SlideShare uma empresa Scribd logo
1 de 20
Equilibrio, Fuerzas y
Estructuras
2015
2015
|
Docente: Durand Porras, Juan Carlos
Integrantes:
 Hernández Jorge
 Arias Anthony
 Saldaña Wendy
 La torre Jonathan
Mecanica y resistencia de materiales
Valor Creativo
1.- RESUMEN
En este proyecto se demuestra la aplicación diaria que encontramos en diversas empresas industriales, cuando
laboramos en zonas de riesgo de alturas. El objetivo principal es conocer que tan importante son las leyes de la
física, las fuerzas y las estructuras ya que obteniendo el conocimiento adecuado podremos trabajar sin riesgos a
caídas, golpes o fracturas.
Cuando se realiza trabajos en altura estamos propensos a accidentes y más aun si no conocemos los efectos y
resultados de una caída en altura o cuanto puede soportar un punto de anclaje en una estructura bien realizada.
2.- PALABRAS CLAVE:
Los temas enfocados a este proyecto son: equilibro, fuerzas y estructuras
3.- INTRODUCCION:
Este proyecto está enfocado en conocer algunas definiciones y aplicaciones en la parte teórica
que normalmente dejamos de lado al realizar un trabajo de riesgo en altura, estamos
acostumbrados a trabajar sin el menor conocimiento, las consecuencias que pueden ocasionar
un mal cálculo o desconocimiento producen accidentes irreparables para el trabajador. Por tal
motivo se brindara algunos conceptos básicos y ejemplos para una mejor comprensión del
tema.
4.- DESARROLLO DEL TEMA:
Autor: Valor Creativo 2
Mecanica y resistencia de materiales
Valor Creativo
MECANICA Y RESISTENCIA A LOS MATERIALES
A. MECÁNICA:
La mecánica es la rama de la física que estudia y analiza
el movimiento y reposo de los cuerpos, y su evolución en el
tiempo, bajo la acción de fuerzas. Modernamente la
mecánica incluye la evolución de sistemas físicos más
generales que los cuerpos másicos. En ese enfoque la
mecánica estudia también las ecuaciones de evolución
temporal de sistemas físicos como los campos
electromagnéticos o los sistemas cuánticos donde
propiamente no es correcto hablar de cuerpos físicos
Los cuatro conceptos básicos utilizados en la mecánica
son:
MASA, FUERZA, ESPACIO, TIEMPO
 Fuerza: La fuerza representa la acción de un cuerpo sobre otro cuerpo, puede ser ejercida por
contacto físico o distancia. Una fuerza se caracteriza por su punto de aplicación, magnitud y
su dirección y se representa por un vector.
Masa: Este término se utiliza para dar carácter y comparar los cuerpos.
Espacio: El espacio se asocia con la noción de la posición de un punto X. La posición de X
puede ser definida por tres longitudes medidas desde un punto de origen.
Tiempo: Duración de las cosas sujetas a mutación.
B. RESISTENCIA DE MATERIALES:
La resistencia de materiales clásica es una disciplina de la ingeniería mecánica, la ingeniería
estructural y la ingeniería industrial que estudia los sólidos deformables mediante modelos
simplificados. La resistencia de un elemento se define como su capacidad para resistir
esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o
deteriorarse de algún modo.
Un modelo de resistencia de materiales establece una relación entre las fuerzas aplicadas,
también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas.
Generalmente las simplificaciones geométricas y las restricciones impuestas sobre el modo de
aplicación de las cargas hacen que el campo de deformaciones y tensiones sean sencillos de
calcular.
En las aplicaciones prácticas el análisis es sencillo. Se construye un esquema ideal de cálculo
formado por elementos unidimensionales o bidimensionales, y se aplican fórmulas
preestablecidas en base al tipo de solicitación que presentan los elementos. Esas fórmulas
preestablecidas que no necesitan ser deducidas para cada caso, se basan en el esquema de
Autor: Valor Creativo 3
Mecanica y resistencia de materiales
Valor Creativo
cuatro puntos anterior. Más concretamente la resolución práctica de un problema de
resistencia de materiales sigue los siguientes pasos:
1. Cálculo de esfuerzos, se plantean las ecuaciones de equilibrio y ecuaciones de
compatibilidad que sean necesarias para encontrar los esfuerzos internos en función de las
fuerzas aplicadas.
2. Análisis resistente, se calculan las tensiones a partir de los esfuerzos internos. La relación
entre tensiones y deformaciones depende del tipo de solicitación y de la hipótesis cinemática
asociada: flexión de Bernoulli, flexión de Timoshenko, flexión
esviada, tracción, pandeo, torsión de Coulomb, teoría de Collignon para tensiones cortantes,
etc.
