.0158 10 0 1.0500 0.0101 0.0158 0.0101 0.0756 kN m            K The global equations are: 2 6 2 2 0 0.8480 0 0.0158 0 10 0 1.0500 0.0101 20 0.0158 0.0101 0.0756 u v kN m                                  84
  • 85. Plane Frame and Grid Equations Rigid Plane Frame Example 5 Solving the above equations gives: 6 2 6 2 4 2 4.95 10 2.56 10 2.66 10 u m v m rad                               85
  • 86. Plane Frame and Grid Equations Rigid Plane Frame Example 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 0 1 C S   1 1 1 2 2 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 u v u v                                            d Td 6 6 4 0 0 0 2.56 10 4.95 10 2.66 10 m m rad                           6 6 4 0 0 0 4.95 10 2.56 10 2.66 10 m m rad                           Element 1: The element force-displacement equations can be obtained using f’ = k’Td 86
  • 87. Plane Frame and Grid Equations Rigid Plane Frame Example 5 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 2 6 6 1 (2 10 )210 10 1.05 10 4 kN m AE C L          6 5 2 3 3 210 10 (5 10 ) 388.89 3 kN m EI C L       Element 1: The element force-displacement equations can be obtained using f’ = k’Td 87
  • 88. Plane Frame and Grid Equations Rigid Plane Frame Example 5 3 (1) 6 6 4 200 0 0 200 0 0 0 0 1.5 3 0 1.5 3 0 0 3 8 0 3 4 0 5.25 10 200 0 0 200 0 0 2.56 10 0 1.5 3 0 1.5 3 4.95 10 0 3 4 0 3 8 2.66 10 m m rad                                                          f k d 1 1 1 (1) 2 2 2 2.69 4.2 5.59 2.69 4.2 11.17 x y x y f kN f kN m kN m f kN f kN m kN m                                                  f Element 1: The element force-displacement equations can be obtained using f’ = k’Td (1 )  k  d 88
  • 89. Plane Frame and Grid Equations Rigid Plane Frame Example 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C S S C C S S C                      T 1 0 C S   2 2 2 3 3 3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 u v u v                                          d Td 6 6 4 4.95 10 2.56 10 2.66 10 0 0 0 m m rad                            6 6 4 4.95 10 2.56 10 2.66 10 0 0 0 m m rad                           Element 2: The element force-displacement equations can be obtained using f’ = k’Td 89
  • 90. Plane Frame and Grid Equations Rigid Plane Frame Example 5 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 12 6 0 12 6 0 6 4 0 6 2 0 0 0 0 0 12 6 0 12 6 0 6 2 0 6 4 C C C LC C LC LC C L LC C L C C C LC C LC LC C L LC C L                             k 2 6 6 1 (2 10 )210 10 0.84 10 5 kN m AE C L          6 4 2 3 3 210 10 (2 10 ) 336 5 kN m EI C L       Element 2: The element force-displacement equations can be obtained using f’ = k’Td 90
  • 91. Plane Frame and Grid Equations Rigid Plane Frame Example 5 6 6 4 3 (2) 200 0 0 200 0 0 4.95 10 0 0.96 2.40 0 0.96 2.40 2.56 10 0 2.40 8 0 2.40 4 2.66 10 4.2 10 200 0 0 200 0 0 0 0 0.96 2.40 0 0.96 2.40 0 0 2.40 4 0 2.40 8 0 m m rad                                                           f k d 2 2 2 (2) 3 3 3 4.16 2.69 8.92 4.16 2.69 4.47 x y x y f kN f kN m kN m f kN f kN m kN m                                                  f Element 2: The element force-displacement equations can be obtained using f’ = k’Td (2)  k  d 91
  • 92. Plane Frame and Grid Equations Inclined or Skewed Supports If a support is inclined, or skewed, at some angle  for the global x axis, as shown below. The boundary conditions on the displacements are not in the global x-y directions but in the x’-y’ directions. 92
  • 93. Plane Frame and Grid Equations Inclined or Skewed Supports Therefore, the relationship between of the components of the displacement in the local and the global coordinate systems at node 3 is: 3 3 3 3 3 3 ' cos sin 0 ' sin cos 0 ' 0 0 1 u u v v                                       We can rewrite the above expression as:   3 cos sin 0 sin cos 0 0 0 1 t                     3 3 3 ' [ ] d t d  93
  • 94. Plane Frame and Grid Equations Inclined or Skewed Supports We must transform the local boundary condition of v’3 = 0 (in local coordinates) into the global x-y system. 94
  • 95. Plane Frame and Grid Equations Inclined or Skewed Supports We can apply this sort of transformation to the entire displacement vector as: where the matrix [Ti] is:         ' [ ] or [ ] ' T i i d T d d T d   3 [ ] [0] [0] [ ] [0] [ ] [0] [0] [0] [ ] i I T I t            Both the identity matrix [I] and the matrix [t3] are 3 x 3 matrices. 95
  • 96. Plane Frame and Grid Equations Inclined or Skewed Supports The force vector can be transformed by using the same transformation. In global coordinates, the force-displacement equations are:     ' [ ] i f T f  By using the relationship between the local and the global displacements, the force-displacement equations become:     [ ] f K d      [ ] [ ][ ] i i T f T K d  Applying the skewed support transformation to both sides of the force-displacement equation gives:     [ ] [ ][ ][ ] ' T i i i T f T K T d      ' [ ][ ][ ] ' T i i f T K T d   96
  • 97. Plane Frame and Grid Equations Inclined or Skewed Supports Therefore the global equations become: 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 [ ][ ][ ] ' ' ' ' x y x T i i y x y F u F v M F u T K T F v M F u F v M                                                                 Elemental coordinates 97