SlideShare uma empresa Scribd logo
1 de 70
Baixar para ler offline
i
DERIVATION OF
BERNOULLI EQUATION
WITH VISCOUS
EFFECTS INCLUDED
Pouiselle, Torricelli plus turbulent flow equations all in one equation
ABSTRACT
In this book we look at deriving the
governing equations of fluid flow
using conservation of energy
techniques on a differential element
undergoing shear stress or viscous
forces as it moves along a pipe and
we use the expression for friction
factor for laminar flow to derive the
equations. We also derive a friction
factor to work for Torricelli flow
wasswaderricktimothy7@gmail.com
PHYSICS
1
By Wasswa Derrick
wasswaderricktimothy7@gmail.com
Makerere University
The Bernoulli equation for cylindrical pipes or circular orifices with viscous effects is:
๐‘ท + ๐’‰๐†๐’ˆ + ๐†
๐‘ฝ๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’
๐’“๐Ÿ
๐‘ฝ +
๐‘ฒ๐
๐’“
๐‘ฝ +
๐†๐’๐‘ช๐Ÿ‘
๐’“
๐‘ฝ๐Ÿ
+
๐†๐œท
๐’
๐’“
๐Ÿ(๐Ÿ +
๐’
๐’“
)
๐‘ฝ๐Ÿ
= ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’•
We shall see how to derive it in the text to follow.
2
TABLE OF CONTENTS
HOW DO WE MEASURE VELOCITY OF EXIT?.......................................................................3
Torricelli flow................................................................................................................................5
How does the velocity manifest itself? ...............................................................................9
HOW DO WE HANDLE PIPED SYSTEMS?.............................................................................. 15
To show that the Reynolds number is the governing number for flow according
to Reynolds Theory................................................................................................................... 15
Experimental results to correct the Reynoldโ€™s theory above ................................... 21
How do we deal with cases where there is a change of cross-sectional area? .... 30
THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS INCLUDED..... 32
How can we apply the Bernoulli equation above?......................................................... 32
How do we apply the Bernoulli equation to different area pipes? ..........................36
How do we write the Bernoulli equation for a variable cross-sectional area with
distance for example for the case of when the pipe is a conical frustrum?........39
HOW DO WE DEAL WITH PRESSURE GRADIENTS? ......................................................... 41
HEAD LOSS......................................................................................................................................45
THEORY OF MOTION OF PARTICLES IN VISCOUS FLUIDS...........................................50
REFERENCES..................................................................................................................................69
3
HOW DO WE MEASURE VELOCITY OF EXIT?
How do we measure velocity in fluid flow?
We either measure the flow rate and then divide it by cross sectional area as
below
๐‘‰ =
๐‘„
๐ด
Or we can use projectile motion assuming no air resistance and get to know
the velocity.
Using projectile motion of a fluid out of a hole we can measure its velocity of
exit
i.e.,
๐‘… = ๐‘‰ ร— ๐‘ก โ€ฆ ๐‘Ž)
๐ป =
1
2
๐‘”๐‘ก2
โ€ฆ ๐‘)
From a)
๐‘ก =
๐‘…
๐‘‰
Substituting t into equation b) and making velocity V the subject, we get:
๐‘‰ = ๐‘…โˆš
๐‘”
2๐ป
Where: H is the vertical height of descent and R is the range.
4
All the experimental values got in this document were got using the
velocity got from projectile motion
5
Torricelli flow
First of all, Torricelli flow is observed when there is no pipe on a tank and the
velocity of exit is derived to be
๐‘‰ = โˆš2๐‘”โ„Ž
Assuming no viscous forces.
To derive the Torricelli flow to include viscous effects, we first of all consider the
system below:
We are to derive the governing equation of Torricelli flow. We are going to use
energy conservation techniques. We shall demonstrate the condition for
laminar flow that the Reynold number is less than a critical Reynold number.
According to Reynolds, the critical Reynolds number for laminar flow is 2300.
First, we know the expressions for the friction factor in laminar flow i.e., [1].
6
๐ถ1 =
16
๐‘…๐‘’๐‘‘
๐‘…๐‘’๐‘‘ =
๐œŒ๐‘‰๐‘‘
๐œ‡
Where:
๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ = 2๐‘Ÿ
๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’
To explain what is observed in Torricelli flow, we have to set up another friction
coefficient.
๐ถ0 =
๐พ
๐‘…๐‘’๐‘™
๐‘…๐‘’๐‘™ =
๐œŒ๐‘‰๐‘™
๐œ‡
Where ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ก๐‘œ ๐‘๐‘’ ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’๐‘‘ ๐‘’๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™๐‘™๐‘ฆ
๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’
We now conserve energy changes as below,
๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ + ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘ 
To derive the Torricelli flow velocity, for now we shall consider only three
viscous forces (or three terms for work done against viscous forces) but
later we shall show that we have to include other viscous too as proven by
experiment.
The viscous forces act along the surface area of the pipe
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ =
1
2
๐ถ๐‘›๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
Where:
๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
From the figure above:
(๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ =
1
2
๐‘š๐‘‰2
+
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ1๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ2๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™
Where:
๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
7
As shall be demonstrated
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = (โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘”
We are going to derive the expression of โ„Ž0 in the text to follow but for now we
can say โ„Ž0 is the vertical height of the fluid that remains in the container when
the fluid stops flowing.
๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก =
๐‘š
๐œŒ
๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐œŒ
Substituting for ๐ถ1 and for ๐ถ0, we get:
(๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ =
1
2
๐‘š๐‘‰2
+
1
2
๐พ๐œ‡
๐œŒ๐‘‰๐‘™
๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
16๐œ‡
๐œŒ๐‘‰(2๐‘Ÿ)
๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ2๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™
(โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘”๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ =
1
2
๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐‘‰2
+
1
2
๐พ๐œ‡
๐œŒ๐‘‰๐‘™
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
16๐œ‡
๐œŒ๐‘‰(2๐‘Ÿ)
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ22๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
ร— ๐‘™
Simplifying, we get:
2๐‘”(โ„Ž โˆ’ โ„Ž0) = ๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) +
16๐œ‡๐‘™
๐‘Ÿ2๐‘‰๐œŒ
๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
๐‘‰2
For Torricelli flow we put ๐’ = ๐ŸŽ and we get
2๐‘”(โ„Ž โˆ’ โ„Ž0) = ๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
๐‘‰2
๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ
๐‘‰ โˆ’ 2๐‘”(โ„Ž โˆ’ โ„Ž0) = 0 โ€ฆ โ€ฆ . ๐Ÿ)
The velocity formula above works for systems below:
8
Back to equation 1) above, we notice that the expression for velocity is a
quadratic formula and velocity V is given by:
๐‘‰ =
โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
We choose the positive velocity i.e.
๐‘‰ =
โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
Where:
๐‘ =
2๐œ‡๐พ
๐‘Ÿ๐œŒ
๐‘Ž = 1
๐‘ = โˆ’2๐‘”(โ„Ž โˆ’ โ„Ž0)
An expression for V is
๐‘ฝ = โˆ’
๐๐‘ฒ
๐’“๐†
+
๐Ÿ
๐Ÿ
โˆš(
๐Ÿ๐๐‘ฒ
๐’“๐†
)๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) โ€ฆ โ€ฆ . . ๐Ÿ)
When โ„Ž = โ„Ž0, the velocity is zero. We ask what supports the height โ„Ž0 in the
container? It is the sum of the surface tension pressures at the liquid surfaces
that supports โ„Ž0 as shown below:
9
We say that the liquid pressure โ„Ž0 is supported by the two menisci i.e.,
โ„Ž0๐œŒ๐‘” =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘
๐‘Ÿ1
+
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘‘
๐‘Ÿ
Where:
๐œƒ๐‘ = ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘’๐‘Ÿ
If ๐œƒ๐‘ = ๐œƒ๐‘‘ , we get
๐’‰๐ŸŽ =
๐Ÿ๐œธ๐’„๐’๐’”๐œฝ๐’„
๐†๐’ˆ
(
๐Ÿ
๐’“๐Ÿ
+
๐Ÿ
๐’“
)
If ๐‘Ÿ1 is very big, then
โ„Ž0 =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘
๐‘Ÿ๐œŒ๐‘”
Back to the velocity equation,
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
1
2
โˆš(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2 + 8๐‘”(โ„Ž โˆ’ โ„Ž0)
NB:
YOU NOTICE THAT TO MEASURE THE CONSTANTS OF FLOW (e.g., k), WE HAVE
TO LOOK FOR AN EQUATION FOR WHICH THE FLOW MANIFESTS ITSELF AND
THEN WE VARY A FACTOR LIKE RADIUS AND THEN WE SHALL BE ABLE TO
CALCULATE THE CONSTANT
How does the velocity manifest itself?
Factorizing out the term
๐Ÿ๐๐‘ฒ
๐’“๐†
from the square root, we get:
10
๐‘ฝ = โˆ’
๐๐‘ฒ
๐’“๐†
+
๐Ÿ
๐Ÿ
โˆš(
๐Ÿ๐๐‘ฒ
๐’“๐†
)๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
2๐œ‡๐พ
2๐‘Ÿ๐œŒ โˆš1 +
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
๐œ‡๐พ
๐‘Ÿ๐œŒ โˆš1 +
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
We get a dimensionless number i.e.,
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
=
๐‘Ÿ2
๐œŒ2
2๐‘”(โ„Ž โˆ’ โ„Ž0)
๐œ‡2๐พ2
For small height ๐’‰ โˆ’ ๐’‰๐ŸŽ and small radius
The term
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
=
๐‘Ÿ2
๐œŒ2
2๐‘”(โ„Ž โˆ’ โ„Ž0)
๐œ‡2๐พ2
โ‰ช 1
And we can use the approximation
(1 + ๐‘ฅ)๐‘›
โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1
For which
๐’™ =
๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
(
๐Ÿ๐๐‘ฒ
๐’“๐†
)๐Ÿ
=
๐’“๐Ÿ
๐†๐Ÿ
๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
๐๐Ÿ๐‘ฒ๐Ÿ
๐’™ ๐’‚๐’ƒ๐’๐’—๐’† ๐’Š๐’” ๐’•๐’‰๐’† ๐’ˆ๐’๐’—๐’†๐’“๐’๐’Š๐’๐’ˆ ๐’๐’–๐’Ž๐’ƒ๐’†๐’“
And
๐‘› =
1
2
And we get after the binomial approximation;
We use the binomial approximation
11
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
๐œ‡๐พ
๐‘Ÿ๐œŒ
(1 +
4๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
)
We finally get the velocity as
๐‘ฝ =
๐’“(๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ
๐๐‘ฒ
โ€ฆ . . ๐’‚)
We can call the equation above equation a) and regime laminar flow
When
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
=
๐‘Ÿ2
๐œŒ2
2๐‘”(โ„Ž โˆ’ โ„Ž0)
๐œ‡2๐พ2
๐‘–๐‘  ๐‘๐‘™๐‘œ๐‘ ๐‘’ ๐‘ก๐‘œ 1
Velocity V is given by
๐‘ฝ = โˆ’
๐๐‘ฒ
๐’“๐†
+
๐Ÿ
๐Ÿ
โˆš(
๐Ÿ๐๐‘ฒ
๐’“๐†
)๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
Letโ€™s call this equation b) and regime transition flow
When
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
=
๐‘Ÿ2
๐œŒ2
2๐‘”(โ„Ž โˆ’ โ„Ž0)
๐œ‡2๐พ2
โ‰ซ 1
We approximate
1 +
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
โ‰ˆ
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
Velocity
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
๐œ‡๐พ
๐‘Ÿ๐œŒ โˆš1 +
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
Becomes
12
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+
๐œ‡๐พ
๐‘Ÿ๐œŒ โˆš
8๐‘”(โ„Ž โˆ’ โ„Ž0)
(
2๐œ‡๐พ
๐‘Ÿ๐œŒ
)2
๐‘ฝ = โˆ’
๐๐‘ฒ
๐’“๐†
+ โˆš๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
Letโ€™s call this equation c)
We can call this regime turbulent flow
When the radius is big in turbulent flow, we observe
๐‘ฝ = โˆš๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)
And when โ„Ž0 is small so that โ„Ž0 โ‰ˆ 0 , the velocity becomes
๐‘ฝ = โˆš๐Ÿ๐’ˆ๐’‰
To be able to measure K, we have to find an experiment for which the flow
manifests itself as either equation, a), b), or c).
Using water which has a low viscosity and varying the radius hole and for
height โ„Ž chosen to be approximately large, it is found that the flow will
manifest itself in equation c) (turbulent flow) and plotting a graph of V against
โˆšโ„Ž ,a straight-line graph is got,
๐‘‰ = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
+ โˆš2๐‘”โ„Ž
The gradient of the above graph is โˆš(๐Ÿ๐’ˆ)
the intercept n is also got and it is inversely proportional to r and so K can be
measured. i.e.
๐‘› = โˆ’
๐œ‡๐พ
๐‘Ÿ๐œŒ
Varying the radius will give a different intercept inversely proportional to r from
which K can be got as
๐พ = โˆ’
๐‘›๐‘Ÿ๐œŒ
๐œ‡
13
Of course, depending on the viscosity of the fluid and height difference
(โ„Ž โˆ’ โ„Ž0) and radius r of the orifice, the flow can shift to any equation, a), b), or
c).
Using water as the fluid and regime c) (turbulent flow) for experiment, it was
found that
Using viscosity of water as ๐ = ๐Ÿ–. ๐Ÿ— ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’
๐‘ท๐’‚. ๐’”
๐Š = ๐Ÿ“๐Ÿ‘๐Ÿ’. ๐Ÿ“๐Ÿ“
NB:
To get the rate of decrease of a fluid in a container, we use the initial velocity V
got for any regime i.e.,
๐’…๐‘ฝ
๐’…๐’•
= โˆ’๐‘จ๐‘ฝ
i.e.
๐’…๐’‰
๐’…๐’•
= โˆ’
๐‘จ
๐‘จ๐ŸŽ
๐‘ฝ
Where:
๐‘จ๐ŸŽ = ๐’„๐’“๐’๐’”๐’” ๐’”๐’†๐’„๐’•๐’Š๐’๐’๐’‚๐’ ๐’‚๐’“๐’†๐’‚ ๐’๐’‡ ๐’„๐’๐’๐’•๐’‚๐’Š๐’๐’†๐’“
What the equation above says is that if a fluid has a given velocity due to a
given regime initially, then, if we let the fluid to have a rate of decrease/change
of height in the container, then the fluid will obey that initial velocity
expression throughout its course of decrease until it stops flowing when
uninterrupted. For example, if the governing number above was such that
initially:
๐‘ฃ = โˆš2๐‘”โ„Ž
Then
๐‘‘โ„Ž
๐‘‘๐‘ก
= โˆ’
๐ด
๐ด0
๐‘‰
๐‘‘โ„Ž
๐‘‘๐‘ก
= โˆ’
๐ด
๐ด0
โˆš2๐‘”โ„Ž
โˆซ
๐‘‘โ„Ž
โˆšโ„Ž
โ„Ž
โ„Ž1
= โˆ’(
๐ด
๐ด0
)โˆš2๐‘” โˆซ ๐‘‘๐‘ก
๐‘ก
0
Where:
14
โ„Ž = โ„Ž1 ๐‘Ž๐‘ก ๐‘ก = 0
โˆšโ„Ž1 โˆ’ โˆšโ„Ž = (
๐ด
๐ด0
)๐‘กโˆš
๐‘”
2
โˆš๐’‰ = โˆš๐’‰๐Ÿ โˆ’ ๐’•(
๐‘จ
๐‘จ๐ŸŽ
)โˆš
๐’ˆ
๐Ÿ
So that will be the equation of height h against time.
15
HOW DO WE HANDLE PIPED SYSTEMS?
Consider the system below:
To show that the Reynolds number is the governing number for flow
according to Reynolds Theory
For smooth piped systems
The governing number of flow equations is the Reynolds number
According to Reynold,
For laminar flow
๐‘…๐‘’๐‘‘ < 2300
I.e.
๐œŒ๐‘‰
๐‘๐‘‘
๐œ‡
< 2300
2๐œŒ๐‘‰
๐‘๐‘Ÿ
๐œ‡
< 2300
Where: ๐‘‰
๐‘ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
So
๐‘‰
๐‘ < 1150
๐œ‡
๐œŒ๐‘Ÿ
In laminar flow
16
๐‘‰ =
๐‘Ÿ2
๐œŒ๐‘”โ„Ž
8๐œ‡๐‘™
And
๐‘‰
๐‘ = ๐‘‰
So,
๐‘Ÿ2
๐œŒ๐‘”โ„Ž
8๐œ‡๐‘™
< 1150
๐œ‡
๐œŒ๐‘Ÿ
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž
9200๐œ‡2๐‘™
< 1
So, the governing condition for laminar flow according to Reynold should be
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž
9200๐œ‡2๐‘™
< 1
As before, letโ€™s conserve energy:
work done by pressure difference = Kinetic energy gained as the liquid
emerges + work done against shear stress/ viscous forces
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ =
1
2
๐ถ๐‘›๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
Where:
๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’
๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐œŒ
๐‘‘๐‘ฃ =
๐‘š
๐œŒ
๐‘Š๐‘’ ๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘’ ๐‘Ž ๐‘›๐‘’๐‘ค ๐‘ก๐‘’๐‘Ÿ๐‘š ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘  ๐‘๐‘’๐‘™๐‘œ๐‘ค:
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ =
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ1๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ2๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘  ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘›
๐ถ1 =
16
๐‘…๐‘’๐‘‘
17
๐‘…๐‘’๐‘‘ =
๐œŒ๐‘‰๐‘‘
๐œ‡
๐ถ0 =
๐พ
๐‘…๐‘’๐‘™
๐‘…๐‘’๐‘™ =
๐œŒ๐‘‰๐‘™
๐œ‡
๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
(๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ =
1
2
๐‘š๐‘‰2
+
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ1๐ด๐‘ ๐œŒ๐‘‰2
๐‘™ +
1
2
๐ถ2๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = โ„Ž๐œŒ๐‘”
We have ignored the surface tension effects for now.
๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก =
๐‘š
๐œŒ
๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐œŒ
Substitute for ๐ถ1 and for ๐ถ0 as before
โ„Ž๐œŒ๐‘”๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ =
1
2
๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐œŒ๐‘‰2
+
1
2
๐พ๐œ‡
๐œŒ๐‘‰๐‘™
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
16๐œ‡
๐œŒ๐‘‰๐‘‘
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
๐‘™ +
1
2
๐ถ22๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2
ร— ๐‘™
Simplifying
2๐‘”โ„Ž = ๐‘‰2
+
16๐œ‡๐‘™
๐‘Ÿ2๐‘‰๐œŒ
๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
๐‘‰2
+
2๐‘™๐ถ2
๐‘Ÿ
๐‘‰2
๐‘‰2
(1 +
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
+
2๐‘™
๐‘Ÿ
๐ถ2) +
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
๐‘‰ โˆ’ 2๐‘”โ„Ž = 0
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0
We get velocity as:
๐‘‰ =
โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
We choose the positive velocity as below:
Where:
18
๐‘ =
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
๐‘Ž = (1 +
2๐‘™
๐‘Ÿ
๐ถ2)
๐‘‰ =
โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ)
+
โˆš(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ))๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ)(๐Ÿ–๐’ˆ๐’‰)
๐Ÿ (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ)
The above is the velocity V.
Pouiselle /Laminar flow can be demonstrated:
First of all, we factorize the term
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ) out of the square root
๐‘‰ =
โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
2 (1 +
2๐‘™
๐‘Ÿ
๐ถ2)
+
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
2 (1 +
2๐‘™
๐‘Ÿ
๐ถ2)
โˆš1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) 8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
For long pipes and small radius
The term
(1 +
2๐‘™
๐‘Ÿ
๐ถ2)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ช 1
And we can use the approximation
(1 + ๐‘ฅ)๐‘›
โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1
Where:
๐‘› =
1
2
19
๐‘ฅ =
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) 8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
In laminar flow
2๐‘™
๐‘Ÿ
๐ถ2 โ‰ซ 1
and
8๐‘™
๐‘Ÿ
โ‰ซ ๐พ
so that
1 +
2๐‘™
๐‘Ÿ
๐ถ2 โ‰ˆ
2๐‘™
๐‘Ÿ
๐ถ2
And
8๐‘™
๐‘Ÿ
+ ๐พ โ‰ˆ
8๐‘™
๐‘Ÿ
So
(1 +
2๐‘™
๐‘Ÿ
๐ถ2)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ˆ
๐‘Ÿ4
๐œŒ2
(
2๐‘™
๐‘Ÿ
๐ถ2)
256๐œ‡2๐‘™2
ร— 8๐‘”โ„Ž
๐‘Ÿ4
๐œŒ2
(
2๐‘™
๐‘Ÿ
๐ถ2)
256๐œ‡2๐‘™2
ร— 8๐‘”โ„Ž =
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž๐ถ2
16๐œ‡2๐‘™
โ‰ช 1
For laminar flow, recalling the condition
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž
9200๐œ‡2๐‘™
< 1
And comparing with
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž๐ถ2
16๐œ‡2๐‘™
โ‰ช 1
We get
๐ถ2
16
=
1
9200
20
๐ถ2 = 1.739 ร— 10โˆ’3
this proves that ๐ถ2 is a constant since the critical Reynolds number for laminar
flow is also a constant.
Continuing from above to demonstrate the Pouiselle flow,
Using the binomial expansion and after making the above substitutions,
We use the binomial approximation
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
And get:
โˆš1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) 8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ˆ 1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) 4๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ2) 4๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ˆ 1 +
(
2๐‘™
๐‘Ÿ
๐ถ2) 4๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
))2
= 1 +
๐‘Ÿ4
๐œŒ2
256๐œ‡2๐‘™2
ร— (
2๐‘™
๐‘Ÿ
๐ถ2)4๐‘”โ„Ž
2(
2๐‘™
๐‘Ÿ
๐ถ2)๐‘‰ = โˆ’
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
+
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
(1 +
๐‘Ÿ4
๐œŒ2
256๐œ‡2๐‘™2
ร— (
2๐‘™
๐‘Ÿ
๐ถ2)4๐‘”โ„Ž)
Simplifying, we get velocity V as:
๐‘ฝ =
๐’“๐Ÿ
๐†๐’ˆ๐’‰
๐Ÿ–๐๐’
And the flow rate Q as:
๐‘ธ =
๐…
๐Ÿ–
๐’“๐Ÿ’
๐
๐†๐’ˆ๐’‰
๐’
The term
๐‘Ÿ3๐œŒ2๐‘”โ„Ž
9200๐œ‡2๐‘™
is a dimensionless number and it should demarcate when
Pouiselle flow begins according to Reynoldโ€™s theory.
NB.
We shall see that experiment doesnโ€™t obey Reynoldโ€™s theory exactly and
we have to make some modifications.
21
Experimental results to correct the Reynoldโ€™s theory above
First let us derive the governing equations as proven by experiment by
conserving energy and recall that the velocity we are using is that got from
projectile motion.
work done by pressure difference = Kinetic energy gained as the liquid
emerges + work done against viscous forces
Work done against shear/viscous force = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘
Work done against shear force =
1
2
๐ถ๐‘›๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™
Where:
๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
๐ด๐‘† = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’
We introduce a new term in the viscous work done as got from experiment as
below:
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
=
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ1๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ3๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
(๐›ฝ
๐ด
๐‘ƒ
)๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
The new term is:
=
1
2
(๐›ฝ
๐ด
๐‘ƒ
)๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™
Where:
๐ด = ๐œ‹๐‘Ÿ2
๐‘Ž๐‘›๐‘‘ ๐‘ƒ = 2๐œ‹๐‘Ÿ(๐‘Ÿ + ๐‘™)
๐ถ3 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘๐‘™๐‘Ž๐‘๐‘’๐‘  ๐ถ2 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘–๐‘ก โ„Ž๐‘Ž๐‘  ๐‘Ž ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘Ž๐‘  ๐‘”๐‘œ๐‘ก ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก
๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘  ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘› ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2
โˆ†๐‘ฅ๐œŒ
(๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ =
1
2
๐‘š๐‘‰2
+
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ1๐ด๐‘†๐œŒ๐‘‰2
๐‘™ +
1
2
๐ถ3๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
(๐›ฝ
๐‘Ÿ
2(๐‘Ÿ + ๐‘™)
)๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = โ„Ž๐œŒ๐‘”
We shall ignore surface tension pressures for now.
22
๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก =
๐‘š
๐œŒ
๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ
๐ด = ๐œ‹๐‘Ÿ2
๐ด๐œŒโˆ†๐‘ฅ๐‘”โ„Ž =
1
2
๐ดโˆ†๐‘ฅ๐œŒ๐‘‰2
+
1
2
๐ถ0๐ด๐‘ ๐œŒ๐‘‰2
๐‘™ +
1
2
๐ถ1๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ3๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
(๐›ฝ
๐‘Ÿ
2(๐‘Ÿ + ๐‘™)
)๐ด๐‘†๐œŒ๐‘‰2
ร— ๐‘™
Substitute for ๐ถ1 and for ๐ถ0 as before
๐ด๐œŒโˆ†๐‘ฅ๐‘”โ„Ž =
1
2
๐ดโˆ†๐‘ฅ๐œŒ๐‘‰2 +
1
2
๐พ๐œ‡
๐œŒ๐‘‰๐‘™
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2๐‘™ +
1
2
16๐œ‡
๐œŒ๐‘‰๐‘‘
2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ +
1
2
๐ถ32๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ +
1
2
(๐›ฝ
๐‘Ÿ
2(๐‘Ÿ + ๐‘™)
)2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™
2๐‘”โ„Ž = ๐‘‰2
+
16๐œ‡๐‘™
๐‘Ÿ2๐‘‰๐œŒ
๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
๐‘‰2
+
2๐‘™๐ถ3
๐‘Ÿ
๐‘‰2
+
2๐‘™
๐‘Ÿ
(๐›ฝ
๐‘Ÿ
2(๐‘Ÿ + ๐‘™)
)๐‘‰2
Simplifying
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐œŒ๐‘Ÿ
(๐พ +
8๐‘™
๐‘Ÿ
)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0
Rearranging, we get
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐œŒ๐‘Ÿ
(๐พ +
8๐‘™
๐‘Ÿ
)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0
๐‘‰ =
โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
๐‘ =
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
๐‘Ž = (1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
We choose the positive sign on the velocity equation.
Velocity is given by:
๐‘‰ =
โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘
2๐‘Ž
23
2(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)๐‘‰ = โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ) + โˆš(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2 + (1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)(8๐‘”โ„Ž)
The experimental velocity is given by:
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+
โˆš(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ))๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)(๐Ÿ–๐’ˆ๐’‰)
๐Ÿ(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
You notice that when we substitute length ๐’ = ๐ŸŽ, we go back to the
Torricelli equations i.e.
๐‘ฝ = โˆ’
๐‘ฒ๐
๐’“๐†
+
๐Ÿ
๐Ÿ
โˆš(
๐Ÿ๐๐‘ฒ
๐’“๐†
)๐Ÿ + (๐Ÿ–๐’ˆ๐’‰)
You notice that we have ignored ๐’‰๐ŸŽ though it can/should be included in
the derivation.
Pouiselle Flow can be demonstrated below;
From
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+
โˆš(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ))๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)(๐Ÿ–๐’ˆ๐’‰)
๐Ÿ(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Factorizing out the term
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ) from the square root, we get
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
2(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โˆš1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
For long pipes and small radius
The term
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ช 1
Is very small and we can use the approximation
24
(1 + ๐‘ฅ)๐‘›
โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1
Where:
๐‘› =
1
2
๐‘ฅ =
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
In laminar flow
2๐‘™
๐‘Ÿ
๐ถ3 โ‰ซ 1 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
and
8๐‘™
๐‘Ÿ
โ‰ซ ๐พ
so that
1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
โ‰ˆ
2๐‘™
๐‘Ÿ
๐ถ3
And
8๐‘™
๐‘Ÿ
+ ๐พ โ‰ˆ
8๐‘™
๐‘Ÿ
So
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ˆ
๐‘Ÿ4
๐œŒ2
(
2๐‘™
๐‘Ÿ
๐ถ3)
256๐œ‡2๐‘™2
ร— 8๐‘”โ„Ž
๐‘Ÿ4
๐œŒ2
(
2๐‘™
๐‘Ÿ
๐ถ3)
256๐œ‡2๐‘™2
ร— 8๐‘”โ„Ž =
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž๐ถ3
16๐œ‡2๐‘™
โ‰ช 1
For laminar flow.
We shall check experimentally the true value of ๐ถ3 following this.
The above proves that ๐ถ3 is a constant since the critical Reynolds number for
laminar flow is also a constant.
Using the binomial expansion and after making the above substitutions, we get
25
We use the binomial approximation
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