3. Análisis de rigidez, se calculan los desplazamientos máximos a partir de las fuerzas
aplicadas o los esfuerzos internos. Para ello puede recurrirse directamente a la forma de la
hipótesis cinemática o bien a la ecuación de la curva elástica, las fórmulas vectoriales
de Navier-Bresse o los teoremas de Castigliano.
C. DEFINICIONES BASICAS
 EQUILIBRIO ESTÁTICO:
El concepto de equilibrio, se aplica tanto para cuerpos en reposo respecto de un sistema de
referencia o para cuerpos cuyo centro de masa se mueve con velocidad constante, si el cuerpo
está en reposo, entonces se dice que el equilibrio es estático y si el centro de masa se mueve
con velocidad constante, se habla de un equilibrio dinámico.
 CONDICIONES DE EQUILIBRIO ESTATICO
Un cuerpo que está en reposo y permanece en ese estado se dice que se encuentra en
equilibrio estático, es una condición necesaria para que se dé esta situación es que la fuerza
resultante que actúa sobre el cuerpo sea nula, del mismo modo, el centro de masa de un
cuerpo rígido permanece en reposo si la fuerza resultante que actúa sobre el cuerpo es cero,
sin embargo, aunque su centro de masa se encuentra en reposo, el cuerpo puede girar, si esto
sucede, el cuerpo no está en equilibrio estático, por lo tanto, para que se dé la condición de
equilibrio estático, debe cumplirse además que el momento resultante que actúa sobre
el cuerpo debe ser cero respecto de cualquier punto, por lo tanto para que el equilibrio sea
estático se debe cumplir:
Autor: Valor Creativo 4
Mecanica y resistencia de materiales
Valor Creativo
 La fuerza externa resultante que actúa sobre el cuerpo debe ser nula:
 El momento externo resultante respecto a un punto cualquiera debe ser nulo:
 EQUILIBRIO:
Decimos que un cuerpo se encuentra en equilibrio estático cuando permanece en estado de
reposo ante la acción de unas fuerzas externas. El equilibrio estático se aplica al cuerpo en sí
como a cada una de las partes. Decimos que un cuerpo se encuentra en equilibrio dinámico
cuando responde con un movimiento o vibración (aceleración) controlada de sus partes
(deformación) mas no de su soportes, ante la acción de las cargas generadas por sismo,
viento, motores y en general aquellas excitaciones dinámicas producidas por la carga viva.
Ecuaciones básicas de equilibrio
Las ecuaciones que describen el equilibrio estático son planteadas en la primera ley de
Newton y controlan los movimientos del cuerpo en traslación y rotación.
Dos ecuaciones vectoriales que se convierten en seis ecuaciones escalares, tres de traslación y
tres de rotación.,
Estas tres corresponden a tres posibles formas de desplazamiento, es decir, tres grados de
libertad del cuerpo y
Corresponden a tres grados de libertad de rotación
Autor: Valor Creativo 5
Mecanica y resistencia de materiales
Valor Creativo
D. LEYES DE NEWTON:
Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres
principios a partir de los cuales se explican la mayor parte de los problemas planteados por
la mecánica, en particular aquellos relativos al movimiento de los cuerpos, que
revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el
universo
 PRIMERA LEY DE NEWTON: INERCIA
 SEGUNDA LEY DE NEWTON: ACELERACIÓN
 TERCERA LEY DE NEWTON: ACCIÓN Y
REACCIÓN
Autor: Valor Creativo
6
Mecanica y resistencia de materiales
Valor Creativo
E. FUERZAS
En física, la fuerza es una magnitud vectorial que mide la intensidad del intercambio
de momento lineal entre dos partículas o sistemas de partículas. Según una definición clásica,
fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los
materiales. No debe confundirse con los conceptos de esfuerzo o de energía.
En el Sistema Internacional de Unidades, la unidad de medida de fuerza es el newton que se
representa con el símbolo: N , nombrada así en reconocimiento a Isaac Newton por su
aportación a la física, especialmente a la mecánica clásica. El newton es una unidad derivada
del SI que se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s² a
un objeto de 1 kg de masa.
Tipos de fuerza:
Autor: Valor Creativo 7
FUERZAS DE CONTACTO Y
FUERZAS A
DISTANCIA
FUERZA GRAVITATORIA FUERZA ELÁSTICA
FUERZA NORMAL FUERZA DE TENSIÓN
FUERZA DE FRICCIÓN
Mecanica y resistencia de materiales
Valor Creativo
 TEOREMA DE LAMY
Si un cuerpo rígido en equilibrio se encuentra sometido a
la acción de tres (3) fuerzas, estas deben ser coplanares y sus
líneas de acción deben ser concurrentes.