2(
2๐‘™
๐‘Ÿ
๐ถ3)๐‘‰ = โˆ’
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
+
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
(1 +
๐‘Ÿ4
๐œŒ2
256๐œ‡2๐‘™2
ร— (
2๐‘™
๐‘Ÿ
๐ถ3)4๐‘”โ„Ž)
๐‘ฝ =
๐’“๐Ÿ
๐†๐’ˆ๐’‰
๐Ÿ–๐๐’
๐‘ธ =
๐…
๐Ÿ–
๐’“๐Ÿ’
๐
๐†๐’ˆ๐’‰
๐’
Experimental results to verify the theory above
From
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โˆš1 +
1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
In turbulent flow
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ซ 1
So, from
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โˆš1 +
1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
1 +
8๐‘”โ„Ž(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
โ‰ˆ
8๐‘”โ„Ž(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
Becomes
26
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โˆš
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ))2
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+
1
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โˆš(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)2๐‘”โ„Ž
๐‘‰ =
โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐พ)
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+ โˆš
2๐‘”โ„Ž
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
In turbulent flow the equation is:
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+ โˆš
๐Ÿ๐’ˆ๐’‰
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Where:
The above expression of turbulent flow can be verified by plotting a graph of V
against โˆšโ„Ž for constant length of pipe from which a straight-line graph with an
intercept will be got and the gradient and intercept investigated to satisfy the
equation above, provided that we are in turbulent flow according to the
governing number.
It can be investigated and shown that plotting a graph of V against โˆšโ„Ž in
turbulent flow, a straight-line graph will be got and the gradient m will be
found to be:
๐‘š = โˆš
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
Rearranging, we get:
27
[
๐Ÿ๐’ˆ
๐’Ž๐Ÿ
โˆ’ ๐Ÿ] =
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
Plotting a graph of [
2๐‘”
๐‘š2
โˆ’ 1] against length ๐‘™ gives a straight line as shown below
from experiment in turbulent flow:
You notice that since the expression
๐’
๐’+๐’“
โ‰ˆ ๐Ÿ
When r is small and length big, so the graph above can be approximated to be
a straight-line graph for lengths ๐‘™ greater than the radius as below:
[
2๐‘”
๐‘š2
โˆ’ 1] =
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
Becomes:
[
๐Ÿ๐’ˆ
๐’Ž๐Ÿ
โˆ’ ๐Ÿ] =
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ + ๐œท
As the graph above shows with (a virtual) intercept ๐›ฝ.
But you notice that when the length becomes small to the order of the radius,
the intercept vanishes to zero as shown from the graph and the correct
expression becomes:
[
๐Ÿ๐’ˆ
๐’Ž๐Ÿ
โˆ’ ๐Ÿ] =
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
To correctly measure ๐œท, we plot a graph below from the expression above
28
๐Ÿ
๐’
[
๐Ÿ๐’ˆ
๐’Ž๐Ÿ
โˆ’ ๐Ÿ] =
๐Ÿ
๐’“
๐‘ช๐Ÿ‘ +
๐œท
(๐’“ + ๐’)
Plotting a graph of
1
๐‘™
[
2๐‘”
๐‘š2
โˆ’ 1] against
1
(๐‘Ÿ+๐‘™)
, a straight-line graph will be got from
which ๐ถ3 and ๐›ฝ can be got.
From experiment:
๐ถ3 = 5.62875 ร— 10โˆ’3
And
๐›ฝ = 0.5511
You notice that ๐ถ3 and ๐›ฝ are independent of Reynolds number because if they
were so then the expression of turbulent flow would not be observed
experimentally.
So, the Critical Reynolds number for laminar flow becomes 710.637 since
For laminar flow
๐‘…๐‘’ < ๐‘…๐‘’๐‘๐‘Ÿ
Where:
๐‘…๐‘’๐‘๐‘Ÿ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐ฟ๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค
๐œŒ๐‘‰
๐‘๐‘‘
๐œ‡
< ๐‘…๐‘’๐‘๐‘Ÿ
2๐œŒ๐‘‰
๐‘๐‘Ÿ
๐œ‡
< ๐‘…๐‘’๐‘๐‘Ÿ
Where: ๐‘‰
๐‘ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
In laminar flow
๐‘‰ =
๐‘Ÿ2
๐œŒ๐‘”โ„Ž
8๐œ‡๐‘™
And
๐‘‰
๐‘ = ๐‘‰
So,
2๐œŒ๐‘Ÿ
๐œ‡
๐‘‰ < ๐‘…๐‘’๐‘๐‘Ÿ
2๐œŒ๐‘Ÿ
๐œ‡
ร—
๐‘Ÿ2
๐œŒ๐‘”โ„Ž
8๐œ‡๐‘™
< ๐‘…๐‘’๐‘๐‘Ÿ
29
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž
4๐œ‡2๐‘™(๐‘…๐‘’๐‘๐‘Ÿ)
< 1
Comparing with
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž๐ถ3
16๐œ‡2๐‘™
โ‰ช 1
We get
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž
4๐œ‡2๐‘™(๐‘…๐‘’๐‘๐‘Ÿ)
=
๐‘Ÿ3
๐œŒ2
๐‘”โ„Ž๐ถ3
16๐œ‡2๐‘™
๐ถ3
4
=
1
(๐‘…๐‘’๐‘๐‘Ÿ)
๐‘…๐‘’๐‘๐‘Ÿ =
4
๐ถ3
=
4
5.62875 ร— 10โˆ’3
= ๐Ÿ•๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ•
๐‘น๐’†๐’„๐’“ = ๐Ÿ•๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ•
Generally, the governing number for flow rate regime is
๐‘ฎ๐’๐’—๐’†๐’“๐’๐’Š๐’๐’ˆ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ =
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)๐Ÿ–๐’ˆ๐’‰
(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐‘ฒ))๐Ÿ
30
How do we deal with cases where there is a change of cross-sectional
area?
We say,
๐ด1๐‘‰1 = ๐ด2๐‘‰2
And get:
๐‘‰2 =
๐ด1๐‘‰1
๐ด2
We know the general expression of the velocity ๐‘‰1 as developed before:
๐‘ฝ๐Ÿ =
โˆ’
๐
๐’“๐Ÿ๐†
(
๐Ÿ–๐’
๐’“๐Ÿ
+ ๐‘ฒ)
(๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)
+
โˆš(
๐Ÿ๐
๐’“๐Ÿ๐†
(
๐Ÿ–๐’
๐’“๐Ÿ
+ ๐‘ฒ))๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ))
๐Ÿ(๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)
We can then get ๐‘‰2 as
๐‘ฝ๐Ÿ =
๐‘จ๐Ÿ๐‘ฝ๐Ÿ
๐‘จ๐Ÿ
๐‘ฝ๐Ÿ = โˆ’(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐
๐’“๐Ÿ๐† (
๐Ÿ–๐’
๐’“๐Ÿ
+ ๐‘ฒ)
(๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)
+ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
โˆš(
๐Ÿ๐
๐’“๐Ÿ๐† (
๐Ÿ–๐’
๐’“๐Ÿ
+ ๐‘ฒ))๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)(๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ))
๐Ÿ(๐Ÿ +
๐Ÿ๐’
๐’“๐Ÿ
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“๐Ÿ + ๐’)
)
31
We shall use the derivation above in the analysis to follow.
Where:
๐’‰๐ŸŽ =
๐Ÿ๐œธ๐’„๐’๐’”๐œฝ๐’„
๐†๐’ˆ
(
๐Ÿ
๐’“๐ŸŽ
+
๐Ÿ
๐’“๐Ÿ
)
๐œƒ๐‘ = ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ž๐‘›๐‘”๐‘™๐‘’
32
THE MODIFIED BERNOULLI EQUATION WITH VISCOUS
EFFECTS INCLUDED.
We are going to look at cylindrical pipes.
Recalling the conservation of energy technique used before to get the velocity as
below:
2๐‘”โ„Ž = ๐‘‰2
+
16๐œ‡๐‘™
๐‘Ÿ2๐‘‰๐œŒ
๐‘‰2
+
2๐พ๐œ‡
๐œŒ๐‘Ÿ๐‘‰
๐‘‰2
+
2๐‘™๐ถ3
๐‘Ÿ
๐‘‰2
+
2๐‘™
๐‘Ÿ
(๐›ฝ
๐‘Ÿ
2(๐‘Ÿ + ๐‘™)
)๐‘‰2
2๐‘”โ„Ž = ๐‘‰2
+
16๐œ‡๐‘™
๐‘Ÿ2๐œŒ
๐‘‰ +
2๐พ๐œ‡
๐œŒ๐‘Ÿ
๐‘‰ +
2๐‘™๐ถ3
๐‘Ÿ
๐‘‰2
+ (๐›ฝ
๐‘™
(๐‘Ÿ + ๐‘™)
)๐‘‰2
Multiplying through by ๐œŒ and dividing through by 2, we get:
๐œŒ๐‘”โ„Ž = ๐œŒ
๐‘‰2
2
+
8๐œ‡๐‘™
๐‘Ÿ2
๐‘‰ +
๐พ๐œ‡
๐‘Ÿ
๐‘‰ +
๐œŒ๐‘™๐ถ3
๐‘Ÿ
๐‘‰2
+
๐œŒ๐›ฝ๐‘™
2(๐‘Ÿ + ๐‘™)
๐‘‰2
Finally, we get for cylindrical pipe or circular orifice:
๐‘ท + ๐’‰๐†๐’ˆ + ๐†
๐‘ฝ๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’
๐’“๐Ÿ
๐‘ฝ +
๐‘ฒ๐
๐’“
๐‘ฝ +
๐†๐’๐‘ช๐Ÿ‘
๐’“
๐‘ฝ๐Ÿ
+
๐†๐œท๐’
๐Ÿ(๐’“ + ๐’)
๐‘ฝ๐Ÿ
= ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’•
Or
๐‘ท + ๐’‰๐†๐’ˆ + ๐†
๐‘ฝ๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’
๐’“๐Ÿ
๐‘ฝ +
๐‘ฒ๐
๐’“
๐‘ฝ +
๐†๐’๐‘ช๐Ÿ‘
๐’“
๐‘ฝ๐Ÿ
+
๐†๐œท
๐’
๐’“
๐Ÿ(๐Ÿ +
๐’
๐’“
)
๐‘ฝ๐Ÿ
= ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’•
How can we apply the Bernoulli equation above?
Considering the Torricelli flow first:
Let us first consider a circular orifice on a tank:
33
Using the Bernoulli equation, we get
๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐†
๐‘ฝ๐’™
๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’๐’™
๐’“๐’™
๐Ÿ
๐‘ฝ๐’™ +
๐‘ฒ๐
๐’“๐’™
๐‘ฝ๐’™ +
๐†๐’๐’™๐‘ช๐Ÿ‘
๐’“๐’™
๐‘ฝ๐’™
๐Ÿ
+
๐†๐œท
๐’๐’™
๐’“๐’™
๐Ÿ(๐Ÿ +
๐’๐’™
๐’“๐’™
)
๐‘ฝ๐’™
๐Ÿ
= ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐†
๐‘ฝ๐’š
๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’๐’š
๐’“๐’š
๐’š ๐‘ฝ๐’š +
๐‘ฒ๐
๐’“๐’š
๐‘ฝ๐’š +
๐†๐’๐’š๐‘ช๐Ÿ‘
๐’“๐’š
๐‘ฝ๐’š
๐Ÿ
+
๐†๐œท
๐’๐’š
๐’“๐’š
๐Ÿ(๐Ÿ +
๐’๐’š
๐’“๐’š
)
๐‘ฝ๐’š
๐Ÿ
But
๐‘™๐‘ฅ = 0 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘’๐‘Ÿ ๐‘–๐‘  ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘ก
๐‘™๐‘ฅ represents the wetted length the fluid moves.
โ„Ž๐‘ฅ = โ„Ž
โ„Ž๐‘ฆ = 0
๐‘™๐‘ฆ = 0
๐‘ƒ๐‘ฅ = ๐ป โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ
๐‘ƒ๐‘ฆ = ๐ป +
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ
๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘‰
๐‘ฆ = ๐‘‰
When the cross-sectional area of the container is large so that the rate of
change of height of the surface level is negligible, then:
๐‘‰
๐‘ฅ = 0
34
Upon substitution of all the above we get:
โ„Ž๐‘ฅ๐œŒ๐‘” โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ
โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ
= ๐œŒ
๐‘‰
๐‘ฆ
2
2
+
๐พ๐œ‡
๐‘Ÿ
๐‘‰
๐‘ฆ
Or
(โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘” = ๐œŒ
๐‘‰
๐‘ฆ
2
2
+
๐พ๐œ‡
๐‘Ÿ
๐‘‰
๐‘ฆ
Where:
โ„Ž0 =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ๐œŒ๐‘”
+
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ๐œŒ๐‘”
If
๐œƒ๐‘ฅ = ๐œƒ๐‘ฆ
โ„Ž0 =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐œŒ๐‘”
(
1
๐‘Ÿ๐‘ฅ
+
1
๐‘Ÿ๐‘ฆ
)
Where we can go ahead and get the velocity of exit from the quadratic formula
which is what we got before for Torricelli flow.
i.e.,
๐‘ฝ๐Ÿ
+
๐Ÿ๐‘ฒ๐
๐’“๐†
๐‘ฝ โˆ’ ๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) = ๐ŸŽ
How can we apply the Bernoulli equation for cylindrical pipes?
35
๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐†
๐‘ฝ๐’™
๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’๐’™
๐’“๐’™
๐Ÿ
๐‘ฝ๐’™ +
๐‘ฒ๐
๐’“๐’™
๐‘ฝ๐’™ +
๐†๐’๐’™๐‘ช๐Ÿ‘
๐’“๐’™
๐‘ฝ๐’™
๐Ÿ
+
๐†๐œท
๐’๐’™
๐’“๐’™
๐Ÿ(๐Ÿ +
๐’๐’™
๐’“๐’™
)
๐‘ฝ๐’™
๐Ÿ
= ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐†
๐‘ฝ๐’š
๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’๐’š
๐’“๐’š
๐’š ๐‘ฝ๐’š +
๐‘ฒ๐
๐’“๐’š
๐‘ฝ๐’š +
๐†๐’๐’š๐‘ช๐Ÿ‘
๐’“๐’š
๐‘ฝ๐’š
๐Ÿ
+
๐†๐œท
๐’๐’š
๐’“๐’š
๐Ÿ(๐Ÿ +
๐’๐’š
๐’“๐’š
)
๐‘ฝ๐’š
๐Ÿ
But
โ„Ž๐‘ฅ = โ„Ž
โ„Ž๐‘ฆ = 0
๐‘ƒ๐‘ฅ = ๐ป โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ
๐‘ƒ๐‘ฆ = ๐ป +
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ
๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘™๐‘ฅ = 0 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘–๐‘  ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘ก
๐‘™๐‘ฆ = ๐‘™
๐‘‰
๐‘ฆ = ๐‘‰
๐‘Ÿ๐‘ฆ = ๐‘Ÿ
When the cross-sectional area of the container is large,
๐‘‰
๐‘ฅ = 0
Upon substitution of all the above we get:
โ„Ž๐‘ฅ๐œŒ๐‘” โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ
โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ
= ๐œŒ
๐‘‰
๐‘ฆ
2
2
+
8๐œ‡๐‘™
๐‘Ÿ2
๐‘‰
๐‘ฆ +
๐พ๐œ‡
๐‘Ÿ
๐‘‰
๐‘ฆ +
๐œŒ๐‘™๐ถ3
๐‘Ÿ
๐‘‰
๐‘ฆ
2
+
๐œŒ๐›ฝ
๐‘™
๐‘Ÿ
2(1 +
๐‘™
๐‘Ÿ)
๐‘‰
๐‘ฆ
2
(๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ = ๐†
๐‘ฝ๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’
๐’“๐Ÿ
๐‘ฝ +
๐‘ฒ๐
๐’“
๐‘ฝ +
๐†๐’๐‘ช๐Ÿ‘
๐’“
๐‘ฝ๐Ÿ
+
๐†๐œท
๐’
๐’“
๐Ÿ(๐Ÿ +
๐’
๐’“)
๐‘ฝ๐Ÿ
Where:
โ„Ž0 =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐œŒ๐‘”
(
1
๐‘Ÿ๐‘ฅ
+
1
๐‘Ÿ๐‘ฆ
)
From the equation above, we can go ahead and find the velocity of exit ๐‘‰ = ๐‘‰
๐‘ฆ
which is what we derived before.
36
How do we apply the Bernoulli equation to different area pipes?
Again, we use the modified Bernoulli equation as below:
๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐†
๐‘ฝ๐’™
๐Ÿ
๐Ÿ
+
๐Ÿ–๐๐’๐’™
๐’“๐’™
๐Ÿ
๐‘ฝ๐’™ +
๐‘ฒ๐
๐’“๐’™
๐‘ฝ๐’™ +
๐†๐’๐’™๐‘ช๐Ÿ‘
๐’“๐’™
๐‘ฝ๐’™
๐Ÿ
+
๐†๐œท
๐’๐’™
๐’“
๐Ÿ(๐Ÿ +
๐’๐’™
๐’“ )
๐‘ฝ๐’™
๐Ÿ
= ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐†
๐‘ฝ๐’š
๐Ÿ
๐Ÿ
+ ๐Ÿ–๐(
๐’๐Ÿ
๐’“๐Ÿ
๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
๐Ÿ
)๐‘ฝ๐’š +
๐‘ฒ๐
๐’“๐Ÿ
๐‘ฝ๐’š + ๐†๐‘ช๐Ÿ‘(
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
)๐‘ฝ๐’š
๐Ÿ
+
๐†๐œท(
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
)
๐Ÿ(๐Ÿ + (
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
))
๐‘ฝ๐’š
๐Ÿ
But
๐‘™๐‘ฅ = 0
โ„Ž๐‘ฅ = โ„Ž
โ„Ž๐‘ฆ = 0
๐‘ƒ๐‘ฅ = ๐ป โˆ’
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐‘Ÿ๐‘ฅ
๐‘ƒ๐‘ฆ = ๐ป +
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ
๐‘Ÿ๐‘ฆ
๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
When the cross-sectional area of the container is large so that the rate of fall of
the surface level is negligible,
๐‘‰
๐‘ฅ = 0
And we finally get
37
โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ
๐‘‰
๐‘ฆ
2
2
+ 8๐œ‡(
๐‘™1
๐‘Ÿ1
2 +
๐‘™2
๐‘Ÿ2
2)๐‘‰
๐‘ฆ +
๐พ๐œ‡
๐‘Ÿ2
๐‘‰
๐‘ฆ + ๐œŒ๐ถ3(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)๐‘‰
๐‘ฆ
2
+
๐œŒ๐›ฝ(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)
2(1 + (
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
))
๐‘‰
๐‘ฆ
2
Before we can get ๐‘‰
๐‘ฆ we have to ask what will ๐‘‰
๐‘ฆ be when ๐‘™2 ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘ก๐‘œ 0 ?
๐‘‰
๐‘ฆ will be given by:
โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ
๐‘‰
๐‘ฆ
2
2
+ 8๐œ‡ (
๐‘™1
๐‘Ÿ1
2) ๐‘‰
๐‘ฆ +
๐พ๐œ‡
๐‘Ÿ2
๐‘‰
๐‘ฆ + ๐œŒ๐ถ3 (
๐‘™1
๐‘Ÿ1
) ๐‘‰
๐‘ฆ
2
+
๐œŒ๐›ฝ (
๐‘™1
๐‘Ÿ1
)
2 (1 + (
๐‘™1
๐‘Ÿ1
))
๐‘‰
๐‘ฆ
2
โ€ฆ โ€ฆ . . ๐’
But remember that when ๐‘™2 ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘ก๐‘œ 0 , the area at the exit will be ๐ด2 and so
the velocity will be given by
๐‘‰ =
๐ด1
๐ด2
๐‘‰
๐‘ฆ
To get the velocity above, we have to make a substitution in equation n above
as:
๐‘‰
๐‘ฆ =
๐ด2
๐ด1
๐‘‰
Upon substitution in the equation n above, we get:
โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ
๐‘‰2
2
(
๐ด2
๐ด1
)2
+ 8๐œ‡ (
๐‘™1
๐‘Ÿ1
2) (
๐ด2
๐ด1
)๐‘‰ +
๐พ๐œ‡
๐‘Ÿ2
(
๐ด2
๐ด1
)๐‘‰ + ๐œŒ๐ถ3 (
๐‘™1
๐‘Ÿ1
) (
๐ด2
๐ด1
)2
๐‘‰2
+
๐œŒ๐›ฝ (
๐‘™1
๐‘Ÿ1
)
2 (1 + (
๐‘™1
๐‘Ÿ1
))
(
๐ด2
๐ด1
)2
๐‘‰2
We finally get the velocity as
๐‘‰ = (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
[
โˆ’
๐œ‡
๐‘Ÿ1๐œŒ (
8๐‘™1
๐‘Ÿ1
+ ๐พ)
(1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)
+
โˆš(
2๐œ‡
๐‘Ÿ1๐œŒ (
8๐‘™1
๐‘Ÿ1
+ ๐พ))2 + (1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)(8๐‘”(โ„Ž โˆ’ โ„Ž0))
2 (1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)
]
๐‘‰ =
[
โˆ’
๐œ‡
๐‘Ÿ1๐œŒ
(
8๐‘™1
๐‘Ÿ1
+ ๐พ)
(1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)
(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
) + (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
โˆš(
2๐œ‡
๐‘Ÿ1๐œŒ
(
8๐‘™1
๐‘Ÿ1
+ ๐พ))2 + (1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)(8๐‘”(โ„Ž โˆ’ โ„Ž0))
2 (1 +
2๐‘™1
๐‘Ÿ1
๐ถ3 +
๐›ฝ๐‘™1
(๐‘Ÿ1 + ๐‘™1)
)
]
As required. In fact, we already showed this velocity before.
The factor we were interested in to show was:
38
(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
So going back to the velocity equation, we have to incorporate the above factor
so that when we reduce ๐‘™2 ๐‘ก๐‘œ 0 , we arrive at the required velocity above as
shown below:
โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ
๐‘‰
๐‘ฆ
2
2
+ 8๐œ‡(
๐‘™1
๐‘Ÿ1
2 +
๐‘™2
๐‘Ÿ2
2)๐‘‰
๐‘ฆ +
๐พ๐œ‡
๐‘Ÿ2
๐‘‰
๐‘ฆ + ๐œŒ๐ถ3(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)๐‘‰
๐‘ฆ
2
+
๐œŒ๐›ฝ(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)
2(1 + (
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
))
๐‘‰
๐‘ฆ
2
We substitute:
๐‘‰
๐‘ฆ =
๐ด2
๐ด1
๐‘‰
And get:
โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ
๐‘‰2
2
(
๐ด2
๐ด1
)2
+ 8๐œ‡(
๐‘™1
๐‘Ÿ1
2 +
๐‘™2
๐‘Ÿ2
2)(
๐ด2
๐ด1
)๐‘‰ +
๐พ๐œ‡
๐‘Ÿ2
(
๐ด2
๐ด1
)๐‘‰ + ๐œŒ๐ถ3(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)(
๐ด2
๐ด1
)2
๐‘‰2
+
๐œŒ๐›ฝ(
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
)
2(1 + (
๐‘™1
๐‘Ÿ1
+
๐‘™2
๐‘Ÿ2
))
(
๐ด2
๐ด1
)2
๐‘‰2
We have to include the surface tension effects and the equation becomes,
(๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ = ๐†
๐‘ฝ๐Ÿ
๐Ÿ
(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)๐Ÿ
+ ๐Ÿ–๐(
๐’๐Ÿ
๐’“๐Ÿ
๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
๐Ÿ
)(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)๐‘ฝ +
๐‘ฒ๐
๐’“๐Ÿ
(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)๐‘ฝ + ๐†๐‘ช๐Ÿ‘(
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
)(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)๐Ÿ
๐‘ฝ๐Ÿ
+
๐†๐œท(
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
)
๐Ÿ(๐Ÿ + (
๐’๐Ÿ
๐’“๐Ÿ
+
๐’๐Ÿ
๐’“๐Ÿ
))
(
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)๐Ÿ
๐‘ฝ๐Ÿ
Where:
โ„Ž0 =
2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ
๐œŒ๐‘”
(
1
๐‘Ÿ๐‘ฅ
+
1
๐‘Ÿ๐‘ฆ
)
We can go ahead and find the velocity V from the above.
39
How do we write the Bernoulli equation for a variable cross-sectional
area with distance for example for the case of when the pipe is a
conical frustrum?
We can write the Bernoulli equation as an integral as below:
๐‘ƒ + โ„Ž๐œŒ๐‘” + ๐œŒ
๐‘‰2
2
+ 8๐œ‡๐œ‹๐‘‰ โˆซ (
1
๐ด
)๐‘‘๐‘ฅ
๐‘™
0
+
๐พ๐œ‡
๐‘Ÿ
๐‘‰ + ๐œŒ๐ถ3๐‘‰2
โˆซ (
1
๐‘Ÿ
)๐‘‘๐‘ฅ
๐‘™
0
+
๐œŒ๐›ฝ๐‘™
2(๐‘Ÿ + ๐‘™)
๐‘‰2
= ๐ถ๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘™
(๐‘Ÿ + ๐‘™)
=
๐ด๐‘ 
๐ด๐‘‡
Where:
๐ด๐‘  = ๐‘™๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž
๐ด๐‘‡ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž
Or
๐‘ƒ + โ„Ž๐œŒ๐‘” + ๐œŒ
๐‘‰2
2
+ 8๐œ‡๐œ‹๐‘‰ โˆซ (
1
๐ด
)๐‘‘๐‘ฅ
๐‘™
0
+
๐พ๐œ‡
๐‘Ÿ
๐‘‰ + ๐œŒ๐ถ3๐‘‰2
โˆซ (
1
๐‘Ÿ
)๐‘‘๐‘ฅ
๐‘™
0
+
๐œŒ๐›ฝ๐ด๐‘ 
2๐ด๐‘‡
๐‘‰2
= ๐ถ๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
Where:
๐ด๐‘  = ๐‘ค๐‘’๐‘ก๐‘ก๐‘’๐‘‘ ๐‘™๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘“๐‘Ÿ๐‘ข๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘š
๐ด๐‘‡ = ๐‘ค๐‘’๐‘ก๐‘ก๐‘’๐‘‘ ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘“๐‘Ÿ๐‘ข๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘š
In applying the formula above recall that the area and radius r of the conical
frustrum vary with distance x. i.e.
40
๐ด = ๐ด2
๐‘ฅ
๐‘™
+ [1 โˆ’
๐‘ฅ
๐‘™
]๐ด1
And
๐‘Ÿ = ๐‘Ÿ2
๐‘ฅ
๐‘™
+ [1 โˆ’
๐‘ฅ
๐‘™
]๐‘Ÿ1
When the area is not varying, then we arrive back to the original expression.
Using the friction factors for other geometries like the rectangular ducts,
we can use energy conservation techniques used above to develop the
general equation of velocity and even develop the Bernoulli equation for
rectangular ducts.
41
HOW DO WE DEAL WITH PRESSURE GRADIENTS?
Assume constant cross-sectional area and equal spacing as shown of length ๐‘™
Considering the length ๐‘™ to be small
In this example
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)๐‘‰ = 2๐‘”โ„Ž
Assume ๐‘‰1 = ๐‘‰2 = ๐‘‰3 = ๐‘‰4 = ๐‘‰
The equations of head loss become:
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž1 โˆ’ โ„Ž2
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž2 โˆ’ โ„Ž3
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž3 โˆ’ โ„Ž4
42
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž4
โ„Ž1 โˆ’ โ„Ž2
๐‘™
=
โ„Ž2 โˆ’ โ„Ž3
๐‘™
=
โ„Ž3 โˆ’ โ„Ž4
๐‘™
=
โ„Ž4
๐‘™
=
๐‘‰2
2๐‘”๐‘™
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 + ๐›ฝ) +
๐œ‡
๐‘Ÿ๐‘”๐‘™๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = ๐‘š
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘ฝ๐Ÿ
๐Ÿ๐’ˆ
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
) +
๐
๐’“๐’ˆ๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ) ๐‘ฝ =
๐’‰๐Ÿ
๐Ÿ’
โ€ฆ . . ๐’ƒ)
Equation b) was got by adding all the equations of head loss above.
Where ๐‘š = ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก
๐‘š๐‘™ =
โ„Ž1
4
We see that the uniform pressure gradient is only achieved because of the fixed
length intervals.
๐‘‰2
2๐‘”๐‘™
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐‘™๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = ๐‘š
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ โˆ’ 2๐‘”๐‘š๐‘™ = 0
๐Ÿ (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
) ๐‘ฝ = โˆ’
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ) + โˆš(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ))๐Ÿ + ๐Ÿ–๐’ˆ๐’Ž๐’(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
or
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+
โˆš(
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ))๐Ÿ + ๐Ÿ–๐’ˆ๐’Ž๐’(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
๐’‰๐Ÿ
๐Ÿ’
))
๐Ÿ (๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Again, it can be shown after making the assumptions as above that when
8๐‘”
โ„Ž1
4
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
โ‰ช 1
We use the binomial approximation
43
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
๐‘ฝ =
๐Ÿ๐’ˆ๐’Ž๐’
๐Ÿ๐Ÿ”๐๐’
๐’“๐Ÿ๐†
๐‘‰ =
๐‘Ÿ2
๐œŒ๐‘”๐‘š
8๐œ‡
๐‘š =
๐‘‘โ„Ž
๐‘‘๐‘ฅ
๐‘ธ =
๐…๐’“๐Ÿ’
๐Ÿ–๐
๐’…๐‘ท
๐’…๐’™
We notice that Pouiselle flow arrives due to equal spacing of the tubes but
we notice that nonlinear pressure gradients can also be created provided
non equal spacing
We notice
โ„Ž = โˆ’๐‘š๐‘ฅ + โ„Ž1
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž1 โˆ’ โ„Ž2
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž2 โˆ’ โ„Ž3
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž3 โˆ’ โ„Ž4
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = โ„Ž4
Adding all
๐Ÿ’๐‘ฝ๐Ÿ
๐Ÿ๐’ˆ
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
) +
๐Ÿ’๐
๐’“๐’ˆ๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ) ๐‘ฝ = ๐’‰๐Ÿ
We can get V.
For turbulent flow
2(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)๐‘‰ = โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) + โˆš([
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
+ 8๐‘”๐‘š๐‘™(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
44
2(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)๐‘‰ = โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) โˆš1 +
(8๐‘”๐‘š๐‘™)(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
Also, in turbulent flow
8๐‘”๐‘š๐‘™(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
โ‰ซ 1
Where:
๐‘š๐‘™ =
โ„Ž1
4
OR
8๐‘”
โ„Ž1
4
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
โ‰ซ 1
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+ โˆš
(๐Ÿ๐’ˆ๐’Ž๐’)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Or
๐‘ฝ =
โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
+ โˆš
(๐Ÿ๐’ˆ
๐’‰๐Ÿ
๐Ÿ’
)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Got by adding up the equations of head loss above
45
HEAD LOSS
The head loss is given by:
๐’‰ = ๐Ÿ’๐’‡
๐’
๐‘ซ
ร—
๐‘ฝ๐Ÿ
๐Ÿ๐’ˆ
โ€ฆ โ€ฆ โ€ฆ โ€ฆ . .1)
where we substitute for the correct friction factor and get the flow rate. But in
our derivations, we get the head loss as below:
generally,
๐‘‰2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰ = 2๐‘”(โ„Ž1 โˆ’ โ„Ž2)
(โ„Ž1 โˆ’ โ„Ž2) = โ„Ž๐‘’๐‘Ž๐‘‘๐‘™๐‘œ๐‘ ๐‘ 
rearranging
โ„Ž1 โˆ’ โ„Ž2 = [
๐‘‰2
2๐‘”
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐‘”๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) ๐‘‰]
โ„Ž1 โˆ’ โ„Ž2 =
๐‘‰2
2๐‘”
[(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]
from equation 1) above
โ„Ž1 โˆ’ โ„Ž2 = 4๐‘“
๐‘™
๐ท
ร—
๐‘‰2
2๐‘”
=
๐‘‰2
2๐‘”
[(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]
4๐‘“
๐‘™
๐ท
= [(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]
4๐‘“ =
๐ท
๐‘™
+ 4๐ถ3 +
๐›ฝ๐ท
4(๐‘Ÿ + ๐‘™)
+
4๐œ‡
๐‘™๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)
๐’‡ =
๐‘ซ
๐Ÿ’๐’
+ ๐‘ช๐Ÿ‘ +
๐œท๐‘ซ
๐Ÿ๐Ÿ”(๐’“ + ๐’)
+
๐
๐’๐‘ฝ๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)
For laminar flow
๐ท
4๐‘™
โ‰ˆ 0 and
8๐‘™
๐‘Ÿ
+ ๐‘˜ โ‰ˆ
8๐‘™
๐‘Ÿ
and ๐ถ3 โ‰ˆ 0 and
๐›ฝ๐ท
16(๐‘Ÿ+๐‘™)
โ‰ˆ 0
๐‘“ =
8๐œ‡
๐‘‰๐‘Ÿ๐œŒ
๐’‡ =
๐Ÿ๐Ÿ”
๐‘น๐’†๐’…
For turbulent flow, the governing equation was
46
๐‘ฝ(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
) = โˆ’
๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ) + โˆš๐Ÿ๐’ˆ(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)(๐’‰๐Ÿ โˆ’ ๐’‰๐Ÿ)
[๐‘‰(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
= 2๐‘”(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)(โ„Ž1 โˆ’ โ„Ž2)
๐‘‰2
[(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
= 2๐‘”(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)(โ„Ž1 โˆ’ โ„Ž2)
Therefore, head loss โˆ†๐’‰ = (๐’‰๐Ÿ โˆ’ ๐’‰๐Ÿ) is
โˆ†โ„Ž =
๐‘‰2
2๐‘”
[1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
Compare with
โˆ†โ„Ž = 4๐‘“
๐‘™
๐ท
ร—
๐‘‰2
2๐‘”
4๐‘“
๐‘™
๐ท
=
[1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
๐‘“ =
๐ท
4๐‘™
[(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) +
2๐œ‡
๐‘Ÿ๐‘‰๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
(1 +
2๐‘™
๐‘Ÿ
๐ถ3 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
We get this expression for the friction coefficient
๐’‡ =
๐‘ซ
๐Ÿ’๐’
ร—
[(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
) +
๐Ÿ’
๐‘น๐’†๐’…
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)]๐Ÿ
(๐Ÿ +
๐Ÿ๐’
๐’“
๐‘ช๐Ÿ‘ +
๐œท๐’
(๐’“ + ๐’)
)
Comparing the equation below for smooth pipes in turbulent flow with the
Blasius equation, they should give the same value i.e.,
The Blasius Friction factor is:
47
๐‘“ =
0.079
๐‘…๐‘’0.25
For turbulent flow:
๐‘…๐‘’ < 100,000
And the Blasius equation is:
Blasius predicts that turbulent flow equation is [2]
โˆ†๐’‰ =
๐ŸŽ. ๐Ÿ๐Ÿ’๐Ÿ๐†๐ŸŽ.๐Ÿ•๐Ÿ“
๐œ‡๐ŸŽ.๐Ÿ๐Ÿ“
๐†๐’ˆ๐‘ซ๐Ÿ’.๐Ÿ•๐Ÿ“
ร— ๐‘ธ๐Ÿ.๐Ÿ•๐Ÿ“
๐’
๐‘พ๐’‰๐’†๐’“๐’† ๐‘ซ = ๐’…๐’Š๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’๐’‡ ๐’‘๐’Š๐’‘๐’†
The two equations should predict the same flow rate or head loss.
A. For rough pipes
For rough pipes, the friction coefficient is given by:
๐Ÿ
โˆš๐’‡
= ๐Ÿ’. ๐ŸŽ๐’๐’๐’ˆ๐Ÿ๐ŸŽ
๐‘ซ
๐’†
+ ๐Ÿ. ๐Ÿ๐Ÿ–
We notice that the friction factor is independent of the Reynolds number and a
constant for a given diameter for high Reynolds numbers.
From the equation of head loss,
โ„Ž = 4๐‘“
๐‘™
๐ท
ร—
๐‘‰2
2๐‘”
Rearranging, we get:
๐‘ธ๐Ÿ
=
๐‘ซ
๐Ÿ๐†๐’‡
ร— ๐‘จ๐Ÿ
ร—
๐’…๐‘ท
๐’…๐’™
This is the formula for flow rate for which we substitute the friction factor
Recalling from the formulas derived before replacing ๐ถ3 with ๐ถ4 and using the
formula below:
2(1 +
2๐‘™
๐‘Ÿ
๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)๐‘‰ = โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)โˆš(1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
[
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)]2
)
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ถ4 = ๐‘“
48
2 (1 +
2๐‘™
๐‘Ÿ
๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) ๐‘‰ = โˆ’
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) +
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜) โˆš1 +
(1 +
2๐‘™
๐‘Ÿ
๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
) 8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
For turbulent flow
(1 +
2๐‘™
๐‘Ÿ
๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
โ‰ซ 1
And
1 +
(1 +
2๐‘™
๐‘Ÿ ๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
โ‰ˆ
(1 +
2๐‘™
๐‘Ÿ ๐ถ4 +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)8๐‘”โ„Ž
(
2๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜))2
Substituting
๐ถ4 = ๐‘“
๐‘‰ = โˆ’
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)
(1 +
2๐‘™
๐‘Ÿ
๐‘“ +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
+ โˆš
2๐‘”โ„Ž
(1 +
2๐‘™
๐‘Ÿ
๐‘“ +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
For turbulent flow, when,
๐œ‡
๐‘Ÿ๐œŒ
(
8๐‘™
๐‘Ÿ
+ ๐‘˜)
(1 +
2๐‘™
๐‘Ÿ
๐‘“ +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
โ‰ˆ 0
Velocity becomes
๐‘‰ = โˆš
2๐‘”โ„Ž
(1 +
2๐‘™
๐‘Ÿ
๐‘“ +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
)
And if
1 +
2๐‘™
๐‘Ÿ
๐‘“ +
๐›ฝ๐‘™
(๐‘Ÿ + ๐‘™)
โ‰ˆ
2๐‘™
๐‘Ÿ
๐‘“
49
๐‘‰ = โˆš(
2๐‘”โ„Ž
(
2๐‘™
๐‘Ÿ
๐‘“)
)
Rearranging
We get
๐‘ธ๐Ÿ
=
๐‘ซ
๐Ÿ๐†๐’‡
ร— ๐‘จ๐Ÿ
ร—
๐’…๐‘ท
๐’…๐’™
Which is the same as that we got by rearranging the head loss.
So generally, for rough pipes the velocity is given by:
๐Ÿ(๐Ÿ +
๐Ÿ๐’
๐’“
๐’‡ +
๐œท๐’
(๐’“ + ๐’)
)๐‘ฝ = โˆ’
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ) + โˆš([
๐Ÿ๐
๐’“๐†
(
๐Ÿ–๐’
๐’“
+ ๐’Œ)]๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“
๐’‡ +
๐œท๐’
(๐’“ + ๐’)
)(๐Ÿ–๐’ˆ๐’‰))
or
๐‘ฝ =
โˆ’
๐
๐’“๐† (
๐Ÿ–๐’
๐’“ + ๐’Œ)
(๐Ÿ +
๐Ÿ๐’
๐’“
๐’‡ +
๐œท๐’
(๐’“ + ๐’)
)
+
โˆš[
๐Ÿ๐
๐’“๐† (
๐Ÿ–๐’
๐’“ + ๐’Œ)]๐Ÿ + (๐Ÿ +
๐Ÿ๐’
๐’“ ๐’‡ +
๐œท๐’
(๐’“ + ๐’)
)(๐Ÿ–๐’ˆ๐’‰)
๐Ÿ (๐Ÿ +
๐Ÿ๐’
๐’“
๐’‡ +
๐œท๐’
(๐’“ + ๐’)
)
Where ๐‘“ is given by:
๐Ÿ
โˆš๐’‡
= ๐Ÿ’. ๐ŸŽ๐’๐’๐’ˆ๐Ÿ๐ŸŽ
๐‘ซ
๐’†
+ ๐Ÿ. ๐Ÿ๐Ÿ–
The derivation of the above formula can be got from our analysis we did before
concerning derivation of the Reynolds number.
We can extend the above energy conservation techniques for flow in a
siphon and even derive the Darcy flow equation for porous media.
50
THEORY OF MOTION OF PARTICLES IN VISCOUS
FLUIDS
Before we look at modelling a falling sphere, let us first look at a graph of drag
coefficient against Reynolds number [1] for a sphere:
Consider a falling sphere:
The drag force is given by:
๐น =
1
2
๐ถ๐ท๐ด๐œŒ๐‘‰2
Where:
๐ด = ๐‘๐‘Ÿ๐‘œ๐‘—๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž
The forces acting on it are shown below:
51
๐‘Š = ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก = ๐‘š๐‘” = ๐œŒ๐‘ ๐‘‰0๐‘”
๐‘ˆ = ๐‘ข๐‘๐‘กโ„Ž๐‘Ÿ๐‘ข๐‘ ๐‘ก = ๐œŒ๐‘‰0๐‘”
๐น๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ =
1
2
๐ถ2๐ด๐œŒ๐‘‰2
๐น
๐‘ฃ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ =
1
2
๐ถ๐‘‘๐ด๐œŒ๐‘‰2
Where:
๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘
๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
๐‘‰0 = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค
We say:
๐’Ž
๐’…๐‘ฝ
๐’…๐’•
= ๐‘พ โˆ’ ๐‘ผ โˆ’
๐Ÿ
๐Ÿ
๐‘ช๐’…๐‘จ๐†๐‘ฝ๐Ÿ
โˆ’
๐Ÿ
๐Ÿ
๐‘ช๐Ÿ๐‘จ๐†๐‘ฝ๐Ÿ
As before:
๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค
๐ถ๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค
๐ถ๐‘‘ =
24
๐‘…๐‘’
=
24๐œ‚
๐œŒ๐‘‰๐‘‘
=
12๐œ‚
๐œŒ๐‘‰๐‘Ÿ
๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘
52
๐ด = ๐œ‹๐‘Ÿ2
For a sphere we shall use ๐ถ2 = 0.4 which is the value of
๐ถ2 ๐‘“๐‘œ๐‘Ÿ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 500 < ๐‘…๐‘’๐‘‘ < 105
As in the diagram above of drag against Reynolds number.
๐‘…๐‘’ =
๐œŒ๐‘‰๐‘‘
๐œ‚
๐‘š =
4
3
๐œ‹๐‘Ÿ3
๐œŒ๐‘ 
๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
Substituting, we get:
๐’Ž
๐’…๐‘ฝ
๐’…๐’•
= ๐’Ž๐’ˆ โˆ’ ๐†๐‘ฝ๐ŸŽ๐’ˆ โˆ’
๐Ÿ
๐Ÿ
๐‘ช๐’…๐‘จ๐†๐‘ฝ๐Ÿ
โˆ’
๐Ÿ
๐Ÿ
๐‘ช๐Ÿ๐‘จ๐†๐‘ฝ๐Ÿ
Dividing through by m and multiplying through by 2, we get
๐Ÿ
๐’…๐‘ฝ
๐’…๐’•
= ๐Ÿ(
๐†๐’” โˆ’ ๐†
๐†๐’”
)๐’ˆ โˆ’
๐Ÿ—๐œผ
๐’“๐Ÿ๐†๐’”
๐‘ฝ โˆ’
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐‘ฝ๐Ÿ
NB
The above differential equation can be solved to get the velocity as a function of
time.
What happens when the body stops accelerating (i.e., at terminal velocity)?
๐‘‘๐‘‰
๐‘‘๐‘ก
= 0
We get in steady state (i.e., when the acceleration is zero), we reach terminal
velocity
0 = 2(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)๐‘” โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
๐‘‰2
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
๐‘‰2
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’ 2(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)๐‘” = 0
This is a quadratic formula and the terminal velocity can be got as:
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+ โˆš((
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
)2 +
6๐ถ2๐œŒ๐‘”
๐‘Ÿ๐œŒ๐‘ 
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
53
๐‘‰ = โˆ’
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
+ โˆš(
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐œŒ๐‘ ๐‘”
3๐ถ2๐œŒ
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
๐‘ฝ = โˆ’
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš(
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“(๐†๐’” โˆ’ ๐†)๐’ˆ
๐Ÿ‘๐‘ช๐Ÿ๐†
)
The above is the terminal velocity.
We are going to show that provided some condition is met, the terminal velocity
can be either Stokeโ€™s flow or turbulent flow.
Coming back to the equation above below:
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+ โˆš((
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
)2 +
6๐ถ2๐œŒ๐‘”
๐‘Ÿ๐œŒ๐‘ 
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
In the velocity equation above, let us factorize
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
out of the square root and
get
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 +
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
The governing term
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
If the term below under the square root
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
) โ‰ช 1
We shall arrive at Stokeโ€™s flow.
We can use the binomial approximation and get
(1 + ๐‘ฅ)๐‘›
โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1
Where:
๐‘› =
1
2
๐‘ฅ =
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
54
We use the binomial approximation
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
โˆš(1 +
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
)(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
) โ‰ˆ (1 +
๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
Upon substitution in the velocity equation, we get
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 +
๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
(1 +
๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
Therefore, upon simplification, the terminal velocity will be
๐‘‰ =
2
9
๐‘Ÿ2
๐œŒ๐‘ ๐‘”
๐œ‚
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐‘ฝ =
๐Ÿ
๐Ÿ—
๐’“๐Ÿ
๐’ˆ
๐œผ
(๐†๐’” โˆ’ ๐†)
Which is Stokeโ€™s flow.
Also, if
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
) โ‰ซ 1
We can say
(1 +
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)) โ‰ˆ
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
The velocity becomes:
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 +
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
))
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
๐‘‰ = โˆ’
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
โˆš
2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3
27๐œ‚2
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
Upon simplification, the velocity becomes:
55
๐‘‰ = โˆ’
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
+ โˆš
8๐‘”๐‘Ÿ๐œŒ๐‘ 
3๐ถ2๐œŒ
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐‘ฝ = โˆ’
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš
๐Ÿ–๐’ˆ๐’“
๐Ÿ‘๐‘ช๐Ÿ๐†
(๐†๐’” โˆ’ ๐†)
The above is the terminal velocity in turbulent flow
If
โˆ’
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
โ‰ˆ 0
Then the terminal velocity becomes:
๐‘ฝ = โˆš
๐Ÿ–๐’ˆ๐’“(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
The above is the terminal velocity in turbulent flow:
It can be got by saying:
๐‘š๐‘” โˆ’ ๐‘ˆ =
1
2
๐ถ0๐ด๐œŒ๐‘‰2
๐‘ˆ = ๐‘ข๐‘๐‘กโ„Ž๐‘Ÿ๐‘ข๐‘ ๐‘ก =
4
3
๐œ‹๐‘Ÿ3
๐œŒ๐‘”
4
3
๐œ‹๐‘Ÿ3(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘” =
1
2
๐ถ0๐œ‹๐‘Ÿ2
๐œŒ๐‘‰2
Since ๐ถ0 = 0.4
In turbulent flow
We get
๐‘‰ = โˆš
8
3๐ถ0
๐‘Ÿ๐‘”
(๐œŒ๐‘  โˆ’ ๐œŒ)
๐œŒ
LET US SOLVE THE DIFFERENTIAL EQUATION BELOW AS GOT ABOVE;
๐Ÿ
๐’…๐‘ฝ
๐’…๐’•
= ๐Ÿ(
๐†๐’” โˆ’ ๐†
๐†๐’”
)๐’ˆ โˆ’
๐Ÿ—๐œผ
๐’“๐Ÿ๐†๐’”
๐‘ฝ โˆ’
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐‘ฝ๐Ÿ
๐‘‘๐‘‰
๐‘‘๐‘ก
= ๐ด๐‘” โˆ’ ๐ต๐‘‰ โˆ’ ๐ถ๐‘‰2
56
Where:
๐ด = 2(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐ต =
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
๐ถ =
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โˆซ
๐‘‘๐‘‰
๐ด๐‘” โˆ’ ๐ต๐‘‰ โˆ’ ๐ถ๐‘‰2
=
1
2
โˆซ ๐‘‘๐‘ก
โˆซ
๐‘‘๐‘‰
โˆ’๐ถ(๐‘‰2 +
๐ต
๐ถ
๐‘‰ โˆ’
๐ด
๐ถ
๐‘”)
=
1
2
โˆซ ๐‘‘๐‘ก
โˆซ
๐‘‘๐‘‰
๐‘‰2 +
๐ต
๐ถ
๐‘‰ โˆ’
๐ด
๐ถ
๐‘”
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
Let
๐ต
๐ถ
= ๐‘š
๐ด
๐ถ
๐‘” = ๐‘›
โˆซ
๐‘‘๐‘‰
๐‘‰2 + ๐‘š๐‘‰ โˆ’ ๐‘›
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
๐‘‰2
+ ๐‘š๐‘‰ โˆ’ ๐‘› = (๐‘‰ +
๐‘š
2
)2
โˆ’
๐‘š2
4
โˆ’ ๐‘› = (๐‘‰ +
๐‘š
2
)2
โˆ’ (
๐‘š2
4
+ ๐‘›)
โˆซ
๐‘‘๐‘‰
(๐‘‰ +
๐‘š
2
)2 โˆ’ (
๐‘š2
4
+ ๐‘›)
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
Let
๐‘ƒ = (
๐‘š2
4
+ ๐‘›)
โˆซ
๐‘‘๐‘‰
(๐‘‰ +
๐‘š
2
)2 โˆ’ (โˆš๐‘ƒ)2
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
โˆซ
๐‘‘๐‘‰
(๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ)(๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ)
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
57
1
(๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ)(๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ)
=
๐ฟ
(๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ)
+
๐พ
(๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ)
๐ฟ =
1
2โˆš๐‘ƒ
๐พ =
โˆ’1
2โˆš๐‘ƒ
1
2โˆš๐‘ƒ
โˆซ
๐‘‘๐‘‰
(๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ)
โˆ’
1
2โˆš๐‘ƒ
โˆซ
๐‘‘๐‘‰
(๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ)
= โˆ’
๐ถ
2
โˆซ ๐‘‘๐‘ก
ln (๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ) โˆ’ ๐‘™๐‘› (๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ) = โˆ’๐ถโˆš๐‘ƒ๐‘ก + ๐ท
๐ท is an integration constant
๐‘Ž๐‘ก ๐‘ก = 0 , ๐‘‰ = 0
Upon substitution, we get
ln (
๐‘š
2
โˆ’ โˆš๐‘ƒ
๐‘š
2
+ โˆš๐‘ƒ
) = ๐ท
The velocity equation becomes:
ln [(
๐‘š
2
+ โˆš๐‘ƒ
๐‘š
2
โˆ’ โˆš๐‘ƒ
) (
๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ
๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ
)] = โˆ’๐ถโˆš๐‘ƒ๐‘ก
๐‘š =
๐ต
๐ถ
=
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
๐ด = 2(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐ถ =
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
๐‘ƒ = (
๐‘š2
4
+ ๐‘›)
๐‘› =
๐ด
๐ถ
๐‘” =
8๐‘Ÿ๐‘”
3๐ถ2๐œŒ
(๐œŒ๐‘  โˆ’ ๐œŒ)
Therefore
58
๐‘ƒ =
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
Upon substitution, the velocity becomes
ln [(
๐‘š
2
+ โˆš๐‘ƒ
๐‘š
2
โˆ’ โˆš๐‘ƒ
) (
๐‘‰ +
๐‘š
2
โˆ’ โˆš๐‘ƒ
๐‘‰ +
๐‘š
2
+ โˆš๐‘ƒ
)] = โˆ’๐ถโˆš๐‘ƒ๐‘ก
ln [
(
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
+ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
โˆ’ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
) (
๐‘‰ +
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
โˆ’ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
๐‘‰ +
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
+ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
)
] = โˆ’
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
๐‘ก
(
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
โˆ’ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
) (
๐‘ฝ +
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
โˆ’ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐‘ฝ +
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
)
= ๐’†
โˆ’
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’”โˆ’๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐’•
The velocity can be got by making V the subject of the formula above.
๐ด๐‘ก ๐‘ก = โˆž ๐‘œ๐‘Ÿ ๐‘Ž๐‘ก ๐‘ ๐‘ก๐‘’๐‘Ž๐‘‘๐‘ฆ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’
When the exponential term below
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
๐‘ก โ‰ˆ โˆž
The exponential becomes zero
Since ๐‘’โˆ’โˆž
= 0
and we get
๐‘‰ +
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
โˆ’ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
= 0
๐‘‰ = โˆ’
6๐œ‚
๐‘Ÿ๐ถ2๐œŒ
+ โˆš
36๐œ‚2
๐‘Ÿ2๐ถ2
2
๐œŒ2
+
8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)
3๐ถ2๐œŒ
Which is what we got before as the terminal velocity.
Knowing the velocity at a particular depth h, we can get the time taken to fall
to depth h.
Or
59
We can make velocity the subject of the formula in the expression above of
velocity as a function of time and then integrate knowing that
๐‘‘๐‘ฅ
๐‘‘๐‘ก
= ๐‘‰
To get ๐‘ฅ as a function of time t.
Similarly, we can use energy conservation techniques to get the velocity as a
function of height h and then using the expression above, we can tell the time
taken to achieve a particular velocity or height h.
This is what we are going to do below:
Consider a falling sphere:
If there were viscous effects in an unbounded medium, we conserve energy
changes and say:
๐๐จ๐ญ๐ž๐ง๐ญ๐ข๐š๐ฅ ๐ž๐ง๐ž๐ซ๐ ๐ฒ ๐œ๐ก๐š๐ง๐ ๐ž = ๐Š๐ข๐ง๐ž๐ญ๐ข๐œ ๐ž๐ง๐ž๐ซ๐ ๐ฒ ๐ ๐š๐ข๐ง๐ž๐ + ๐ฐ๐จ๐ซ๐ค ๐๐จ๐ง๐ž ๐š๐ ๐š๐ข๐ง๐ฌ๐ญ ๐ฏ๐ข๐ฌ๐œ๐จ๐ฎ๐ฌ ๐Ÿ๐จ๐ซ๐œ๐ž๐ฌ ๐š๐ง๐ ๐ฎ๐ฉ๐ญ๐ก๐ซ๐ฎ๐ฌ๐ญ
๐‘š๐‘”โ„Ž =
1
2
๐‘š๐‘‰2
+ ๐œŒ๐‘‰0๐‘”๐‘™ +
1
2
๐ถ๐‘‘๐ด๐œŒ๐‘‰2
ร— ๐‘™ +
1
2
๐ถ2๐ด๐œŒ๐‘‰2
ร— ๐‘™
๐‘‰0 =
4
3
๐œ‹๐‘Ÿ3
Where:
๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค = 0.4
๐ถ๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค
๐ถ๐‘‘ =
24
๐‘…๐‘’
=
24๐œ‚
๐œŒ๐‘‰๐‘‘
=
12๐œ‚
๐œŒ๐‘‰๐‘Ÿ
60
๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘
๐‘™ = โ„Ž
๐’‰ is the vertical depth below the point of release
๐ด = ๐œ‹๐‘Ÿ2
๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค
For a sphere
๐ถ2 = 0.4
Where:
๐‘…๐‘’ =
๐œŒ๐‘‰๐‘‘
๐œ‚
๐‘š๐‘”โ„Ž =
1
2
๐‘š๐‘‰2
+ ๐œŒ๐‘‰0๐‘”โ„Ž +
1
2
๐ถ๐‘‘๐ด๐œŒ๐‘‰2
ร— โ„Ž +
1
2
๐ถ2๐ด๐œŒ๐‘‰2
ร— โ„Ž
๐‘š =
4
3
๐œ‹๐‘Ÿ3
๐œŒ๐‘ 
๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
๐ด = ๐œ‹๐‘Ÿ2
Substituting, we get:
4
3
๐œ‹๐‘Ÿ3(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘”โ„Ž =
1
2
ร—
4
3
๐œ‹๐‘Ÿ3
๐œŒ๐‘ ๐‘‰2
+
1
2
ร—
12๐œ‡
๐œŒ๐‘‰๐‘Ÿ
ร— ๐œ‹๐‘Ÿ2
๐œŒ๐‘‰2
ร— โ„Ž +
1
2
๐ถ2๐œ‹๐‘Ÿ2
๐œŒ๐‘‰2
ร— โ„Ž
Simplifying we get
๐‘‰2
(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) +
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’ 2๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž = 0
In the expression above, if h is large such that
1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž โ‰ˆ
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž
We get
๐‘‰2
(
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) +
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’ 2๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž = 0
And get
๐‘‰2
(
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
) +
9๐œ‚
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’ 2๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
) = 0
61
The above is a quadratic equation and the velocity V got will be independent of
height h hence it will be the terminal velocity as got before.
๐‘ฝ = โˆ’
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš(
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“(๐†๐’” โˆ’ ๐†)๐’ˆ
๐Ÿ‘๐‘ช๐Ÿ๐†
)
Okay now coming back to
๐‘‰2
(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) +
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
๐‘‰ โˆ’ 2๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž = 0
The above is a quadratic formula and the solution is:
2 (1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) ๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+ โˆš((
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
)2 + 8๐‘”โ„Ž(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)) โ€ฆ โ€ฆ . . ๐‘ด
๐‘ฝ = โˆ’
๐Ÿ—๐œผ๐’‰
๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
+
โˆš((
๐Ÿ—๐œผ๐’‰
๐’“๐Ÿ๐†๐’”
)๐Ÿ + ๐Ÿ–๐’ˆ(
๐†๐’” โˆ’ ๐†
๐†๐’”
)๐’‰(๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰))
๐Ÿ (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
The above is the velocity of a sphere in a viscous fluid at depth h from the
initial point
h is the vertical depth from the point of release.
Laminar flow occurs when
๐‘…๐‘’ < ๐‘…๐‘’๐‘๐‘Ÿ
Where:
๐‘…๐‘’๐‘๐‘Ÿ is the critical Reynolds number below which laminar flow acts
We shall calculate the value of ๐‘…๐‘’๐‘๐‘Ÿ in the text to follow.
For laminar or Stokesโ€™s flow
๐‘‰ =
2
9
๐‘Ÿ2
(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘”
๐œ‚
๐‘…๐‘’ =
๐œŒ๐‘‰๐‘‘
๐œ‚
= ๐œŒ ร—
2
9
๐‘Ÿ2 (๐œŒ๐‘  โˆ’ ๐œŒ)๐‘”
๐œ‚
๐œ‚
ร— 2๐‘Ÿ < ๐‘…๐‘’๐‘๐‘Ÿ
Therefore
62
๐Ÿ’๐’“๐Ÿ‘
๐†(๐†๐’” โˆ’ ๐†)๐’ˆ
๐Ÿ—๐œผ๐Ÿ๐‘น๐’†๐’„๐’“
< ๐Ÿ
That is the condition for laminar flow or Stokeโ€™s flow
Going back to equation M and factorizing out ((
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
)2
we get
2 (1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) ๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 + 8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2๐œŒ๐‘ 
9๐œ‚โ„Ž
)2)
If the term
8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚โ„Ž
)2
(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) โ‰ช 1
Is very small, we can use the approximation
(1 + ๐‘ฅ)๐‘›
โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1
I.e., if
8๐‘”
โ„Ž
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚
)2
(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) โ‰ช 1
And if
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž > 1
So that
(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) โ‰ˆ
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž
We get
8๐‘”
โ„Ž
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚
)2
(
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) โ‰ช 1
And get
๐Ÿ๐‘ช๐Ÿ๐’“๐Ÿ‘
๐†(๐†๐’” โˆ’ ๐†)๐’ˆ
๐Ÿ๐Ÿ•๐œผ๐Ÿ
< ๐Ÿ
Comparing with the condition for laminar flow derived before
๐Ÿ’๐’“๐Ÿ‘
๐†(๐†๐’” โˆ’ ๐†)๐’ˆ
๐Ÿ—๐œผ๐Ÿ๐‘น๐’†๐’„๐’“
< ๐Ÿ
We get
63
4
9๐‘…๐‘’๐‘๐‘Ÿ
=
2๐ถ2
27
Substituting
๐ถ2 = 0.4
We get
๐‘น๐’†๐’„๐’“ = ๐Ÿ๐Ÿ“
The implication is that the critical Reynolds number for laminar flow is 15
The governing number of falling for a sphere is:
๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ =
๐Ÿ–๐’ˆ
๐’‰
(
๐†๐’” โˆ’ ๐†
๐†๐’”
)(๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)(
๐’“๐Ÿ
๐†๐’”
๐Ÿ—๐œผ
)๐Ÿ
Or
๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ =
๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘
๐œผ๐Ÿ
[
๐Ÿ๐’“๐†๐’”
๐Ÿ–๐Ÿ๐’‰
+
๐‘ช๐Ÿ๐†
๐Ÿ“๐Ÿ’
]
If
4๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘Ÿ3
๐œ‚2
[
2๐‘Ÿ๐œŒ๐‘ 
81โ„Ž
+
๐ถ2๐œŒ
54
] โ‰ช 1
2 (1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) ๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 + 8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2๐œŒ๐‘ 
9๐œ‚โ„Ž
)2)
We use the binomial approximation
โˆš1 + ๐‘ฅ โ‰ˆ 1 +
1
2
๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1
โˆš(1 + 8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2๐œŒ๐‘ 
9๐œ‚โ„Ž
)2) โ‰ˆ (1 + 4๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚โ„Ž
)2
)
And get
2(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
(1 + 4๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚โ„Ž
)2
)
Making the substitution 1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž โ‰ˆ
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž we get
2
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
(1 + 4๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚โ„Ž
)2
)
64
๐‘ฝ =
๐Ÿ
๐Ÿ—
๐’“๐Ÿ
(๐†๐’” โˆ’ ๐†)๐’ˆ
๐œผ
๐’…๐’‰
๐’…๐’•
=
๐Ÿ
๐Ÿ—
๐’“๐Ÿ
(๐†๐’” โˆ’ ๐†)๐’ˆ
๐œผ
Using the number below:
๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ =
๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘
๐œผ๐Ÿ
[
๐Ÿ๐’“๐†๐’”
๐Ÿ–๐Ÿ๐’‰
+
๐‘ช๐Ÿ๐†
๐Ÿ“๐Ÿ’
]
We can tell when Stokeโ€™s flow or laminar flow begins by substituting the
changing increasing value of h in the number above until h is such that the
number is far less than one and then there, we can say the sphere is in
laminar flow.
Also given a fixed height h for example a fluid in a container, we can determine
the radius and density of the sphere for which Stokeโ€™s flow will be observed.
To get the time taken to reach Stokeโ€™s flow, we can integrate the velocity
equation below:
๐‘ฝ๐Ÿ = โˆ’
๐Ÿ—๐œผ๐’‰
๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
+
โˆš((
๐Ÿ—๐œผ๐’‰
๐’“๐Ÿ๐†๐’”
)๐Ÿ + ๐Ÿ–๐’ˆ(
๐†๐’” โˆ’ ๐†
๐†๐’”
)๐’‰(๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰))
๐Ÿ (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
As
๐‘‘โ„Ž
๐‘‘๐‘ก
= ๐‘‰1
From an initial height to a height when Stokeโ€™s flow begins or we can use
another simpler method as will be shown later. After that time on to
afterwards, the sphere will undergo terminal velocity as:
๐‘ฝ =
๐Ÿ
๐Ÿ—
๐’“๐Ÿ
(๐†๐’” โˆ’ ๐†)๐’ˆ
๐œผ
๐’…๐’‰
๐’…๐’•
=
๐Ÿ
๐Ÿ—
๐’“๐Ÿ
(๐†๐’” โˆ’ ๐†)๐’ˆ
๐œผ
This is the formula for terminal velocity of a sphere i.e., Stokeโ€™s law for laminar
flow/fall.
The integration of the above velocity equation is difficult, so we shall see an
alternative method later in the text later.
65
Also, when
8๐‘”
โ„Ž
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚
)2
โ‰ซ 1
Or when
๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘
๐œผ๐Ÿ
[
๐Ÿ๐’“๐†๐’”
๐Ÿ–๐Ÿ๐’‰
+
๐‘ช๐Ÿ๐†
๐Ÿ“๐Ÿ’
] โ‰ซ ๐Ÿ
Then from
2 (1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) ๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
โˆš(1 + 8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2๐œŒ๐‘ 
9๐œ‚โ„Ž
)2)
1 + 8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚โ„Ž
)2
โ‰ˆ
8๐‘”
โ„Ž
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2
๐œŒ๐‘ 
9๐œ‚
)2
Upon substitution, we get;
2 (1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž) ๐‘‰ = โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
+
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
โˆš(8๐‘”(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)โ„Ž(1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)(
๐‘Ÿ2๐œŒ๐‘ 
9๐œ‚โ„Ž
)2)
2๐‘‰ =
โˆ’
9๐œ‚โ„Ž
๐‘Ÿ2๐œŒ๐‘ 
(1 +
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
โ„Ž)
+ โˆš
(8๐‘”โ„Ž)
(1 +
3๐ถ2๐œŒ
2๐‘Ÿ๐œŒ๐‘ 
โ„Ž)
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐‘ฝ =
โˆ’๐Ÿ—๐œผ๐’‰
๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
+ โˆš
๐Ÿ๐’ˆ๐’‰
(๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
(
๐†๐’” โˆ’ ๐†
๐†๐’”
)
When h is large such that
1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž โ‰ˆ
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž
The velocity becomes:
๐‘‰ =
โˆ’9๐œ‚โ„Ž
2๐‘Ÿ2๐œŒ๐‘  (
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)
+ โˆš
2๐‘”โ„Ž
(
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž)
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
66
๐‘‰ =
โˆ’9๐œ‚
2๐‘Ÿ2๐œŒ๐‘  (
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
)
+ โˆš
2๐‘”
(
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
)
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
) โ€ฆ โ€ฆ ๐‘ณ
๐‘‰ =
โˆ’6๐œ‚
๐ถ2๐‘Ÿ๐œŒ
+ โˆš
8
3๐ถ2
๐‘Ÿ๐‘”
๐œŒ๐‘ 
๐œŒ
(
๐œŒ๐‘  โˆ’ ๐œŒ
๐œŒ๐‘ 
)
๐‘ฝ =
โˆ’๐Ÿ”๐œผ
๐‘ช๐Ÿ๐’“๐†
+ โˆš
๐Ÿ–
๐Ÿ‘๐‘ช๐Ÿ
๐’“๐’ˆ
(๐†๐’” โˆ’ ๐†)
๐†
The above velocity is the terminal velocity reached which is what we got before
for turbulent flow.
If
โˆ’6๐œ‚
๐ถ2๐‘Ÿ๐œŒ
โ‰ช 1 ๐‘–๐‘  ๐‘ ๐‘š๐‘Ž๐‘™๐‘™
Then
โˆ’6๐œ‚
๐ถ2๐‘Ÿ๐œŒ
โ‰ˆ 0
Then we get
๐‘ฝ = โˆš
๐Ÿ–
๐Ÿ‘๐‘ช๐Ÿ
๐’“๐’ˆ
(๐†๐’” โˆ’ ๐†)
๐†
Comparing with the governing equation for turbulent flow drag,
So
Comparing with
๐‘‰ = โˆš
8
3๐ถ2
๐‘Ÿ๐‘”
(๐œŒ๐‘  โˆ’ ๐œŒ)
๐œŒ
๐ถ0 = ๐ถ2
So, we have proved that ๐ถ2 is the drag coefficient in turbulent flow.
Again, we can use the number:
67
๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ =
๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘
๐œผ๐Ÿ
[
๐Ÿ๐’“๐†๐’”
๐Ÿ–๐Ÿ๐’‰
+
๐‘ช๐Ÿ๐†
๐Ÿ“๐Ÿ’
]
And substitute in the increasing value of h and then determine the point h
when the number will be far greater than 1 and also when
1 +
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž โ‰ˆ
3๐ถ2๐œŒ
4๐‘Ÿ๐œŒ๐‘ 
โ„Ž
. At this point, terminal velocity will be reached and from that point afterwards,
the sphere will obey
๐‘‘โ„Ž
๐‘‘๐‘ก
= ๐‘‰๐‘‡
Where ๐‘‰๐‘‡ = ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
This is the equation for turbulent flow for high Reynolds number
Generally, the equation of velocity is:
๐‘ฝ = โˆ’
๐Ÿ—๐œผ๐’‰
๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
+
โˆš((
๐Ÿ—๐œผ๐’‰
๐’“๐Ÿ๐†๐’”
)๐Ÿ + ๐Ÿ–๐’ˆ(
๐†๐’” โˆ’ ๐†
๐†๐’”
)๐’‰(๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰))
๐Ÿ (๐Ÿ +
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
๐’‰)
The equation above also works for transition flow also which is in-between
laminar and turbulent flow.
The equation above can be integrated from an initial height โ„Ž0 to a given height
h and the time taken for the sphere to fall can be found as
๐‘‘โ„Ž
๐‘‘๐‘ก
= ๐‘‰3
The integration would be difficult but we can use the method below: Recall we
got the velocity as a function of time as:
๐ฅ๐ง [
(
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
โˆ’ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
) (
๐‘ฝ +
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
โˆ’ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐‘ฝ +
๐Ÿ”๐œผ
๐’“๐‘ช๐Ÿ๐†
+ โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
)
] = โˆ’
๐Ÿ‘๐‘ช๐Ÿ๐†
๐Ÿ’๐’“๐†๐’”
โˆš
๐Ÿ‘๐Ÿ”๐œผ๐Ÿ
๐’“๐Ÿ๐‘ช๐Ÿ
๐Ÿ
๐†๐Ÿ
+
๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†)
๐Ÿ‘๐‘ช๐Ÿ๐†
๐’•
Knowing the velocity as a function of h as above, we can substitute the known
velocity at height h and then tell the time taken to reach that velocity (or
height) from the equation above of velocity against time.
If we were working in a vacuum so that ๐† = ๐ŸŽ and ๐œผ = ๐ŸŽ , we get
68
๐‘š
๐‘‘๐‘‰
๐‘‘๐‘ก
= ๐‘š๐‘”
๐’…๐‘ฝ
๐’…๐’•
= ๐’ˆ
Which is independent of the body dimensions. So, in a vacuum, bodies will fall
at the same rate.
We can also calculate the velocity when the gravity is varying using:
๐’ˆ = โˆš(
๐‘ฎ๐‘ด
๐’“๐Ÿ
)
69
REFERENCES
[1] C. E. R. E. G. L. James R.Welty, "DRAG," in Fundamentals of Momentum, Heat and Mass Transfer,
Oregon, John Wiley & Sons, Inc., 2008, p. 141.
[2] Chegg, "Chegg," Chegg, 2022. [Online]. Available: https://www.chegg.com/homework-
help/questions-and-answers/class-showed-hagen-poiseuille-equation-analytical-expression-
pressure-drop-laminar-flow-re-q18503972. [Accessed 11 4 2022].

Mais conteรบdo relacionado

Mais procurados

Hydrostatics 160311202946
Hydrostatics 160311202946Hydrostatics 160311202946
Hydrostatics 160311202946
PRABIR DATTA
ย 
Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
sushma chinta
ย 

Mais procurados (20)

WHAT IS SPRINGS (classification & details)
 WHAT IS SPRINGS (classification & details) WHAT IS SPRINGS (classification & details)
WHAT IS SPRINGS (classification & details)
ย 
flow through venturimeter
flow through venturimeterflow through venturimeter
flow through venturimeter
ย 
Durgapur Steel Thermal Power Station (DSTPS), DVC, Andal
Durgapur Steel Thermal Power Station (DSTPS), DVC, AndalDurgapur Steel Thermal Power Station (DSTPS), DVC, Andal
Durgapur Steel Thermal Power Station (DSTPS), DVC, Andal
ย 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse Turbine
ย 
Frequency Meter : Working principle
Frequency Meter : Working principleFrequency Meter : Working principle
Frequency Meter : Working principle
ย 
Hydrostatics 160311202946
Hydrostatics 160311202946Hydrostatics 160311202946
Hydrostatics 160311202946
ย 
Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
ย 
Design for fluctuating loads
Design for fluctuating loadsDesign for fluctuating loads
Design for fluctuating loads
ย 
Cam & Profile
Cam & Profile Cam & Profile
Cam & Profile
ย 
Deflection of curved beam |Strength of Material Laboratory
Deflection of curved beam |Strength of Material LaboratoryDeflection of curved beam |Strength of Material Laboratory
Deflection of curved beam |Strength of Material Laboratory
ย 
Reaction turbine
Reaction turbineReaction turbine
Reaction turbine
ย 
Pelton wheel experiment
Pelton wheel experimentPelton wheel experiment
Pelton wheel experiment
ย 
List of formulae (spur gear)
List of formulae (spur gear)List of formulae (spur gear)
List of formulae (spur gear)
ย 
Shaft couplings 3 rigid flange coupling
Shaft couplings 3   rigid flange couplingShaft couplings 3   rigid flange coupling
Shaft couplings 3 rigid flange coupling
ย 
punch and die design-1.pptx
punch and die design-1.pptxpunch and die design-1.pptx
punch and die design-1.pptx
ย 
To make the butt joint using the two given metal strips.
            To make the butt joint using the two given metal strips.            To make the butt joint using the two given metal strips.
To make the butt joint using the two given metal strips.
ย 
Selection of Turbine | Fluid Mechanics
Selection of Turbine | Fluid MechanicsSelection of Turbine | Fluid Mechanics
Selection of Turbine | Fluid Mechanics
ย 
Design of clutch theory Prof. Sagar a Dhotare
Design of clutch theory   Prof. Sagar a DhotareDesign of clutch theory   Prof. Sagar a Dhotare
Design of clutch theory Prof. Sagar a Dhotare
ย 
Vibration measuring instruments
Vibration measuring instrumentsVibration measuring instruments
Vibration measuring instruments
ย 
Unit 5.1 Riveted joints
Unit 5.1 Riveted jointsUnit 5.1 Riveted joints
Unit 5.1 Riveted joints
ย 

Semelhante a DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL VELOCITY DERIVATION.pdf

Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
Christopher Wai
ย 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
cfisicaster
ย 
Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
IJSRED
ย 

Semelhante a DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL VELOCITY DERIVATION.pdf (20)

FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
ย 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdf
ย 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
ย 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
ย 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
ย 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
ย 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
ย 
Laminar Flow.pptx
Laminar Flow.pptxLaminar Flow.pptx
Laminar Flow.pptx
ย 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
ย 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
ย 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
ย 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
ย 
Homework transport phenomena
Homework transport phenomenaHomework transport phenomena
Homework transport phenomena
ย 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
ย 
Dynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical EngineeringDynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical Engineering
ย 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
ย 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ย 
Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newtonโ€™s Law Of Cooling and Ele...
ย 
lec3.ppt
lec3.pptlec3.ppt
lec3.ppt
ย 

Mais de Wasswaderrick3

GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
Wasswaderrick3
ย 
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdfTRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
Wasswaderrick3
ย 

Mais de Wasswaderrick3 (13)

RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
ย 
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
ย 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
ย 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
ย 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
ย 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
ย 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
ย 
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdfTRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
ย 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdf
ย 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdf
ย 
Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...
ย 
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ย 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdf
ย 

รšltimo

Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
SUHANI PANDEY
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 

รšltimo (20)

Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
ย 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
ย 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
ย 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
ย 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
ย 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
ย 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 

DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL VELOCITY DERIVATION.pdf

  • 1. i DERIVATION OF BERNOULLI EQUATION WITH VISCOUS EFFECTS INCLUDED Pouiselle, Torricelli plus turbulent flow equations all in one equation ABSTRACT In this book we look at deriving the governing equations of fluid flow using conservation of energy techniques on a differential element undergoing shear stress or viscous forces as it moves along a pipe and we use the expression for friction factor for laminar flow to derive the equations. We also derive a friction factor to work for Torricelli flow wasswaderricktimothy7@gmail.com PHYSICS
  • 2. 1 By Wasswa Derrick wasswaderricktimothy7@gmail.com Makerere University The Bernoulli equation for cylindrical pipes or circular orifices with viscous effects is: ๐‘ท + ๐’‰๐†๐’ˆ + ๐† ๐‘ฝ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’ ๐’“๐Ÿ ๐‘ฝ + ๐‘ฒ๐ ๐’“ ๐‘ฝ + ๐†๐’๐‘ช๐Ÿ‘ ๐’“ ๐‘ฝ๐Ÿ + ๐†๐œท ๐’ ๐’“ ๐Ÿ(๐Ÿ + ๐’ ๐’“ ) ๐‘ฝ๐Ÿ = ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• We shall see how to derive it in the text to follow.
  • 3. 2 TABLE OF CONTENTS HOW DO WE MEASURE VELOCITY OF EXIT?.......................................................................3 Torricelli flow................................................................................................................................5 How does the velocity manifest itself? ...............................................................................9 HOW DO WE HANDLE PIPED SYSTEMS?.............................................................................. 15 To show that the Reynolds number is the governing number for flow according to Reynolds Theory................................................................................................................... 15 Experimental results to correct the Reynoldโ€™s theory above ................................... 21 How do we deal with cases where there is a change of cross-sectional area? .... 30 THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS INCLUDED..... 32 How can we apply the Bernoulli equation above?......................................................... 32 How do we apply the Bernoulli equation to different area pipes? ..........................36 How do we write the Bernoulli equation for a variable cross-sectional area with distance for example for the case of when the pipe is a conical frustrum?........39 HOW DO WE DEAL WITH PRESSURE GRADIENTS? ......................................................... 41 HEAD LOSS......................................................................................................................................45 THEORY OF MOTION OF PARTICLES IN VISCOUS FLUIDS...........................................50 REFERENCES..................................................................................................................................69
  • 4. 3 HOW DO WE MEASURE VELOCITY OF EXIT? How do we measure velocity in fluid flow? We either measure the flow rate and then divide it by cross sectional area as below ๐‘‰ = ๐‘„ ๐ด Or we can use projectile motion assuming no air resistance and get to know the velocity. Using projectile motion of a fluid out of a hole we can measure its velocity of exit i.e., ๐‘… = ๐‘‰ ร— ๐‘ก โ€ฆ ๐‘Ž) ๐ป = 1 2 ๐‘”๐‘ก2 โ€ฆ ๐‘) From a) ๐‘ก = ๐‘… ๐‘‰ Substituting t into equation b) and making velocity V the subject, we get: ๐‘‰ = ๐‘…โˆš ๐‘” 2๐ป Where: H is the vertical height of descent and R is the range.
  • 5. 4 All the experimental values got in this document were got using the velocity got from projectile motion
  • 6. 5 Torricelli flow First of all, Torricelli flow is observed when there is no pipe on a tank and the velocity of exit is derived to be ๐‘‰ = โˆš2๐‘”โ„Ž Assuming no viscous forces. To derive the Torricelli flow to include viscous effects, we first of all consider the system below: We are to derive the governing equation of Torricelli flow. We are going to use energy conservation techniques. We shall demonstrate the condition for laminar flow that the Reynold number is less than a critical Reynold number. According to Reynolds, the critical Reynolds number for laminar flow is 2300. First, we know the expressions for the friction factor in laminar flow i.e., [1].
  • 7. 6 ๐ถ1 = 16 ๐‘…๐‘’๐‘‘ ๐‘…๐‘’๐‘‘ = ๐œŒ๐‘‰๐‘‘ ๐œ‡ Where: ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ = 2๐‘Ÿ ๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ To explain what is observed in Torricelli flow, we have to set up another friction coefficient. ๐ถ0 = ๐พ ๐‘…๐‘’๐‘™ ๐‘…๐‘’๐‘™ = ๐œŒ๐‘‰๐‘™ ๐œ‡ Where ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ก๐‘œ ๐‘๐‘’ ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘’๐‘‘ ๐‘’๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ We now conserve energy changes as below, ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ + ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  To derive the Torricelli flow velocity, for now we shall consider only three viscous forces (or three terms for work done against viscous forces) but later we shall show that we have to include other viscous too as proven by experiment. The viscous forces act along the surface area of the pipe ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘ ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ๐‘›๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ Where: ๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ From the figure above: (๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ = 1 2 ๐‘š๐‘‰2 + 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ1๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ2๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ Where: ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
  • 8. 7 As shall be demonstrated (๐‘ƒ1 โˆ’ ๐‘ƒ2) = (โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘” We are going to derive the expression of โ„Ž0 in the text to follow but for now we can say โ„Ž0 is the vertical height of the fluid that remains in the container when the fluid stops flowing. ๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘š ๐œŒ ๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐œŒ Substituting for ๐ถ1 and for ๐ถ0, we get: (๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ = 1 2 ๐‘š๐‘‰2 + 1 2 ๐พ๐œ‡ ๐œŒ๐‘‰๐‘™ ๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 16๐œ‡ ๐œŒ๐‘‰(2๐‘Ÿ) ๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ2๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ (โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘”๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ = 1 2 ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐‘‰2 + 1 2 ๐พ๐œ‡ ๐œŒ๐‘‰๐‘™ 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 16๐œ‡ ๐œŒ๐‘‰(2๐‘Ÿ) 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ22๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ Simplifying, we get: 2๐‘”(โ„Ž โˆ’ โ„Ž0) = ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) + 16๐œ‡๐‘™ ๐‘Ÿ2๐‘‰๐œŒ ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ ๐‘‰2 For Torricelli flow we put ๐’ = ๐ŸŽ and we get 2๐‘”(โ„Ž โˆ’ โ„Ž0) = ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ ๐‘‰2 ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ ๐‘‰ โˆ’ 2๐‘”(โ„Ž โˆ’ โ„Ž0) = 0 โ€ฆ โ€ฆ . ๐Ÿ) The velocity formula above works for systems below:
  • 9. 8 Back to equation 1) above, we notice that the expression for velocity is a quadratic formula and velocity V is given by: ๐‘‰ = โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž We choose the positive velocity i.e. ๐‘‰ = โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž Where: ๐‘ = 2๐œ‡๐พ ๐‘Ÿ๐œŒ ๐‘Ž = 1 ๐‘ = โˆ’2๐‘”(โ„Ž โˆ’ โ„Ž0) An expression for V is ๐‘ฝ = โˆ’ ๐๐‘ฒ ๐’“๐† + ๐Ÿ ๐Ÿ โˆš( ๐Ÿ๐๐‘ฒ ๐’“๐† )๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) โ€ฆ โ€ฆ . . ๐Ÿ) When โ„Ž = โ„Ž0, the velocity is zero. We ask what supports the height โ„Ž0 in the container? It is the sum of the surface tension pressures at the liquid surfaces that supports โ„Ž0 as shown below:
  • 10. 9 We say that the liquid pressure โ„Ž0 is supported by the two menisci i.e., โ„Ž0๐œŒ๐‘” = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘Ÿ1 + 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘‘ ๐‘Ÿ Where: ๐œƒ๐‘ = ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘’๐‘Ÿ If ๐œƒ๐‘ = ๐œƒ๐‘‘ , we get ๐’‰๐ŸŽ = ๐Ÿ๐œธ๐’„๐’๐’”๐œฝ๐’„ ๐†๐’ˆ ( ๐Ÿ ๐’“๐Ÿ + ๐Ÿ ๐’“ ) If ๐‘Ÿ1 is very big, then โ„Ž0 = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘Ÿ๐œŒ๐‘” Back to the velocity equation, ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + 1 2 โˆš( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 + 8๐‘”(โ„Ž โˆ’ โ„Ž0) NB: YOU NOTICE THAT TO MEASURE THE CONSTANTS OF FLOW (e.g., k), WE HAVE TO LOOK FOR AN EQUATION FOR WHICH THE FLOW MANIFESTS ITSELF AND THEN WE VARY A FACTOR LIKE RADIUS AND THEN WE SHALL BE ABLE TO CALCULATE THE CONSTANT How does the velocity manifest itself? Factorizing out the term ๐Ÿ๐๐‘ฒ ๐’“๐† from the square root, we get:
  • 11. 10 ๐‘ฝ = โˆ’ ๐๐‘ฒ ๐’“๐† + ๐Ÿ ๐Ÿ โˆš( ๐Ÿ๐๐‘ฒ ๐’“๐† )๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + 2๐œ‡๐พ 2๐‘Ÿ๐œŒ โˆš1 + 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + ๐œ‡๐พ ๐‘Ÿ๐œŒ โˆš1 + 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 We get a dimensionless number i.e., 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 = ๐‘Ÿ2 ๐œŒ2 2๐‘”(โ„Ž โˆ’ โ„Ž0) ๐œ‡2๐พ2 For small height ๐’‰ โˆ’ ๐’‰๐ŸŽ and small radius The term 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 = ๐‘Ÿ2 ๐œŒ2 2๐‘”(โ„Ž โˆ’ โ„Ž0) ๐œ‡2๐พ2 โ‰ช 1 And we can use the approximation (1 + ๐‘ฅ)๐‘› โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1 For which ๐’™ = ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) ( ๐Ÿ๐๐‘ฒ ๐’“๐† )๐Ÿ = ๐’“๐Ÿ ๐†๐Ÿ ๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) ๐๐Ÿ๐‘ฒ๐Ÿ ๐’™ ๐’‚๐’ƒ๐’๐’—๐’† ๐’Š๐’” ๐’•๐’‰๐’† ๐’ˆ๐’๐’—๐’†๐’“๐’๐’Š๐’๐’ˆ ๐’๐’–๐’Ž๐’ƒ๐’†๐’“ And ๐‘› = 1 2 And we get after the binomial approximation; We use the binomial approximation
  • 12. 11 โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + ๐œ‡๐พ ๐‘Ÿ๐œŒ (1 + 4๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 ) We finally get the velocity as ๐‘ฝ = ๐’“(๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ ๐๐‘ฒ โ€ฆ . . ๐’‚) We can call the equation above equation a) and regime laminar flow When 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 = ๐‘Ÿ2 ๐œŒ2 2๐‘”(โ„Ž โˆ’ โ„Ž0) ๐œ‡2๐พ2 ๐‘–๐‘  ๐‘๐‘™๐‘œ๐‘ ๐‘’ ๐‘ก๐‘œ 1 Velocity V is given by ๐‘ฝ = โˆ’ ๐๐‘ฒ ๐’“๐† + ๐Ÿ ๐Ÿ โˆš( ๐Ÿ๐๐‘ฒ ๐’“๐† )๐Ÿ + ๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) Letโ€™s call this equation b) and regime transition flow When 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 = ๐‘Ÿ2 ๐œŒ2 2๐‘”(โ„Ž โˆ’ โ„Ž0) ๐œ‡2๐พ2 โ‰ซ 1 We approximate 1 + 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 โ‰ˆ 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 Velocity ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + ๐œ‡๐พ ๐‘Ÿ๐œŒ โˆš1 + 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 Becomes
  • 13. 12 ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + ๐œ‡๐พ ๐‘Ÿ๐œŒ โˆš 8๐‘”(โ„Ž โˆ’ โ„Ž0) ( 2๐œ‡๐พ ๐‘Ÿ๐œŒ )2 ๐‘ฝ = โˆ’ ๐๐‘ฒ ๐’“๐† + โˆš๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) Letโ€™s call this equation c) We can call this regime turbulent flow When the radius is big in turbulent flow, we observe ๐‘ฝ = โˆš๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) And when โ„Ž0 is small so that โ„Ž0 โ‰ˆ 0 , the velocity becomes ๐‘ฝ = โˆš๐Ÿ๐’ˆ๐’‰ To be able to measure K, we have to find an experiment for which the flow manifests itself as either equation, a), b), or c). Using water which has a low viscosity and varying the radius hole and for height โ„Ž chosen to be approximately large, it is found that the flow will manifest itself in equation c) (turbulent flow) and plotting a graph of V against โˆšโ„Ž ,a straight-line graph is got, ๐‘‰ = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ + โˆš2๐‘”โ„Ž The gradient of the above graph is โˆš(๐Ÿ๐’ˆ) the intercept n is also got and it is inversely proportional to r and so K can be measured. i.e. ๐‘› = โˆ’ ๐œ‡๐พ ๐‘Ÿ๐œŒ Varying the radius will give a different intercept inversely proportional to r from which K can be got as ๐พ = โˆ’ ๐‘›๐‘Ÿ๐œŒ ๐œ‡
  • 14. 13 Of course, depending on the viscosity of the fluid and height difference (โ„Ž โˆ’ โ„Ž0) and radius r of the orifice, the flow can shift to any equation, a), b), or c). Using water as the fluid and regime c) (turbulent flow) for experiment, it was found that Using viscosity of water as ๐ = ๐Ÿ–. ๐Ÿ— ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’ ๐‘ท๐’‚. ๐’” ๐Š = ๐Ÿ“๐Ÿ‘๐Ÿ’. ๐Ÿ“๐Ÿ“ NB: To get the rate of decrease of a fluid in a container, we use the initial velocity V got for any regime i.e., ๐’…๐‘ฝ ๐’…๐’• = โˆ’๐‘จ๐‘ฝ i.e. ๐’…๐’‰ ๐’…๐’• = โˆ’ ๐‘จ ๐‘จ๐ŸŽ ๐‘ฝ Where: ๐‘จ๐ŸŽ = ๐’„๐’“๐’๐’”๐’” ๐’”๐’†๐’„๐’•๐’Š๐’๐’๐’‚๐’ ๐’‚๐’“๐’†๐’‚ ๐’๐’‡ ๐’„๐’๐’๐’•๐’‚๐’Š๐’๐’†๐’“ What the equation above says is that if a fluid has a given velocity due to a given regime initially, then, if we let the fluid to have a rate of decrease/change of height in the container, then the fluid will obey that initial velocity expression throughout its course of decrease until it stops flowing when uninterrupted. For example, if the governing number above was such that initially: ๐‘ฃ = โˆš2๐‘”โ„Ž Then ๐‘‘โ„Ž ๐‘‘๐‘ก = โˆ’ ๐ด ๐ด0 ๐‘‰ ๐‘‘โ„Ž ๐‘‘๐‘ก = โˆ’ ๐ด ๐ด0 โˆš2๐‘”โ„Ž โˆซ ๐‘‘โ„Ž โˆšโ„Ž โ„Ž โ„Ž1 = โˆ’( ๐ด ๐ด0 )โˆš2๐‘” โˆซ ๐‘‘๐‘ก ๐‘ก 0 Where:
  • 15. 14 โ„Ž = โ„Ž1 ๐‘Ž๐‘ก ๐‘ก = 0 โˆšโ„Ž1 โˆ’ โˆšโ„Ž = ( ๐ด ๐ด0 )๐‘กโˆš ๐‘” 2 โˆš๐’‰ = โˆš๐’‰๐Ÿ โˆ’ ๐’•( ๐‘จ ๐‘จ๐ŸŽ )โˆš ๐’ˆ ๐Ÿ So that will be the equation of height h against time.
  • 16. 15 HOW DO WE HANDLE PIPED SYSTEMS? Consider the system below: To show that the Reynolds number is the governing number for flow according to Reynolds Theory For smooth piped systems The governing number of flow equations is the Reynolds number According to Reynold, For laminar flow ๐‘…๐‘’๐‘‘ < 2300 I.e. ๐œŒ๐‘‰ ๐‘๐‘‘ ๐œ‡ < 2300 2๐œŒ๐‘‰ ๐‘๐‘Ÿ ๐œ‡ < 2300 Where: ๐‘‰ ๐‘ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ So ๐‘‰ ๐‘ < 1150 ๐œ‡ ๐œŒ๐‘Ÿ In laminar flow
  • 17. 16 ๐‘‰ = ๐‘Ÿ2 ๐œŒ๐‘”โ„Ž 8๐œ‡๐‘™ And ๐‘‰ ๐‘ = ๐‘‰ So, ๐‘Ÿ2 ๐œŒ๐‘”โ„Ž 8๐œ‡๐‘™ < 1150 ๐œ‡ ๐œŒ๐‘Ÿ ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž 9200๐œ‡2๐‘™ < 1 So, the governing condition for laminar flow according to Reynold should be ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž 9200๐œ‡2๐‘™ < 1 As before, letโ€™s conserve energy: work done by pressure difference = Kinetic energy gained as the liquid emerges + work done against shear stress/ viscous forces ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘ ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ๐‘›๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ Where: ๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ ๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐œŒ ๐‘‘๐‘ฃ = ๐‘š ๐œŒ ๐‘Š๐‘’ ๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘’ ๐‘Ž ๐‘›๐‘’๐‘ค ๐‘ก๐‘’๐‘Ÿ๐‘š ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘  ๐‘๐‘’๐‘™๐‘œ๐‘ค: ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ1๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ2๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘  ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘› ๐ถ1 = 16 ๐‘…๐‘’๐‘‘
  • 18. 17 ๐‘…๐‘’๐‘‘ = ๐œŒ๐‘‰๐‘‘ ๐œ‡ ๐ถ0 = ๐พ ๐‘…๐‘’๐‘™ ๐‘…๐‘’๐‘™ = ๐œŒ๐‘‰๐‘™ ๐œ‡ ๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ (๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ = 1 2 ๐‘š๐‘‰2 + 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ1๐ด๐‘ ๐œŒ๐‘‰2 ๐‘™ + 1 2 ๐ถ2๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ (๐‘ƒ1 โˆ’ ๐‘ƒ2) = โ„Ž๐œŒ๐‘” We have ignored the surface tension effects for now. ๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘š ๐œŒ ๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐œŒ Substitute for ๐ถ1 and for ๐ถ0 as before โ„Ž๐œŒ๐‘”๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ = 1 2 ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐œŒ๐‘‰2 + 1 2 ๐พ๐œ‡ ๐œŒ๐‘‰๐‘™ 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 16๐œ‡ ๐œŒ๐‘‰๐‘‘ 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ๐‘™ + 1 2 ๐ถ22๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ Simplifying 2๐‘”โ„Ž = ๐‘‰2 + 16๐œ‡๐‘™ ๐‘Ÿ2๐‘‰๐œŒ ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ ๐‘‰2 + 2๐‘™๐ถ2 ๐‘Ÿ ๐‘‰2 ๐‘‰2 (1 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ + 2๐‘™ ๐‘Ÿ ๐ถ2) + 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ ๐‘‰ โˆ’ 2๐‘”โ„Ž = 0 ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0 We get velocity as: ๐‘‰ = โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž We choose the positive velocity as below: Where:
  • 19. 18 ๐‘ = 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) ๐‘Ž = (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) ๐‘‰ = โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ) + โˆš( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ))๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ)(๐Ÿ–๐’ˆ๐’‰) ๐Ÿ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ) The above is the velocity V. Pouiselle /Laminar flow can be demonstrated: First of all, we factorize the term 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) out of the square root ๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) 2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) 2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) โˆš1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) 8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 For long pipes and small radius The term (1 + 2๐‘™ ๐‘Ÿ ๐ถ2)8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ช 1 And we can use the approximation (1 + ๐‘ฅ)๐‘› โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1 Where: ๐‘› = 1 2
  • 20. 19 ๐‘ฅ = (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) 8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 In laminar flow 2๐‘™ ๐‘Ÿ ๐ถ2 โ‰ซ 1 and 8๐‘™ ๐‘Ÿ โ‰ซ ๐พ so that 1 + 2๐‘™ ๐‘Ÿ ๐ถ2 โ‰ˆ 2๐‘™ ๐‘Ÿ ๐ถ2 And 8๐‘™ ๐‘Ÿ + ๐พ โ‰ˆ 8๐‘™ ๐‘Ÿ So (1 + 2๐‘™ ๐‘Ÿ ๐ถ2)8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ˆ ๐‘Ÿ4 ๐œŒ2 ( 2๐‘™ ๐‘Ÿ ๐ถ2) 256๐œ‡2๐‘™2 ร— 8๐‘”โ„Ž ๐‘Ÿ4 ๐œŒ2 ( 2๐‘™ ๐‘Ÿ ๐ถ2) 256๐œ‡2๐‘™2 ร— 8๐‘”โ„Ž = ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž๐ถ2 16๐œ‡2๐‘™ โ‰ช 1 For laminar flow, recalling the condition ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž 9200๐œ‡2๐‘™ < 1 And comparing with ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž๐ถ2 16๐œ‡2๐‘™ โ‰ช 1 We get ๐ถ2 16 = 1 9200
  • 21. 20 ๐ถ2 = 1.739 ร— 10โˆ’3 this proves that ๐ถ2 is a constant since the critical Reynolds number for laminar flow is also a constant. Continuing from above to demonstrate the Pouiselle flow, Using the binomial expansion and after making the above substitutions, We use the binomial approximation โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 And get: โˆš1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) 8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ˆ 1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) 4๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ2) 4๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ˆ 1 + ( 2๐‘™ ๐‘Ÿ ๐ถ2) 4๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ ))2 = 1 + ๐‘Ÿ4 ๐œŒ2 256๐œ‡2๐‘™2 ร— ( 2๐‘™ ๐‘Ÿ ๐ถ2)4๐‘”โ„Ž 2( 2๐‘™ ๐‘Ÿ ๐ถ2)๐‘‰ = โˆ’ 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ + 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ (1 + ๐‘Ÿ4 ๐œŒ2 256๐œ‡2๐‘™2 ร— ( 2๐‘™ ๐‘Ÿ ๐ถ2)4๐‘”โ„Ž) Simplifying, we get velocity V as: ๐‘ฝ = ๐’“๐Ÿ ๐†๐’ˆ๐’‰ ๐Ÿ–๐๐’ And the flow rate Q as: ๐‘ธ = ๐… ๐Ÿ– ๐’“๐Ÿ’ ๐ ๐†๐’ˆ๐’‰ ๐’ The term ๐‘Ÿ3๐œŒ2๐‘”โ„Ž 9200๐œ‡2๐‘™ is a dimensionless number and it should demarcate when Pouiselle flow begins according to Reynoldโ€™s theory. NB. We shall see that experiment doesnโ€™t obey Reynoldโ€™s theory exactly and we have to make some modifications.
  • 22. 21 Experimental results to correct the Reynoldโ€™s theory above First let us derive the governing equations as proven by experiment by conserving energy and recall that the velocity we are using is that got from projectile motion. work done by pressure difference = Kinetic energy gained as the liquid emerges + work done against viscous forces Work done against shear/viscous force = ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ร— ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘‘ Work done against shear force = 1 2 ๐ถ๐‘›๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ Where: ๐ถ๐‘› = ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐ด๐‘† = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ We introduce a new term in the viscous work done as got from experiment as below: ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘Ž๐‘”๐‘Ž๐‘–๐‘›๐‘ ๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ1๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ3๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 (๐›ฝ ๐ด ๐‘ƒ )๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ The new term is: = 1 2 (๐›ฝ ๐ด ๐‘ƒ )๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ Where: ๐ด = ๐œ‹๐‘Ÿ2 ๐‘Ž๐‘›๐‘‘ ๐‘ƒ = 2๐œ‹๐‘Ÿ(๐‘Ÿ + ๐‘™) ๐ถ3 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘๐‘™๐‘Ž๐‘๐‘’๐‘  ๐ถ2 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘–๐‘ก โ„Ž๐‘Ž๐‘  ๐‘Ž ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘Ž๐‘  ๐‘”๐‘œ๐‘ก ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก ๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘Ž๐‘  ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘’ ๐‘ โ„Ž๐‘œ๐‘ค๐‘› ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐ด๐‘  = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐‘š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œ‹๐‘Ÿ2 โˆ†๐‘ฅ๐œŒ (๐‘ƒ1 โˆ’ ๐‘ƒ2)๐‘‘๐‘ฃ = 1 2 ๐‘š๐‘‰2 + 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ1๐ด๐‘†๐œŒ๐‘‰2 ๐‘™ + 1 2 ๐ถ3๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 (๐›ฝ ๐‘Ÿ 2(๐‘Ÿ + ๐‘™) )๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ (๐‘ƒ1 โˆ’ ๐‘ƒ2) = โ„Ž๐œŒ๐‘” We shall ignore surface tension pressures for now.
  • 23. 22 ๐‘‘๐‘ฃ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘š ๐œŒ ๐ด๐‘† = ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿโˆ†๐‘ฅ ๐ด = ๐œ‹๐‘Ÿ2 ๐ด๐œŒโˆ†๐‘ฅ๐‘”โ„Ž = 1 2 ๐ดโˆ†๐‘ฅ๐œŒ๐‘‰2 + 1 2 ๐ถ0๐ด๐‘ ๐œŒ๐‘‰2 ๐‘™ + 1 2 ๐ถ1๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ3๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 (๐›ฝ ๐‘Ÿ 2(๐‘Ÿ + ๐‘™) )๐ด๐‘†๐œŒ๐‘‰2 ร— ๐‘™ Substitute for ๐ถ1 and for ๐ถ0 as before ๐ด๐œŒโˆ†๐‘ฅ๐‘”โ„Ž = 1 2 ๐ดโˆ†๐‘ฅ๐œŒ๐‘‰2 + 1 2 ๐พ๐œ‡ ๐œŒ๐‘‰๐‘™ 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2๐‘™ + 1 2 16๐œ‡ ๐œŒ๐‘‰๐‘‘ 2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ32๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 (๐›ฝ ๐‘Ÿ 2(๐‘Ÿ + ๐‘™) )2๐œ‹๐‘Ÿโˆ†๐‘ฅ๐œŒ๐‘‰2 ร— ๐‘™ 2๐‘”โ„Ž = ๐‘‰2 + 16๐œ‡๐‘™ ๐‘Ÿ2๐‘‰๐œŒ ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ ๐‘‰2 + 2๐‘™๐ถ3 ๐‘Ÿ ๐‘‰2 + 2๐‘™ ๐‘Ÿ (๐›ฝ ๐‘Ÿ 2(๐‘Ÿ + ๐‘™) )๐‘‰2 Simplifying ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐œŒ๐‘Ÿ (๐พ + 8๐‘™ ๐‘Ÿ )๐‘‰ โˆ’ 2๐‘”โ„Ž = 0 Rearranging, we get ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐œŒ๐‘Ÿ (๐พ + 8๐‘™ ๐‘Ÿ )๐‘‰ โˆ’ 2๐‘”โ„Ž = 0 ๐‘‰ = โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž ๐‘ = 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) ๐‘Ž = (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) We choose the positive sign on the velocity equation. Velocity is given by: ๐‘‰ = โˆ’๐‘ + โˆš๐‘2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž
  • 24. 23 2(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) + โˆš( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )(8๐‘”โ„Ž) The experimental velocity is given by: ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ))๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) )(๐Ÿ–๐’ˆ๐’‰) ๐Ÿ(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) You notice that when we substitute length ๐’ = ๐ŸŽ, we go back to the Torricelli equations i.e. ๐‘ฝ = โˆ’ ๐‘ฒ๐ ๐’“๐† + ๐Ÿ ๐Ÿ โˆš( ๐Ÿ๐๐‘ฒ ๐’“๐† )๐Ÿ + (๐Ÿ–๐’ˆ๐’‰) You notice that we have ignored ๐’‰๐ŸŽ though it can/should be included in the derivation. Pouiselle Flow can be demonstrated below; From ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ))๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) )(๐Ÿ–๐’ˆ๐’‰) ๐Ÿ(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Factorizing out the term 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) from the square root, we get ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) 2(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โˆš1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 For long pipes and small radius The term (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ช 1 Is very small and we can use the approximation
  • 25. 24 (1 + ๐‘ฅ)๐‘› โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1 Where: ๐‘› = 1 2 ๐‘ฅ = (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 In laminar flow 2๐‘™ ๐‘Ÿ ๐ถ3 โ‰ซ 1 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) and 8๐‘™ ๐‘Ÿ โ‰ซ ๐พ so that 1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) โ‰ˆ 2๐‘™ ๐‘Ÿ ๐ถ3 And 8๐‘™ ๐‘Ÿ + ๐พ โ‰ˆ 8๐‘™ ๐‘Ÿ So (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ˆ ๐‘Ÿ4 ๐œŒ2 ( 2๐‘™ ๐‘Ÿ ๐ถ3) 256๐œ‡2๐‘™2 ร— 8๐‘”โ„Ž ๐‘Ÿ4 ๐œŒ2 ( 2๐‘™ ๐‘Ÿ ๐ถ3) 256๐œ‡2๐‘™2 ร— 8๐‘”โ„Ž = ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž๐ถ3 16๐œ‡2๐‘™ โ‰ช 1 For laminar flow. We shall check experimentally the true value of ๐ถ3 following this. The above proves that ๐ถ3 is a constant since the critical Reynolds number for laminar flow is also a constant. Using the binomial expansion and after making the above substitutions, we get
  • 26. 25 We use the binomial approximation โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 2( 2๐‘™ ๐‘Ÿ ๐ถ3)๐‘‰ = โˆ’ 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ + 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ (1 + ๐‘Ÿ4 ๐œŒ2 256๐œ‡2๐‘™2 ร— ( 2๐‘™ ๐‘Ÿ ๐ถ3)4๐‘”โ„Ž) ๐‘ฝ = ๐’“๐Ÿ ๐†๐’ˆ๐’‰ ๐Ÿ–๐๐’ ๐‘ธ = ๐… ๐Ÿ– ๐’“๐Ÿ’ ๐ ๐†๐’ˆ๐’‰ ๐’ Experimental results to verify the theory above From ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โˆš1 + 1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 In turbulent flow (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ซ 1 So, from ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โˆš1 + 1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 1 + 8๐‘”โ„Ž(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 โ‰ˆ 8๐‘”โ„Ž(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 Becomes
  • 27. 26 ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โˆš (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ))2 ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 1 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โˆš(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )2๐‘”โ„Ž ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐พ) (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + โˆš 2๐‘”โ„Ž (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) In turbulent flow the equation is: ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš ๐Ÿ๐’ˆ๐’‰ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Where: The above expression of turbulent flow can be verified by plotting a graph of V against โˆšโ„Ž for constant length of pipe from which a straight-line graph with an intercept will be got and the gradient and intercept investigated to satisfy the equation above, provided that we are in turbulent flow according to the governing number. It can be investigated and shown that plotting a graph of V against โˆšโ„Ž in turbulent flow, a straight-line graph will be got and the gradient m will be found to be: ๐‘š = โˆš 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) Rearranging, we get:
  • 28. 27 [ ๐Ÿ๐’ˆ ๐’Ž๐Ÿ โˆ’ ๐Ÿ] = ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) Plotting a graph of [ 2๐‘” ๐‘š2 โˆ’ 1] against length ๐‘™ gives a straight line as shown below from experiment in turbulent flow: You notice that since the expression ๐’ ๐’+๐’“ โ‰ˆ ๐Ÿ When r is small and length big, so the graph above can be approximated to be a straight-line graph for lengths ๐‘™ greater than the radius as below: [ 2๐‘” ๐‘š2 โˆ’ 1] = 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) Becomes: [ ๐Ÿ๐’ˆ ๐’Ž๐Ÿ โˆ’ ๐Ÿ] = ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท As the graph above shows with (a virtual) intercept ๐›ฝ. But you notice that when the length becomes small to the order of the radius, the intercept vanishes to zero as shown from the graph and the correct expression becomes: [ ๐Ÿ๐’ˆ ๐’Ž๐Ÿ โˆ’ ๐Ÿ] = ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) To correctly measure ๐œท, we plot a graph below from the expression above
  • 29. 28 ๐Ÿ ๐’ [ ๐Ÿ๐’ˆ ๐’Ž๐Ÿ โˆ’ ๐Ÿ] = ๐Ÿ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท (๐’“ + ๐’) Plotting a graph of 1 ๐‘™ [ 2๐‘” ๐‘š2 โˆ’ 1] against 1 (๐‘Ÿ+๐‘™) , a straight-line graph will be got from which ๐ถ3 and ๐›ฝ can be got. From experiment: ๐ถ3 = 5.62875 ร— 10โˆ’3 And ๐›ฝ = 0.5511 You notice that ๐ถ3 and ๐›ฝ are independent of Reynolds number because if they were so then the expression of turbulent flow would not be observed experimentally. So, the Critical Reynolds number for laminar flow becomes 710.637 since For laminar flow ๐‘…๐‘’ < ๐‘…๐‘’๐‘๐‘Ÿ Where: ๐‘…๐‘’๐‘๐‘Ÿ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐ฟ๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐œŒ๐‘‰ ๐‘๐‘‘ ๐œ‡ < ๐‘…๐‘’๐‘๐‘Ÿ 2๐œŒ๐‘‰ ๐‘๐‘Ÿ ๐œ‡ < ๐‘…๐‘’๐‘๐‘Ÿ Where: ๐‘‰ ๐‘ = ๐‘๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ In laminar flow ๐‘‰ = ๐‘Ÿ2 ๐œŒ๐‘”โ„Ž 8๐œ‡๐‘™ And ๐‘‰ ๐‘ = ๐‘‰ So, 2๐œŒ๐‘Ÿ ๐œ‡ ๐‘‰ < ๐‘…๐‘’๐‘๐‘Ÿ 2๐œŒ๐‘Ÿ ๐œ‡ ร— ๐‘Ÿ2 ๐œŒ๐‘”โ„Ž 8๐œ‡๐‘™ < ๐‘…๐‘’๐‘๐‘Ÿ
  • 30. 29 ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž 4๐œ‡2๐‘™(๐‘…๐‘’๐‘๐‘Ÿ) < 1 Comparing with ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž๐ถ3 16๐œ‡2๐‘™ โ‰ช 1 We get ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž 4๐œ‡2๐‘™(๐‘…๐‘’๐‘๐‘Ÿ) = ๐‘Ÿ3 ๐œŒ2 ๐‘”โ„Ž๐ถ3 16๐œ‡2๐‘™ ๐ถ3 4 = 1 (๐‘…๐‘’๐‘๐‘Ÿ) ๐‘…๐‘’๐‘๐‘Ÿ = 4 ๐ถ3 = 4 5.62875 ร— 10โˆ’3 = ๐Ÿ•๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ• ๐‘น๐’†๐’„๐’“ = ๐Ÿ•๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ• Generally, the governing number for flow rate regime is ๐‘ฎ๐’๐’—๐’†๐’“๐’๐’Š๐’๐’ˆ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ = (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) )๐Ÿ–๐’ˆ๐’‰ ( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐‘ฒ))๐Ÿ
  • 31. 30 How do we deal with cases where there is a change of cross-sectional area? We say, ๐ด1๐‘‰1 = ๐ด2๐‘‰2 And get: ๐‘‰2 = ๐ด1๐‘‰1 ๐ด2 We know the general expression of the velocity ๐‘‰1 as developed before: ๐‘ฝ๐Ÿ = โˆ’ ๐ ๐’“๐Ÿ๐† ( ๐Ÿ–๐’ ๐’“๐Ÿ + ๐‘ฒ) (๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) ) + โˆš( ๐Ÿ๐ ๐’“๐Ÿ๐† ( ๐Ÿ–๐’ ๐’“๐Ÿ + ๐‘ฒ))๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) )๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)) ๐Ÿ(๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) ) We can then get ๐‘‰2 as ๐‘ฝ๐Ÿ = ๐‘จ๐Ÿ๐‘ฝ๐Ÿ ๐‘จ๐Ÿ ๐‘ฝ๐Ÿ = โˆ’( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐ ๐’“๐Ÿ๐† ( ๐Ÿ–๐’ ๐’“๐Ÿ + ๐‘ฒ) (๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) ) + ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) โˆš( ๐Ÿ๐ ๐’“๐Ÿ๐† ( ๐Ÿ–๐’ ๐’“๐Ÿ + ๐‘ฒ))๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) )(๐Ÿ–๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ)) ๐Ÿ(๐Ÿ + ๐Ÿ๐’ ๐’“๐Ÿ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“๐Ÿ + ๐’) )
  • 32. 31 We shall use the derivation above in the analysis to follow. Where: ๐’‰๐ŸŽ = ๐Ÿ๐œธ๐’„๐’๐’”๐œฝ๐’„ ๐†๐’ˆ ( ๐Ÿ ๐’“๐ŸŽ + ๐Ÿ ๐’“๐Ÿ ) ๐œƒ๐‘ = ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ž๐‘›๐‘”๐‘™๐‘’
  • 33. 32 THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS INCLUDED. We are going to look at cylindrical pipes. Recalling the conservation of energy technique used before to get the velocity as below: 2๐‘”โ„Ž = ๐‘‰2 + 16๐œ‡๐‘™ ๐‘Ÿ2๐‘‰๐œŒ ๐‘‰2 + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ๐‘‰ ๐‘‰2 + 2๐‘™๐ถ3 ๐‘Ÿ ๐‘‰2 + 2๐‘™ ๐‘Ÿ (๐›ฝ ๐‘Ÿ 2(๐‘Ÿ + ๐‘™) )๐‘‰2 2๐‘”โ„Ž = ๐‘‰2 + 16๐œ‡๐‘™ ๐‘Ÿ2๐œŒ ๐‘‰ + 2๐พ๐œ‡ ๐œŒ๐‘Ÿ ๐‘‰ + 2๐‘™๐ถ3 ๐‘Ÿ ๐‘‰2 + (๐›ฝ ๐‘™ (๐‘Ÿ + ๐‘™) )๐‘‰2 Multiplying through by ๐œŒ and dividing through by 2, we get: ๐œŒ๐‘”โ„Ž = ๐œŒ ๐‘‰2 2 + 8๐œ‡๐‘™ ๐‘Ÿ2 ๐‘‰ + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ + ๐œŒ๐‘™๐ถ3 ๐‘Ÿ ๐‘‰2 + ๐œŒ๐›ฝ๐‘™ 2(๐‘Ÿ + ๐‘™) ๐‘‰2 Finally, we get for cylindrical pipe or circular orifice: ๐‘ท + ๐’‰๐†๐’ˆ + ๐† ๐‘ฝ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’ ๐’“๐Ÿ ๐‘ฝ + ๐‘ฒ๐ ๐’“ ๐‘ฝ + ๐†๐’๐‘ช๐Ÿ‘ ๐’“ ๐‘ฝ๐Ÿ + ๐†๐œท๐’ ๐Ÿ(๐’“ + ๐’) ๐‘ฝ๐Ÿ = ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• Or ๐‘ท + ๐’‰๐†๐’ˆ + ๐† ๐‘ฝ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’ ๐’“๐Ÿ ๐‘ฝ + ๐‘ฒ๐ ๐’“ ๐‘ฝ + ๐†๐’๐‘ช๐Ÿ‘ ๐’“ ๐‘ฝ๐Ÿ + ๐†๐œท ๐’ ๐’“ ๐Ÿ(๐Ÿ + ๐’ ๐’“ ) ๐‘ฝ๐Ÿ = ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• How can we apply the Bernoulli equation above? Considering the Torricelli flow first: Let us first consider a circular orifice on a tank:
  • 34. 33 Using the Bernoulli equation, we get ๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐† ๐‘ฝ๐’™ ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’๐’™ ๐’“๐’™ ๐Ÿ ๐‘ฝ๐’™ + ๐‘ฒ๐ ๐’“๐’™ ๐‘ฝ๐’™ + ๐†๐’๐’™๐‘ช๐Ÿ‘ ๐’“๐’™ ๐‘ฝ๐’™ ๐Ÿ + ๐†๐œท ๐’๐’™ ๐’“๐’™ ๐Ÿ(๐Ÿ + ๐’๐’™ ๐’“๐’™ ) ๐‘ฝ๐’™ ๐Ÿ = ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐† ๐‘ฝ๐’š ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’๐’š ๐’“๐’š ๐’š ๐‘ฝ๐’š + ๐‘ฒ๐ ๐’“๐’š ๐‘ฝ๐’š + ๐†๐’๐’š๐‘ช๐Ÿ‘ ๐’“๐’š ๐‘ฝ๐’š ๐Ÿ + ๐†๐œท ๐’๐’š ๐’“๐’š ๐Ÿ(๐Ÿ + ๐’๐’š ๐’“๐’š ) ๐‘ฝ๐’š ๐Ÿ But ๐‘™๐‘ฅ = 0 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘’๐‘Ÿ ๐‘–๐‘  ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘ฅ represents the wetted length the fluid moves. โ„Ž๐‘ฅ = โ„Ž โ„Ž๐‘ฆ = 0 ๐‘™๐‘ฆ = 0 ๐‘ƒ๐‘ฅ = ๐ป โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ ๐‘ƒ๐‘ฆ = ๐ป + 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ ๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‰ ๐‘ฆ = ๐‘‰ When the cross-sectional area of the container is large so that the rate of change of height of the surface level is negligible, then: ๐‘‰ ๐‘ฅ = 0
  • 35. 34 Upon substitution of all the above we get: โ„Ž๐‘ฅ๐œŒ๐‘” โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ ๐‘ฆ Or (โ„Ž โˆ’ โ„Ž0)๐œŒ๐‘” = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ ๐‘ฆ Where: โ„Ž0 = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ๐œŒ๐‘” + 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ๐œŒ๐‘” If ๐œƒ๐‘ฅ = ๐œƒ๐‘ฆ โ„Ž0 = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐œŒ๐‘” ( 1 ๐‘Ÿ๐‘ฅ + 1 ๐‘Ÿ๐‘ฆ ) Where we can go ahead and get the velocity of exit from the quadratic formula which is what we got before for Torricelli flow. i.e., ๐‘ฝ๐Ÿ + ๐Ÿ๐‘ฒ๐ ๐’“๐† ๐‘ฝ โˆ’ ๐Ÿ๐’ˆ(๐’‰ โˆ’ ๐’‰๐ŸŽ) = ๐ŸŽ How can we apply the Bernoulli equation for cylindrical pipes?
  • 36. 35 ๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐† ๐‘ฝ๐’™ ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’๐’™ ๐’“๐’™ ๐Ÿ ๐‘ฝ๐’™ + ๐‘ฒ๐ ๐’“๐’™ ๐‘ฝ๐’™ + ๐†๐’๐’™๐‘ช๐Ÿ‘ ๐’“๐’™ ๐‘ฝ๐’™ ๐Ÿ + ๐†๐œท ๐’๐’™ ๐’“๐’™ ๐Ÿ(๐Ÿ + ๐’๐’™ ๐’“๐’™ ) ๐‘ฝ๐’™ ๐Ÿ = ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐† ๐‘ฝ๐’š ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’๐’š ๐’“๐’š ๐’š ๐‘ฝ๐’š + ๐‘ฒ๐ ๐’“๐’š ๐‘ฝ๐’š + ๐†๐’๐’š๐‘ช๐Ÿ‘ ๐’“๐’š ๐‘ฝ๐’š ๐Ÿ + ๐†๐œท ๐’๐’š ๐’“๐’š ๐Ÿ(๐Ÿ + ๐’๐’š ๐’“๐’š ) ๐‘ฝ๐’š ๐Ÿ But โ„Ž๐‘ฅ = โ„Ž โ„Ž๐‘ฆ = 0 ๐‘ƒ๐‘ฅ = ๐ป โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ ๐‘ƒ๐‘ฆ = ๐ป + 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ ๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘™๐‘ฅ = 0 ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘–๐‘  ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘ฆ = ๐‘™ ๐‘‰ ๐‘ฆ = ๐‘‰ ๐‘Ÿ๐‘ฆ = ๐‘Ÿ When the cross-sectional area of the container is large, ๐‘‰ ๐‘ฅ = 0 Upon substitution of all the above we get: โ„Ž๐‘ฅ๐œŒ๐‘” โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + 8๐œ‡๐‘™ ๐‘Ÿ2 ๐‘‰ ๐‘ฆ + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ ๐‘ฆ + ๐œŒ๐‘™๐ถ3 ๐‘Ÿ ๐‘‰ ๐‘ฆ 2 + ๐œŒ๐›ฝ ๐‘™ ๐‘Ÿ 2(1 + ๐‘™ ๐‘Ÿ) ๐‘‰ ๐‘ฆ 2 (๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ = ๐† ๐‘ฝ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’ ๐’“๐Ÿ ๐‘ฝ + ๐‘ฒ๐ ๐’“ ๐‘ฝ + ๐†๐’๐‘ช๐Ÿ‘ ๐’“ ๐‘ฝ๐Ÿ + ๐†๐œท ๐’ ๐’“ ๐Ÿ(๐Ÿ + ๐’ ๐’“) ๐‘ฝ๐Ÿ Where: โ„Ž0 = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐œŒ๐‘” ( 1 ๐‘Ÿ๐‘ฅ + 1 ๐‘Ÿ๐‘ฆ ) From the equation above, we can go ahead and find the velocity of exit ๐‘‰ = ๐‘‰ ๐‘ฆ which is what we derived before.
  • 37. 36 How do we apply the Bernoulli equation to different area pipes? Again, we use the modified Bernoulli equation as below: ๐‘ท๐’™ + ๐’‰๐’™๐†๐’ˆ + ๐† ๐‘ฝ๐’™ ๐Ÿ ๐Ÿ + ๐Ÿ–๐๐’๐’™ ๐’“๐’™ ๐Ÿ ๐‘ฝ๐’™ + ๐‘ฒ๐ ๐’“๐’™ ๐‘ฝ๐’™ + ๐†๐’๐’™๐‘ช๐Ÿ‘ ๐’“๐’™ ๐‘ฝ๐’™ ๐Ÿ + ๐†๐œท ๐’๐’™ ๐’“ ๐Ÿ(๐Ÿ + ๐’๐’™ ๐’“ ) ๐‘ฝ๐’™ ๐Ÿ = ๐‘ท๐’š + ๐’‰๐’š๐†๐’ˆ + ๐† ๐‘ฝ๐’š ๐Ÿ ๐Ÿ + ๐Ÿ–๐( ๐’๐Ÿ ๐’“๐Ÿ ๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ ๐Ÿ )๐‘ฝ๐’š + ๐‘ฒ๐ ๐’“๐Ÿ ๐‘ฝ๐’š + ๐†๐‘ช๐Ÿ‘( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ )๐‘ฝ๐’š ๐Ÿ + ๐†๐œท( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ ) ๐Ÿ(๐Ÿ + ( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ )) ๐‘ฝ๐’š ๐Ÿ But ๐‘™๐‘ฅ = 0 โ„Ž๐‘ฅ = โ„Ž โ„Ž๐‘ฆ = 0 ๐‘ƒ๐‘ฅ = ๐ป โˆ’ 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐‘Ÿ๐‘ฅ ๐‘ƒ๐‘ฆ = ๐ป + 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฆ ๐‘Ÿ๐‘ฆ ๐ป = ๐‘Ž๐‘ก๐‘š๐‘œ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ When the cross-sectional area of the container is large so that the rate of fall of the surface level is negligible, ๐‘‰ ๐‘ฅ = 0 And we finally get
  • 38. 37 โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + 8๐œ‡( ๐‘™1 ๐‘Ÿ1 2 + ๐‘™2 ๐‘Ÿ2 2)๐‘‰ ๐‘ฆ + ๐พ๐œ‡ ๐‘Ÿ2 ๐‘‰ ๐‘ฆ + ๐œŒ๐ถ3( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )๐‘‰ ๐‘ฆ 2 + ๐œŒ๐›ฝ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 ) 2(1 + ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )) ๐‘‰ ๐‘ฆ 2 Before we can get ๐‘‰ ๐‘ฆ we have to ask what will ๐‘‰ ๐‘ฆ be when ๐‘™2 ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘ก๐‘œ 0 ? ๐‘‰ ๐‘ฆ will be given by: โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + 8๐œ‡ ( ๐‘™1 ๐‘Ÿ1 2) ๐‘‰ ๐‘ฆ + ๐พ๐œ‡ ๐‘Ÿ2 ๐‘‰ ๐‘ฆ + ๐œŒ๐ถ3 ( ๐‘™1 ๐‘Ÿ1 ) ๐‘‰ ๐‘ฆ 2 + ๐œŒ๐›ฝ ( ๐‘™1 ๐‘Ÿ1 ) 2 (1 + ( ๐‘™1 ๐‘Ÿ1 )) ๐‘‰ ๐‘ฆ 2 โ€ฆ โ€ฆ . . ๐’ But remember that when ๐‘™2 ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘ก๐‘œ 0 , the area at the exit will be ๐ด2 and so the velocity will be given by ๐‘‰ = ๐ด1 ๐ด2 ๐‘‰ ๐‘ฆ To get the velocity above, we have to make a substitution in equation n above as: ๐‘‰ ๐‘ฆ = ๐ด2 ๐ด1 ๐‘‰ Upon substitution in the equation n above, we get: โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ ๐‘‰2 2 ( ๐ด2 ๐ด1 )2 + 8๐œ‡ ( ๐‘™1 ๐‘Ÿ1 2) ( ๐ด2 ๐ด1 )๐‘‰ + ๐พ๐œ‡ ๐‘Ÿ2 ( ๐ด2 ๐ด1 )๐‘‰ + ๐œŒ๐ถ3 ( ๐‘™1 ๐‘Ÿ1 ) ( ๐ด2 ๐ด1 )2 ๐‘‰2 + ๐œŒ๐›ฝ ( ๐‘™1 ๐‘Ÿ1 ) 2 (1 + ( ๐‘™1 ๐‘Ÿ1 )) ( ๐ด2 ๐ด1 )2 ๐‘‰2 We finally get the velocity as ๐‘‰ = ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) [ โˆ’ ๐œ‡ ๐‘Ÿ1๐œŒ ( 8๐‘™1 ๐‘Ÿ1 + ๐พ) (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) ) + โˆš( 2๐œ‡ ๐‘Ÿ1๐œŒ ( 8๐‘™1 ๐‘Ÿ1 + ๐พ))2 + (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) )(8๐‘”(โ„Ž โˆ’ โ„Ž0)) 2 (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) ) ] ๐‘‰ = [ โˆ’ ๐œ‡ ๐‘Ÿ1๐œŒ ( 8๐‘™1 ๐‘Ÿ1 + ๐พ) (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) ) ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) + ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) โˆš( 2๐œ‡ ๐‘Ÿ1๐œŒ ( 8๐‘™1 ๐‘Ÿ1 + ๐พ))2 + (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) )(8๐‘”(โ„Ž โˆ’ โ„Ž0)) 2 (1 + 2๐‘™1 ๐‘Ÿ1 ๐ถ3 + ๐›ฝ๐‘™1 (๐‘Ÿ1 + ๐‘™1) ) ] As required. In fact, we already showed this velocity before. The factor we were interested in to show was:
  • 39. 38 ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) So going back to the velocity equation, we have to incorporate the above factor so that when we reduce ๐‘™2 ๐‘ก๐‘œ 0 , we arrive at the required velocity above as shown below: โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ ๐‘‰ ๐‘ฆ 2 2 + 8๐œ‡( ๐‘™1 ๐‘Ÿ1 2 + ๐‘™2 ๐‘Ÿ2 2)๐‘‰ ๐‘ฆ + ๐พ๐œ‡ ๐‘Ÿ2 ๐‘‰ ๐‘ฆ + ๐œŒ๐ถ3( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )๐‘‰ ๐‘ฆ 2 + ๐œŒ๐›ฝ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 ) 2(1 + ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )) ๐‘‰ ๐‘ฆ 2 We substitute: ๐‘‰ ๐‘ฆ = ๐ด2 ๐ด1 ๐‘‰ And get: โ„Ž๐‘ฅ๐œŒ๐‘” = ๐œŒ ๐‘‰2 2 ( ๐ด2 ๐ด1 )2 + 8๐œ‡( ๐‘™1 ๐‘Ÿ1 2 + ๐‘™2 ๐‘Ÿ2 2)( ๐ด2 ๐ด1 )๐‘‰ + ๐พ๐œ‡ ๐‘Ÿ2 ( ๐ด2 ๐ด1 )๐‘‰ + ๐œŒ๐ถ3( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )( ๐ด2 ๐ด1 )2 ๐‘‰2 + ๐œŒ๐›ฝ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 ) 2(1 + ( ๐‘™1 ๐‘Ÿ1 + ๐‘™2 ๐‘Ÿ2 )) ( ๐ด2 ๐ด1 )2 ๐‘‰2 We have to include the surface tension effects and the equation becomes, (๐’‰ โˆ’ ๐’‰๐ŸŽ)๐†๐’ˆ = ๐† ๐‘ฝ๐Ÿ ๐Ÿ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ )๐Ÿ + ๐Ÿ–๐( ๐’๐Ÿ ๐’“๐Ÿ ๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ ๐Ÿ )( ๐‘จ๐Ÿ ๐‘จ๐Ÿ )๐‘ฝ + ๐‘ฒ๐ ๐’“๐Ÿ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ )๐‘ฝ + ๐†๐‘ช๐Ÿ‘( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ )( ๐‘จ๐Ÿ ๐‘จ๐Ÿ )๐Ÿ ๐‘ฝ๐Ÿ + ๐†๐œท( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ ) ๐Ÿ(๐Ÿ + ( ๐’๐Ÿ ๐’“๐Ÿ + ๐’๐Ÿ ๐’“๐Ÿ )) ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ )๐Ÿ ๐‘ฝ๐Ÿ Where: โ„Ž0 = 2๐›พ๐‘๐‘œ๐‘ ๐œƒ๐‘ฅ ๐œŒ๐‘” ( 1 ๐‘Ÿ๐‘ฅ + 1 ๐‘Ÿ๐‘ฆ ) We can go ahead and find the velocity V from the above.
  • 40. 39 How do we write the Bernoulli equation for a variable cross-sectional area with distance for example for the case of when the pipe is a conical frustrum? We can write the Bernoulli equation as an integral as below: ๐‘ƒ + โ„Ž๐œŒ๐‘” + ๐œŒ ๐‘‰2 2 + 8๐œ‡๐œ‹๐‘‰ โˆซ ( 1 ๐ด )๐‘‘๐‘ฅ ๐‘™ 0 + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ + ๐œŒ๐ถ3๐‘‰2 โˆซ ( 1 ๐‘Ÿ )๐‘‘๐‘ฅ ๐‘™ 0 + ๐œŒ๐›ฝ๐‘™ 2(๐‘Ÿ + ๐‘™) ๐‘‰2 = ๐ถ๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘™ (๐‘Ÿ + ๐‘™) = ๐ด๐‘  ๐ด๐‘‡ Where: ๐ด๐‘  = ๐‘™๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐ด๐‘‡ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž Or ๐‘ƒ + โ„Ž๐œŒ๐‘” + ๐œŒ ๐‘‰2 2 + 8๐œ‡๐œ‹๐‘‰ โˆซ ( 1 ๐ด )๐‘‘๐‘ฅ ๐‘™ 0 + ๐พ๐œ‡ ๐‘Ÿ ๐‘‰ + ๐œŒ๐ถ3๐‘‰2 โˆซ ( 1 ๐‘Ÿ )๐‘‘๐‘ฅ ๐‘™ 0 + ๐œŒ๐›ฝ๐ด๐‘  2๐ด๐‘‡ ๐‘‰2 = ๐ถ๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก Where: ๐ด๐‘  = ๐‘ค๐‘’๐‘ก๐‘ก๐‘’๐‘‘ ๐‘™๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘“๐‘Ÿ๐‘ข๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘š ๐ด๐‘‡ = ๐‘ค๐‘’๐‘ก๐‘ก๐‘’๐‘‘ ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘“๐‘Ÿ๐‘ข๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘š In applying the formula above recall that the area and radius r of the conical frustrum vary with distance x. i.e.
  • 41. 40 ๐ด = ๐ด2 ๐‘ฅ ๐‘™ + [1 โˆ’ ๐‘ฅ ๐‘™ ]๐ด1 And ๐‘Ÿ = ๐‘Ÿ2 ๐‘ฅ ๐‘™ + [1 โˆ’ ๐‘ฅ ๐‘™ ]๐‘Ÿ1 When the area is not varying, then we arrive back to the original expression. Using the friction factors for other geometries like the rectangular ducts, we can use energy conservation techniques used above to develop the general equation of velocity and even develop the Bernoulli equation for rectangular ducts.
  • 42. 41 HOW DO WE DEAL WITH PRESSURE GRADIENTS? Assume constant cross-sectional area and equal spacing as shown of length ๐‘™ Considering the length ๐‘™ to be small In this example ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)๐‘‰ โˆ’ 2๐‘”โ„Ž = 0 ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)๐‘‰ = 2๐‘”โ„Ž Assume ๐‘‰1 = ๐‘‰2 = ๐‘‰3 = ๐‘‰4 = ๐‘‰ The equations of head loss become: ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž1 โˆ’ โ„Ž2 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž2 โˆ’ โ„Ž3 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž3 โˆ’ โ„Ž4
  • 43. 42 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž4 โ„Ž1 โˆ’ โ„Ž2 ๐‘™ = โ„Ž2 โˆ’ โ„Ž3 ๐‘™ = โ„Ž3 โˆ’ โ„Ž4 ๐‘™ = โ„Ž4 ๐‘™ = ๐‘‰2 2๐‘”๐‘™ (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ) + ๐œ‡ ๐‘Ÿ๐‘”๐‘™๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = ๐‘š = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฝ๐Ÿ ๐Ÿ๐’ˆ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + ๐ ๐’“๐’ˆ๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) ๐‘ฝ = ๐’‰๐Ÿ ๐Ÿ’ โ€ฆ . . ๐’ƒ) Equation b) was got by adding all the equations of head loss above. Where ๐‘š = ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก ๐‘š๐‘™ = โ„Ž1 4 We see that the uniform pressure gradient is only achieved because of the fixed length intervals. ๐‘‰2 2๐‘”๐‘™ (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐‘™๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = ๐‘š ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ โˆ’ 2๐‘”๐‘š๐‘™ = 0 ๐Ÿ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) ๐‘ฝ = โˆ’ ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) + โˆš( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ))๐Ÿ + ๐Ÿ–๐’ˆ๐’Ž๐’(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) or ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš( ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ))๐Ÿ + ๐Ÿ–๐’ˆ๐’Ž๐’(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) ๐’‰๐Ÿ ๐Ÿ’ )) ๐Ÿ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Again, it can be shown after making the assumptions as above that when 8๐‘” โ„Ž1 4 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 โ‰ช 1 We use the binomial approximation
  • 44. 43 โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 ๐‘ฝ = ๐Ÿ๐’ˆ๐’Ž๐’ ๐Ÿ๐Ÿ”๐๐’ ๐’“๐Ÿ๐† ๐‘‰ = ๐‘Ÿ2 ๐œŒ๐‘”๐‘š 8๐œ‡ ๐‘š = ๐‘‘โ„Ž ๐‘‘๐‘ฅ ๐‘ธ = ๐…๐’“๐Ÿ’ ๐Ÿ–๐ ๐’…๐‘ท ๐’…๐’™ We notice that Pouiselle flow arrives due to equal spacing of the tubes but we notice that nonlinear pressure gradients can also be created provided non equal spacing We notice โ„Ž = โˆ’๐‘š๐‘ฅ + โ„Ž1 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž1 โˆ’ โ„Ž2 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž2 โˆ’ โ„Ž3 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž3 โˆ’ โ„Ž4 ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = โ„Ž4 Adding all ๐Ÿ’๐‘ฝ๐Ÿ ๐Ÿ๐’ˆ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + ๐Ÿ’๐ ๐’“๐’ˆ๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) ๐‘ฝ = ๐’‰๐Ÿ We can get V. For turbulent flow 2(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) + โˆš([ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 + 8๐‘”๐‘š๐‘™(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )
  • 45. 44 2(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) โˆš1 + (8๐‘”๐‘š๐‘™)(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 Also, in turbulent flow 8๐‘”๐‘š๐‘™(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 โ‰ซ 1 Where: ๐‘š๐‘™ = โ„Ž1 4 OR 8๐‘” โ„Ž1 4 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 โ‰ซ 1 ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš (๐Ÿ๐’ˆ๐’Ž๐’) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Or ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš (๐Ÿ๐’ˆ ๐’‰๐Ÿ ๐Ÿ’ ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Got by adding up the equations of head loss above
  • 46. 45 HEAD LOSS The head loss is given by: ๐’‰ = ๐Ÿ’๐’‡ ๐’ ๐‘ซ ร— ๐‘ฝ๐Ÿ ๐Ÿ๐’ˆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . .1) where we substitute for the correct friction factor and get the flow rate. But in our derivations, we get the head loss as below: generally, ๐‘‰2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰ = 2๐‘”(โ„Ž1 โˆ’ โ„Ž2) (โ„Ž1 โˆ’ โ„Ž2) = โ„Ž๐‘’๐‘Ž๐‘‘๐‘™๐‘œ๐‘ ๐‘  rearranging โ„Ž1 โˆ’ โ„Ž2 = [ ๐‘‰2 2๐‘” (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐‘”๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐‘‰] โ„Ž1 โˆ’ โ„Ž2 = ๐‘‰2 2๐‘” [(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)] from equation 1) above โ„Ž1 โˆ’ โ„Ž2 = 4๐‘“ ๐‘™ ๐ท ร— ๐‘‰2 2๐‘” = ๐‘‰2 2๐‘” [(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)] 4๐‘“ ๐‘™ ๐ท = [(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)] 4๐‘“ = ๐ท ๐‘™ + 4๐ถ3 + ๐›ฝ๐ท 4(๐‘Ÿ + ๐‘™) + 4๐œ‡ ๐‘™๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) ๐’‡ = ๐‘ซ ๐Ÿ’๐’ + ๐‘ช๐Ÿ‘ + ๐œท๐‘ซ ๐Ÿ๐Ÿ”(๐’“ + ๐’) + ๐ ๐’๐‘ฝ๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) For laminar flow ๐ท 4๐‘™ โ‰ˆ 0 and 8๐‘™ ๐‘Ÿ + ๐‘˜ โ‰ˆ 8๐‘™ ๐‘Ÿ and ๐ถ3 โ‰ˆ 0 and ๐›ฝ๐ท 16(๐‘Ÿ+๐‘™) โ‰ˆ 0 ๐‘“ = 8๐œ‡ ๐‘‰๐‘Ÿ๐œŒ ๐’‡ = ๐Ÿ๐Ÿ” ๐‘น๐’†๐’… For turbulent flow, the governing equation was
  • 47. 46 ๐‘ฝ(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) + โˆš๐Ÿ๐’ˆ(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) )(๐’‰๐Ÿ โˆ’ ๐’‰๐Ÿ) [๐‘‰(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 = 2๐‘”(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )(โ„Ž1 โˆ’ โ„Ž2) ๐‘‰2 [(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 = 2๐‘”(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )(โ„Ž1 โˆ’ โ„Ž2) Therefore, head loss โˆ†๐’‰ = (๐’‰๐Ÿ โˆ’ ๐’‰๐Ÿ) is โˆ†โ„Ž = ๐‘‰2 2๐‘” [1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) Compare with โˆ†โ„Ž = 4๐‘“ ๐‘™ ๐ท ร— ๐‘‰2 2๐‘” 4๐‘“ ๐‘™ ๐ท = [1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ๐‘“ = ๐ท 4๐‘™ [(1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + 2๐œ‡ ๐‘Ÿ๐‘‰๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ3 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) We get this expression for the friction coefficient ๐’‡ = ๐‘ซ ๐Ÿ’๐’ ร— [(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) + ๐Ÿ’ ๐‘น๐’†๐’… ( ๐Ÿ–๐’ ๐’“ + ๐’Œ)]๐Ÿ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐‘ช๐Ÿ‘ + ๐œท๐’ (๐’“ + ๐’) ) Comparing the equation below for smooth pipes in turbulent flow with the Blasius equation, they should give the same value i.e., The Blasius Friction factor is:
  • 48. 47 ๐‘“ = 0.079 ๐‘…๐‘’0.25 For turbulent flow: ๐‘…๐‘’ < 100,000 And the Blasius equation is: Blasius predicts that turbulent flow equation is [2] โˆ†๐’‰ = ๐ŸŽ. ๐Ÿ๐Ÿ’๐Ÿ๐†๐ŸŽ.๐Ÿ•๐Ÿ“ ๐œ‡๐ŸŽ.๐Ÿ๐Ÿ“ ๐†๐’ˆ๐‘ซ๐Ÿ’.๐Ÿ•๐Ÿ“ ร— ๐‘ธ๐Ÿ.๐Ÿ•๐Ÿ“ ๐’ ๐‘พ๐’‰๐’†๐’“๐’† ๐‘ซ = ๐’…๐’Š๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’๐’‡ ๐’‘๐’Š๐’‘๐’† The two equations should predict the same flow rate or head loss. A. For rough pipes For rough pipes, the friction coefficient is given by: ๐Ÿ โˆš๐’‡ = ๐Ÿ’. ๐ŸŽ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐‘ซ ๐’† + ๐Ÿ. ๐Ÿ๐Ÿ– We notice that the friction factor is independent of the Reynolds number and a constant for a given diameter for high Reynolds numbers. From the equation of head loss, โ„Ž = 4๐‘“ ๐‘™ ๐ท ร— ๐‘‰2 2๐‘” Rearranging, we get: ๐‘ธ๐Ÿ = ๐‘ซ ๐Ÿ๐†๐’‡ ร— ๐‘จ๐Ÿ ร— ๐’…๐‘ท ๐’…๐’™ This is the formula for flow rate for which we substitute the friction factor Recalling from the formulas derived before replacing ๐ถ3 with ๐ถ4 and using the formula below: 2(1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)โˆš(1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž [ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜)]2 ) ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ถ4 = ๐‘“
  • 49. 48 2 (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) ๐‘‰ = โˆ’ 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) + 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) โˆš1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) 8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 For turbulent flow (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 โ‰ซ 1 And 1 + (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 โ‰ˆ (1 + 2๐‘™ ๐‘Ÿ ๐ถ4 + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) )8๐‘”โ„Ž ( 2๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜))2 Substituting ๐ถ4 = ๐‘“ ๐‘‰ = โˆ’ ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) (1 + 2๐‘™ ๐‘Ÿ ๐‘“ + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) + โˆš 2๐‘”โ„Ž (1 + 2๐‘™ ๐‘Ÿ ๐‘“ + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) For turbulent flow, when, ๐œ‡ ๐‘Ÿ๐œŒ ( 8๐‘™ ๐‘Ÿ + ๐‘˜) (1 + 2๐‘™ ๐‘Ÿ ๐‘“ + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) โ‰ˆ 0 Velocity becomes ๐‘‰ = โˆš 2๐‘”โ„Ž (1 + 2๐‘™ ๐‘Ÿ ๐‘“ + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) ) And if 1 + 2๐‘™ ๐‘Ÿ ๐‘“ + ๐›ฝ๐‘™ (๐‘Ÿ + ๐‘™) โ‰ˆ 2๐‘™ ๐‘Ÿ ๐‘“
  • 50. 49 ๐‘‰ = โˆš( 2๐‘”โ„Ž ( 2๐‘™ ๐‘Ÿ ๐‘“) ) Rearranging We get ๐‘ธ๐Ÿ = ๐‘ซ ๐Ÿ๐†๐’‡ ร— ๐‘จ๐Ÿ ร— ๐’…๐‘ท ๐’…๐’™ Which is the same as that we got by rearranging the head loss. So generally, for rough pipes the velocity is given by: ๐Ÿ(๐Ÿ + ๐Ÿ๐’ ๐’“ ๐’‡ + ๐œท๐’ (๐’“ + ๐’) )๐‘ฝ = โˆ’ ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) + โˆš([ ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ)]๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐’‡ + ๐œท๐’ (๐’“ + ๐’) )(๐Ÿ–๐’ˆ๐’‰)) or ๐‘ฝ = โˆ’ ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ) (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐’‡ + ๐œท๐’ (๐’“ + ๐’) ) + โˆš[ ๐Ÿ๐ ๐’“๐† ( ๐Ÿ–๐’ ๐’“ + ๐’Œ)]๐Ÿ + (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐’‡ + ๐œท๐’ (๐’“ + ๐’) )(๐Ÿ–๐’ˆ๐’‰) ๐Ÿ (๐Ÿ + ๐Ÿ๐’ ๐’“ ๐’‡ + ๐œท๐’ (๐’“ + ๐’) ) Where ๐‘“ is given by: ๐Ÿ โˆš๐’‡ = ๐Ÿ’. ๐ŸŽ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐‘ซ ๐’† + ๐Ÿ. ๐Ÿ๐Ÿ– The derivation of the above formula can be got from our analysis we did before concerning derivation of the Reynolds number. We can extend the above energy conservation techniques for flow in a siphon and even derive the Darcy flow equation for porous media.
  • 51. 50 THEORY OF MOTION OF PARTICLES IN VISCOUS FLUIDS Before we look at modelling a falling sphere, let us first look at a graph of drag coefficient against Reynolds number [1] for a sphere: Consider a falling sphere: The drag force is given by: ๐น = 1 2 ๐ถ๐ท๐ด๐œŒ๐‘‰2 Where: ๐ด = ๐‘๐‘Ÿ๐‘œ๐‘—๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž The forces acting on it are shown below:
  • 52. 51 ๐‘Š = ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก = ๐‘š๐‘” = ๐œŒ๐‘ ๐‘‰0๐‘” ๐‘ˆ = ๐‘ข๐‘๐‘กโ„Ž๐‘Ÿ๐‘ข๐‘ ๐‘ก = ๐œŒ๐‘‰0๐‘” ๐น๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ2๐ด๐œŒ๐‘‰2 ๐น ๐‘ฃ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = 1 2 ๐ถ๐‘‘๐ด๐œŒ๐‘‰2 Where: ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘‰0 = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค We say: ๐’Ž ๐’…๐‘ฝ ๐’…๐’• = ๐‘พ โˆ’ ๐‘ผ โˆ’ ๐Ÿ ๐Ÿ ๐‘ช๐’…๐‘จ๐†๐‘ฝ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ ๐‘ช๐Ÿ๐‘จ๐†๐‘ฝ๐Ÿ As before: ๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค ๐ถ๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐ถ๐‘‘ = 24 ๐‘…๐‘’ = 24๐œ‚ ๐œŒ๐‘‰๐‘‘ = 12๐œ‚ ๐œŒ๐‘‰๐‘Ÿ ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘
  • 53. 52 ๐ด = ๐œ‹๐‘Ÿ2 For a sphere we shall use ๐ถ2 = 0.4 which is the value of ๐ถ2 ๐‘“๐‘œ๐‘Ÿ ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 500 < ๐‘…๐‘’๐‘‘ < 105 As in the diagram above of drag against Reynolds number. ๐‘…๐‘’ = ๐œŒ๐‘‰๐‘‘ ๐œ‚ ๐‘š = 4 3 ๐œ‹๐‘Ÿ3 ๐œŒ๐‘  ๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ Substituting, we get: ๐’Ž ๐’…๐‘ฝ ๐’…๐’• = ๐’Ž๐’ˆ โˆ’ ๐†๐‘ฝ๐ŸŽ๐’ˆ โˆ’ ๐Ÿ ๐Ÿ ๐‘ช๐’…๐‘จ๐†๐‘ฝ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ ๐‘ช๐Ÿ๐‘จ๐†๐‘ฝ๐Ÿ Dividing through by m and multiplying through by 2, we get ๐Ÿ ๐’…๐‘ฝ ๐’…๐’• = ๐Ÿ( ๐†๐’” โˆ’ ๐† ๐†๐’” )๐’ˆ โˆ’ ๐Ÿ—๐œผ ๐’“๐Ÿ๐†๐’” ๐‘ฝ โˆ’ ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐‘ฝ๐Ÿ NB The above differential equation can be solved to get the velocity as a function of time. What happens when the body stops accelerating (i.e., at terminal velocity)? ๐‘‘๐‘‰ ๐‘‘๐‘ก = 0 We get in steady state (i.e., when the acceleration is zero), we reach terminal velocity 0 = 2( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )๐‘” โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ๐‘‰2 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ๐‘‰2 + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 2( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )๐‘” = 0 This is a quadratic formula and the terminal velocity can be got as: 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + โˆš(( 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  )2 + 6๐ถ2๐œŒ๐‘” ๐‘Ÿ๐œŒ๐‘  ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ))
  • 54. 53 ๐‘‰ = โˆ’ 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ + โˆš( 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐œŒ๐‘ ๐‘” 3๐ถ2๐œŒ ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) ๐‘ฝ = โˆ’ ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš( ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“(๐†๐’” โˆ’ ๐†)๐’ˆ ๐Ÿ‘๐‘ช๐Ÿ๐† ) The above is the terminal velocity. We are going to show that provided some condition is met, the terminal velocity can be either Stokeโ€™s flow or turbulent flow. Coming back to the equation above below: 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + โˆš(( 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  )2 + 6๐ถ2๐œŒ๐‘” ๐‘Ÿ๐œŒ๐‘  ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) In the velocity equation above, let us factorize 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  out of the square root and get 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) The governing term 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) If the term below under the square root 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) โ‰ช 1 We shall arrive at Stokeโ€™s flow. We can use the binomial approximation and get (1 + ๐‘ฅ)๐‘› โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1 Where: ๐‘› = 1 2 ๐‘ฅ = 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )
  • 55. 54 We use the binomial approximation โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 โˆš(1 + 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 )( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) โ‰ˆ (1 + ๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) Upon substitution in the velocity equation, we get 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + ๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  (1 + ๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) Therefore, upon simplification, the terminal velocity will be ๐‘‰ = 2 9 ๐‘Ÿ2 ๐œŒ๐‘ ๐‘” ๐œ‚ ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐‘ฝ = ๐Ÿ ๐Ÿ— ๐’“๐Ÿ ๐’ˆ ๐œผ (๐†๐’” โˆ’ ๐†) Which is Stokeโ€™s flow. Also, if 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) โ‰ซ 1 We can say (1 + 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) โ‰ˆ 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) The velocity becomes: 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )) 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  ๐‘‰ = โˆ’ 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  โˆš 2๐ถ2๐‘”๐œŒ๐œŒ๐‘ ๐‘Ÿ3 27๐œ‚2 ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) Upon simplification, the velocity becomes:
  • 56. 55 ๐‘‰ = โˆ’ 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ + โˆš 8๐‘”๐‘Ÿ๐œŒ๐‘  3๐ถ2๐œŒ ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐‘ฝ = โˆ’ ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš ๐Ÿ–๐’ˆ๐’“ ๐Ÿ‘๐‘ช๐Ÿ๐† (๐†๐’” โˆ’ ๐†) The above is the terminal velocity in turbulent flow If โˆ’ 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ โ‰ˆ 0 Then the terminal velocity becomes: ๐‘ฝ = โˆš ๐Ÿ–๐’ˆ๐’“(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† The above is the terminal velocity in turbulent flow: It can be got by saying: ๐‘š๐‘” โˆ’ ๐‘ˆ = 1 2 ๐ถ0๐ด๐œŒ๐‘‰2 ๐‘ˆ = ๐‘ข๐‘๐‘กโ„Ž๐‘Ÿ๐‘ข๐‘ ๐‘ก = 4 3 ๐œ‹๐‘Ÿ3 ๐œŒ๐‘” 4 3 ๐œ‹๐‘Ÿ3(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘” = 1 2 ๐ถ0๐œ‹๐‘Ÿ2 ๐œŒ๐‘‰2 Since ๐ถ0 = 0.4 In turbulent flow We get ๐‘‰ = โˆš 8 3๐ถ0 ๐‘Ÿ๐‘” (๐œŒ๐‘  โˆ’ ๐œŒ) ๐œŒ LET US SOLVE THE DIFFERENTIAL EQUATION BELOW AS GOT ABOVE; ๐Ÿ ๐’…๐‘ฝ ๐’…๐’• = ๐Ÿ( ๐†๐’” โˆ’ ๐† ๐†๐’” )๐’ˆ โˆ’ ๐Ÿ—๐œผ ๐’“๐Ÿ๐†๐’” ๐‘ฝ โˆ’ ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐‘ฝ๐Ÿ ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐ด๐‘” โˆ’ ๐ต๐‘‰ โˆ’ ๐ถ๐‘‰2
  • 57. 56 Where: ๐ด = 2( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐ต = 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  ๐ถ = 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โˆซ ๐‘‘๐‘‰ ๐ด๐‘” โˆ’ ๐ต๐‘‰ โˆ’ ๐ถ๐‘‰2 = 1 2 โˆซ ๐‘‘๐‘ก โˆซ ๐‘‘๐‘‰ โˆ’๐ถ(๐‘‰2 + ๐ต ๐ถ ๐‘‰ โˆ’ ๐ด ๐ถ ๐‘”) = 1 2 โˆซ ๐‘‘๐‘ก โˆซ ๐‘‘๐‘‰ ๐‘‰2 + ๐ต ๐ถ ๐‘‰ โˆ’ ๐ด ๐ถ ๐‘” = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก Let ๐ต ๐ถ = ๐‘š ๐ด ๐ถ ๐‘” = ๐‘› โˆซ ๐‘‘๐‘‰ ๐‘‰2 + ๐‘š๐‘‰ โˆ’ ๐‘› = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก ๐‘‰2 + ๐‘š๐‘‰ โˆ’ ๐‘› = (๐‘‰ + ๐‘š 2 )2 โˆ’ ๐‘š2 4 โˆ’ ๐‘› = (๐‘‰ + ๐‘š 2 )2 โˆ’ ( ๐‘š2 4 + ๐‘›) โˆซ ๐‘‘๐‘‰ (๐‘‰ + ๐‘š 2 )2 โˆ’ ( ๐‘š2 4 + ๐‘›) = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก Let ๐‘ƒ = ( ๐‘š2 4 + ๐‘›) โˆซ ๐‘‘๐‘‰ (๐‘‰ + ๐‘š 2 )2 โˆ’ (โˆš๐‘ƒ)2 = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก โˆซ ๐‘‘๐‘‰ (๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ)(๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ) = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก
  • 58. 57 1 (๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ)(๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ) = ๐ฟ (๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ) + ๐พ (๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ) ๐ฟ = 1 2โˆš๐‘ƒ ๐พ = โˆ’1 2โˆš๐‘ƒ 1 2โˆš๐‘ƒ โˆซ ๐‘‘๐‘‰ (๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ) โˆ’ 1 2โˆš๐‘ƒ โˆซ ๐‘‘๐‘‰ (๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ) = โˆ’ ๐ถ 2 โˆซ ๐‘‘๐‘ก ln (๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ) โˆ’ ๐‘™๐‘› (๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ) = โˆ’๐ถโˆš๐‘ƒ๐‘ก + ๐ท ๐ท is an integration constant ๐‘Ž๐‘ก ๐‘ก = 0 , ๐‘‰ = 0 Upon substitution, we get ln ( ๐‘š 2 โˆ’ โˆš๐‘ƒ ๐‘š 2 + โˆš๐‘ƒ ) = ๐ท The velocity equation becomes: ln [( ๐‘š 2 + โˆš๐‘ƒ ๐‘š 2 โˆ’ โˆš๐‘ƒ ) ( ๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ ๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ )] = โˆ’๐ถโˆš๐‘ƒ๐‘ก ๐‘š = ๐ต ๐ถ = 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ ๐ด = 2( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐ถ = 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ๐‘ƒ = ( ๐‘š2 4 + ๐‘›) ๐‘› = ๐ด ๐ถ ๐‘” = 8๐‘Ÿ๐‘” 3๐ถ2๐œŒ (๐œŒ๐‘  โˆ’ ๐œŒ) Therefore
  • 59. 58 ๐‘ƒ = 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ Upon substitution, the velocity becomes ln [( ๐‘š 2 + โˆš๐‘ƒ ๐‘š 2 โˆ’ โˆš๐‘ƒ ) ( ๐‘‰ + ๐‘š 2 โˆ’ โˆš๐‘ƒ ๐‘‰ + ๐‘š 2 + โˆš๐‘ƒ )] = โˆ’๐ถโˆš๐‘ƒ๐‘ก ln [ ( 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ + โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ โˆ’ โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ ) ( ๐‘‰ + 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ โˆ’ โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ ๐‘‰ + 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ + โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ ) ] = โˆ’ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ ๐‘ก ( ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† โˆ’ โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ) ( ๐‘ฝ + ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† โˆ’ โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐‘ฝ + ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ) = ๐’† โˆ’ ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’”โˆ’๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐’• The velocity can be got by making V the subject of the formula above. ๐ด๐‘ก ๐‘ก = โˆž ๐‘œ๐‘Ÿ ๐‘Ž๐‘ก ๐‘ ๐‘ก๐‘’๐‘Ž๐‘‘๐‘ฆ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’ When the exponential term below 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ ๐‘ก โ‰ˆ โˆž The exponential becomes zero Since ๐‘’โˆ’โˆž = 0 and we get ๐‘‰ + 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ โˆ’ โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ = 0 ๐‘‰ = โˆ’ 6๐œ‚ ๐‘Ÿ๐ถ2๐œŒ + โˆš 36๐œ‚2 ๐‘Ÿ2๐ถ2 2 ๐œŒ2 + 8๐‘Ÿ๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ) 3๐ถ2๐œŒ Which is what we got before as the terminal velocity. Knowing the velocity at a particular depth h, we can get the time taken to fall to depth h. Or
  • 60. 59 We can make velocity the subject of the formula in the expression above of velocity as a function of time and then integrate knowing that ๐‘‘๐‘ฅ ๐‘‘๐‘ก = ๐‘‰ To get ๐‘ฅ as a function of time t. Similarly, we can use energy conservation techniques to get the velocity as a function of height h and then using the expression above, we can tell the time taken to achieve a particular velocity or height h. This is what we are going to do below: Consider a falling sphere: If there were viscous effects in an unbounded medium, we conserve energy changes and say: ๐๐จ๐ญ๐ž๐ง๐ญ๐ข๐š๐ฅ ๐ž๐ง๐ž๐ซ๐ ๐ฒ ๐œ๐ก๐š๐ง๐ ๐ž = ๐Š๐ข๐ง๐ž๐ญ๐ข๐œ ๐ž๐ง๐ž๐ซ๐ ๐ฒ ๐ ๐š๐ข๐ง๐ž๐ + ๐ฐ๐จ๐ซ๐ค ๐๐จ๐ง๐ž ๐š๐ ๐š๐ข๐ง๐ฌ๐ญ ๐ฏ๐ข๐ฌ๐œ๐จ๐ฎ๐ฌ ๐Ÿ๐จ๐ซ๐œ๐ž๐ฌ ๐š๐ง๐ ๐ฎ๐ฉ๐ญ๐ก๐ซ๐ฎ๐ฌ๐ญ ๐‘š๐‘”โ„Ž = 1 2 ๐‘š๐‘‰2 + ๐œŒ๐‘‰0๐‘”๐‘™ + 1 2 ๐ถ๐‘‘๐ด๐œŒ๐‘‰2 ร— ๐‘™ + 1 2 ๐ถ2๐ด๐œŒ๐‘‰2 ร— ๐‘™ ๐‘‰0 = 4 3 ๐œ‹๐‘Ÿ3 Where: ๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค = 0.4 ๐ถ๐‘‘ = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐ถ๐‘‘ = 24 ๐‘…๐‘’ = 24๐œ‚ ๐œŒ๐‘‰๐‘‘ = 12๐œ‚ ๐œŒ๐‘‰๐‘Ÿ
  • 61. 60 ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘™ = โ„Ž ๐’‰ is the vertical depth below the point of release ๐ด = ๐œ‹๐‘Ÿ2 ๐ถ2 = ๐‘‘๐‘Ÿ๐‘Ž๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘–๐‘› ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘“๐‘™๐‘œ๐‘ค For a sphere ๐ถ2 = 0.4 Where: ๐‘…๐‘’ = ๐œŒ๐‘‰๐‘‘ ๐œ‚ ๐‘š๐‘”โ„Ž = 1 2 ๐‘š๐‘‰2 + ๐œŒ๐‘‰0๐‘”โ„Ž + 1 2 ๐ถ๐‘‘๐ด๐œŒ๐‘‰2 ร— โ„Ž + 1 2 ๐ถ2๐ด๐œŒ๐‘‰2 ร— โ„Ž ๐‘š = 4 3 ๐œ‹๐‘Ÿ3 ๐œŒ๐‘  ๐œŒ๐‘  = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐ด = ๐œ‹๐‘Ÿ2 Substituting, we get: 4 3 ๐œ‹๐‘Ÿ3(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘”โ„Ž = 1 2 ร— 4 3 ๐œ‹๐‘Ÿ3 ๐œŒ๐‘ ๐‘‰2 + 1 2 ร— 12๐œ‡ ๐œŒ๐‘‰๐‘Ÿ ร— ๐œ‹๐‘Ÿ2 ๐œŒ๐‘‰2 ร— โ„Ž + 1 2 ๐ถ2๐œ‹๐‘Ÿ2 ๐œŒ๐‘‰2 ร— โ„Ž Simplifying we get ๐‘‰2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 2๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž = 0 In the expression above, if h is large such that 1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž โ‰ˆ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž We get ๐‘‰2 ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 2๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž = 0 And get ๐‘‰2 ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ) + 9๐œ‚ ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 2๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) = 0
  • 62. 61 The above is a quadratic equation and the velocity V got will be independent of height h hence it will be the terminal velocity as got before. ๐‘ฝ = โˆ’ ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš( ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“(๐†๐’” โˆ’ ๐†)๐’ˆ ๐Ÿ‘๐‘ช๐Ÿ๐† ) Okay now coming back to ๐‘‰2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  ๐‘‰ โˆ’ 2๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž = 0 The above is a quadratic formula and the solution is: 2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + โˆš(( 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  )2 + 8๐‘”โ„Ž( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)) โ€ฆ โ€ฆ . . ๐‘ด ๐‘ฝ = โˆ’ ๐Ÿ—๐œผ๐’‰ ๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) + โˆš(( ๐Ÿ—๐œผ๐’‰ ๐’“๐Ÿ๐†๐’” )๐Ÿ + ๐Ÿ–๐’ˆ( ๐†๐’” โˆ’ ๐† ๐†๐’” )๐’‰(๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰)) ๐Ÿ (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) The above is the velocity of a sphere in a viscous fluid at depth h from the initial point h is the vertical depth from the point of release. Laminar flow occurs when ๐‘…๐‘’ < ๐‘…๐‘’๐‘๐‘Ÿ Where: ๐‘…๐‘’๐‘๐‘Ÿ is the critical Reynolds number below which laminar flow acts We shall calculate the value of ๐‘…๐‘’๐‘๐‘Ÿ in the text to follow. For laminar or Stokesโ€™s flow ๐‘‰ = 2 9 ๐‘Ÿ2 (๐œŒ๐‘  โˆ’ ๐œŒ)๐‘” ๐œ‚ ๐‘…๐‘’ = ๐œŒ๐‘‰๐‘‘ ๐œ‚ = ๐œŒ ร— 2 9 ๐‘Ÿ2 (๐œŒ๐‘  โˆ’ ๐œŒ)๐‘” ๐œ‚ ๐œ‚ ร— 2๐‘Ÿ < ๐‘…๐‘’๐‘๐‘Ÿ Therefore
  • 63. 62 ๐Ÿ’๐’“๐Ÿ‘ ๐†(๐†๐’” โˆ’ ๐†)๐’ˆ ๐Ÿ—๐œผ๐Ÿ๐‘น๐’†๐’„๐’“ < ๐Ÿ That is the condition for laminar flow or Stokeโ€™s flow Going back to equation M and factorizing out (( 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  )2 we get 2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2๐œŒ๐‘  9๐œ‚โ„Ž )2) If the term 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚โ„Ž )2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) โ‰ช 1 Is very small, we can use the approximation (1 + ๐‘ฅ)๐‘› โ‰ˆ 1 + ๐‘›๐‘ฅ for ๐‘ฅ โ‰ช 1 I.e., if 8๐‘” โ„Ž ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚ )2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) โ‰ช 1 And if 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž > 1 So that (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) โ‰ˆ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž We get 8๐‘” โ„Ž ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚ )2 ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) โ‰ช 1 And get ๐Ÿ๐‘ช๐Ÿ๐’“๐Ÿ‘ ๐†(๐†๐’” โˆ’ ๐†)๐’ˆ ๐Ÿ๐Ÿ•๐œผ๐Ÿ < ๐Ÿ Comparing with the condition for laminar flow derived before ๐Ÿ’๐’“๐Ÿ‘ ๐†(๐†๐’” โˆ’ ๐†)๐’ˆ ๐Ÿ—๐œผ๐Ÿ๐‘น๐’†๐’„๐’“ < ๐Ÿ We get
  • 64. 63 4 9๐‘…๐‘’๐‘๐‘Ÿ = 2๐ถ2 27 Substituting ๐ถ2 = 0.4 We get ๐‘น๐’†๐’„๐’“ = ๐Ÿ๐Ÿ“ The implication is that the critical Reynolds number for laminar flow is 15 The governing number of falling for a sphere is: ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ = ๐Ÿ–๐’ˆ ๐’‰ ( ๐†๐’” โˆ’ ๐† ๐†๐’” )(๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰)( ๐’“๐Ÿ ๐†๐’” ๐Ÿ—๐œผ )๐Ÿ Or ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ = ๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘ ๐œผ๐Ÿ [ ๐Ÿ๐’“๐†๐’” ๐Ÿ–๐Ÿ๐’‰ + ๐‘ช๐Ÿ๐† ๐Ÿ“๐Ÿ’ ] If 4๐‘”(๐œŒ๐‘  โˆ’ ๐œŒ)๐‘Ÿ3 ๐œ‚2 [ 2๐‘Ÿ๐œŒ๐‘  81โ„Ž + ๐ถ2๐œŒ 54 ] โ‰ช 1 2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2๐œŒ๐‘  9๐œ‚โ„Ž )2) We use the binomial approximation โˆš1 + ๐‘ฅ โ‰ˆ 1 + 1 2 ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ช 1 โˆš(1 + 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2๐œŒ๐‘  9๐œ‚โ„Ž )2) โ‰ˆ (1 + 4๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚โ„Ž )2 ) And get 2(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  (1 + 4๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚โ„Ž )2 ) Making the substitution 1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž โ‰ˆ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž we get 2 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  (1 + 4๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚โ„Ž )2 )
  • 65. 64 ๐‘ฝ = ๐Ÿ ๐Ÿ— ๐’“๐Ÿ (๐†๐’” โˆ’ ๐†)๐’ˆ ๐œผ ๐’…๐’‰ ๐’…๐’• = ๐Ÿ ๐Ÿ— ๐’“๐Ÿ (๐†๐’” โˆ’ ๐†)๐’ˆ ๐œผ Using the number below: ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ = ๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘ ๐œผ๐Ÿ [ ๐Ÿ๐’“๐†๐’” ๐Ÿ–๐Ÿ๐’‰ + ๐‘ช๐Ÿ๐† ๐Ÿ“๐Ÿ’ ] We can tell when Stokeโ€™s flow or laminar flow begins by substituting the changing increasing value of h in the number above until h is such that the number is far less than one and then there, we can say the sphere is in laminar flow. Also given a fixed height h for example a fluid in a container, we can determine the radius and density of the sphere for which Stokeโ€™s flow will be observed. To get the time taken to reach Stokeโ€™s flow, we can integrate the velocity equation below: ๐‘ฝ๐Ÿ = โˆ’ ๐Ÿ—๐œผ๐’‰ ๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) + โˆš(( ๐Ÿ—๐œผ๐’‰ ๐’“๐Ÿ๐†๐’” )๐Ÿ + ๐Ÿ–๐’ˆ( ๐†๐’” โˆ’ ๐† ๐†๐’” )๐’‰(๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰)) ๐Ÿ (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) As ๐‘‘โ„Ž ๐‘‘๐‘ก = ๐‘‰1 From an initial height to a height when Stokeโ€™s flow begins or we can use another simpler method as will be shown later. After that time on to afterwards, the sphere will undergo terminal velocity as: ๐‘ฝ = ๐Ÿ ๐Ÿ— ๐’“๐Ÿ (๐†๐’” โˆ’ ๐†)๐’ˆ ๐œผ ๐’…๐’‰ ๐’…๐’• = ๐Ÿ ๐Ÿ— ๐’“๐Ÿ (๐†๐’” โˆ’ ๐†)๐’ˆ ๐œผ This is the formula for terminal velocity of a sphere i.e., Stokeโ€™s law for laminar flow/fall. The integration of the above velocity equation is difficult, so we shall see an alternative method later in the text later.
  • 66. 65 Also, when 8๐‘” โ„Ž ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚ )2 โ‰ซ 1 Or when ๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘ ๐œผ๐Ÿ [ ๐Ÿ๐’“๐†๐’” ๐Ÿ–๐Ÿ๐’‰ + ๐‘ช๐Ÿ๐† ๐Ÿ“๐Ÿ’ ] โ‰ซ ๐Ÿ Then from 2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  โˆš(1 + 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2๐œŒ๐‘  9๐œ‚โ„Ž )2) 1 + 8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚โ„Ž )2 โ‰ˆ 8๐‘” โ„Ž ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2 ๐œŒ๐‘  9๐œ‚ )2 Upon substitution, we get; 2 (1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  + 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  โˆš(8๐‘”( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )โ„Ž(1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž)( ๐‘Ÿ2๐œŒ๐‘  9๐œ‚โ„Ž )2) 2๐‘‰ = โˆ’ 9๐œ‚โ„Ž ๐‘Ÿ2๐œŒ๐‘  (1 + 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  โ„Ž) + โˆš (8๐‘”โ„Ž) (1 + 3๐ถ2๐œŒ 2๐‘Ÿ๐œŒ๐‘  โ„Ž) ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐‘ฝ = โˆ’๐Ÿ—๐œผ๐’‰ ๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) + โˆš ๐Ÿ๐’ˆ๐’‰ (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) ( ๐†๐’” โˆ’ ๐† ๐†๐’” ) When h is large such that 1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž โ‰ˆ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž The velocity becomes: ๐‘‰ = โˆ’9๐œ‚โ„Ž 2๐‘Ÿ2๐œŒ๐‘  ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) + โˆš 2๐‘”โ„Ž ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž) ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  )
  • 67. 66 ๐‘‰ = โˆ’9๐œ‚ 2๐‘Ÿ2๐œŒ๐‘  ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ) + โˆš 2๐‘” ( 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  ) ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) โ€ฆ โ€ฆ ๐‘ณ ๐‘‰ = โˆ’6๐œ‚ ๐ถ2๐‘Ÿ๐œŒ + โˆš 8 3๐ถ2 ๐‘Ÿ๐‘” ๐œŒ๐‘  ๐œŒ ( ๐œŒ๐‘  โˆ’ ๐œŒ ๐œŒ๐‘  ) ๐‘ฝ = โˆ’๐Ÿ”๐œผ ๐‘ช๐Ÿ๐’“๐† + โˆš ๐Ÿ– ๐Ÿ‘๐‘ช๐Ÿ ๐’“๐’ˆ (๐†๐’” โˆ’ ๐†) ๐† The above velocity is the terminal velocity reached which is what we got before for turbulent flow. If โˆ’6๐œ‚ ๐ถ2๐‘Ÿ๐œŒ โ‰ช 1 ๐‘–๐‘  ๐‘ ๐‘š๐‘Ž๐‘™๐‘™ Then โˆ’6๐œ‚ ๐ถ2๐‘Ÿ๐œŒ โ‰ˆ 0 Then we get ๐‘ฝ = โˆš ๐Ÿ– ๐Ÿ‘๐‘ช๐Ÿ ๐’“๐’ˆ (๐†๐’” โˆ’ ๐†) ๐† Comparing with the governing equation for turbulent flow drag, So Comparing with ๐‘‰ = โˆš 8 3๐ถ2 ๐‘Ÿ๐‘” (๐œŒ๐‘  โˆ’ ๐œŒ) ๐œŒ ๐ถ0 = ๐ถ2 So, we have proved that ๐ถ2 is the drag coefficient in turbulent flow. Again, we can use the number:
  • 68. 67 ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ = ๐Ÿ’๐’ˆ(๐†๐’” โˆ’ ๐†)๐’“๐Ÿ‘ ๐œผ๐Ÿ [ ๐Ÿ๐’“๐†๐’” ๐Ÿ–๐Ÿ๐’‰ + ๐‘ช๐Ÿ๐† ๐Ÿ“๐Ÿ’ ] And substitute in the increasing value of h and then determine the point h when the number will be far greater than 1 and also when 1 + 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž โ‰ˆ 3๐ถ2๐œŒ 4๐‘Ÿ๐œŒ๐‘  โ„Ž . At this point, terminal velocity will be reached and from that point afterwards, the sphere will obey ๐‘‘โ„Ž ๐‘‘๐‘ก = ๐‘‰๐‘‡ Where ๐‘‰๐‘‡ = ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ This is the equation for turbulent flow for high Reynolds number Generally, the equation of velocity is: ๐‘ฝ = โˆ’ ๐Ÿ—๐œผ๐’‰ ๐Ÿ๐’“๐Ÿ๐†๐’” (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) + โˆš(( ๐Ÿ—๐œผ๐’‰ ๐’“๐Ÿ๐†๐’” )๐Ÿ + ๐Ÿ–๐’ˆ( ๐†๐’” โˆ’ ๐† ๐†๐’” )๐’‰(๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰)) ๐Ÿ (๐Ÿ + ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” ๐’‰) The equation above also works for transition flow also which is in-between laminar and turbulent flow. The equation above can be integrated from an initial height โ„Ž0 to a given height h and the time taken for the sphere to fall can be found as ๐‘‘โ„Ž ๐‘‘๐‘ก = ๐‘‰3 The integration would be difficult but we can use the method below: Recall we got the velocity as a function of time as: ๐ฅ๐ง [ ( ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† โˆ’ โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ) ( ๐‘ฝ + ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† โˆ’ โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐‘ฝ + ๐Ÿ”๐œผ ๐’“๐‘ช๐Ÿ๐† + โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ) ] = โˆ’ ๐Ÿ‘๐‘ช๐Ÿ๐† ๐Ÿ’๐’“๐†๐’” โˆš ๐Ÿ‘๐Ÿ”๐œผ๐Ÿ ๐’“๐Ÿ๐‘ช๐Ÿ ๐Ÿ ๐†๐Ÿ + ๐Ÿ–๐’“๐’ˆ(๐†๐’” โˆ’ ๐†) ๐Ÿ‘๐‘ช๐Ÿ๐† ๐’• Knowing the velocity as a function of h as above, we can substitute the known velocity at height h and then tell the time taken to reach that velocity (or height) from the equation above of velocity against time. If we were working in a vacuum so that ๐† = ๐ŸŽ and ๐œผ = ๐ŸŽ , we get
  • 69. 68 ๐‘š ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐‘š๐‘” ๐’…๐‘ฝ ๐’…๐’• = ๐’ˆ Which is independent of the body dimensions. So, in a vacuum, bodies will fall at the same rate. We can also calculate the velocity when the gravity is varying using: ๐’ˆ = โˆš( ๐‘ฎ๐‘ด ๐’“๐Ÿ )
  • 70. 69 REFERENCES [1] C. E. R. E. G. L. James R.Welty, "DRAG," in Fundamentals of Momentum, Heat and Mass Transfer, Oregon, John Wiley & Sons, Inc., 2008, p. 141. [2] Chegg, "Chegg," Chegg, 2022. [Online]. Available: https://www.chegg.com/homework- help/questions-and-answers/class-showed-hagen-poiseuille-equation-analytical-expression- pressure-drop-laminar-flow-re-q18503972. [Accessed 11 4 2022].