La razón por la que las tres fuerzas deben ser coplanares es
bastante simple. Si no fuese así, no se cumpliría la primera
condición de equilibrio.
Además, al graficar las 3 fuerzas a partir de un origen común
se cumple que el módulo de cada fuerza es proporcional al
seno de su ángulo opuesto.
NOTA: Cuando un cuerpo rígido en equilibrio se encuentra sometido a la acción de tres
fuerzas concurrentes, el módulo de cada una es directamente proporcional al seno de su
respectivo ángulo opuesto.
F. ESTRUCTURAS
Llamamos estructura a un conjunto de elementos capaces de
aguantar pesos y cargas sin romperse y sin apenas
deformarse.
Basta con mirar a nuestro alrededor para encontrarnos todo
tipo de estructuras. Algunas de ellas son creadas por la
naturaleza y por tanto las denominamos estructuras
naturales. El esqueleto de un ser vertebrado, las
Autor: Valor Creativo
8
Mecanica y resistencia de materiales
Valor Creativo
formaciones pétreas, el caparazón de un animal o la estructura de un árbol son algunos
ejemplos de este tipo de estructura.
Otras han sido diseñadas y construidas por el hombre para
satisfacer sus necesidades a lo largo de su evolución, las
llamaremos estructuras artificiales. Los ejemplos más
usuales de este tipo de estructuras son los puentes y
edificios, pero las podemos encontrar en la mayoría de los
objetos realizados por el hombre.
Desde los puentes romanos de piedra hasta los largos puentes colgantes; desde los primeros
poblados hasta los grandes rascacielos, los avances tecnológicos y la utilización de nuevos
materiales van posibilitando al hombre la construcción de estructuras cada vez más resistentes
y ligeras.
A la hora de diseñar una estructura esta debe de cumplir tres propiedades principales: ser
resistente, rígida y estable. Resistente para que soporte sin romperse el efecto de las fuerzas a
las que se encuentra sometida, rígida para que lo haga sin deformarse y estable para que se
mantenga en equilibrio sin volcarse ni caerse.
 Elementos resistentes:
La resistencia de una estructura no depende solamente de las propiedades del material con el
que está hecha, sino también de la disposición del conjunto de elementos resistentes que la
forman.
En cualquier estructura podemos encontraremos uno o varios de los siguientes elementos
resistentes, encargados de proporcionarle la suficiente resistencia para soportar las cargas a la
que está sometida
 PILARES:
Elementos resistentes dispuestos en posición vertical, que soportan el peso de los elementos
que se apoyan sobre ellos. Cuando presentan forma cilíndrica se les denomina columnas.
 VIGAS
Elementos colocados normalmente en posición horizontal que soportan la carga de la estructura y
la transmiten hacia los pilares. Están constituidas por uno o más perfiles.
Autor: Valor Creativo 9
Mecanica y resistencia de materiales
Valor Creativo
 Los perfiles son las formas comerciales en que se suele suministrar el acero u otros
materiales. El tipo de perfil viene dado por la forma de su sección.
PERFILES CERRADOS:
PERFILES ABIERTOS
a) TIRANTES
Son cables, normalmente constituidos por hilos de acero, que
dan rigidez y permiten mejorar la resistencia de la estructura.
Soportan bien los esfuerzos que tienden a estirarlos y pueden
ser tensados mediante tensores o trinquetes como el que se
puede observar en la fotografía siguiente.
b) ARCOS
Forma geométrica muy utilizada a lo largo de la historia como
solución arquitectónica. Permite trasmitir las cargas que soporta
hacia los elementos que sustentan la estructura
c) TRIANGULOS
Puede demostrarse, de forma experimental, que el triángulo es la forma geométrica más estable, al no
deformarse al actuar sobre él fuerzas externas. Esta es la razón por la que se utiliza
la triangulación para aportar mayor rigidez a las estructuras. En caso contrario nos encontraremos
con una estructura articulada.
Autor: Valor Creativo 10
Mecanica y resistencia de materiales
Valor Creativo
A menudo nos encontramos estructuras que se hayan formadas por un conjunto de perfiles agrupados
geométricamente formando una red de triángulos, son las denominadas cerchas. Las vemos en
construcciones industriales, grúas, gradas metálicas, postes eléctricos, etc.
d) T
U
B
OS
Por último, otro tipo de elementos que presentan gran
resistencia son los tubos o estructuras tubulares. Su geometría cilíndrica permite un reparto
equitativo de las cargas sobre sus paredes. Una de sus principales aplicaciones es la construcción de
canalizaciones.
G. ESFUERZOS
Autor: Valor Creativo 11
Mecanica y resistencia de materiales
Valor Creativo
EN LAS EXTRUCTURAS:
Tracción
Decimos que un elemento está sometido a un esfuerzo de tracción
cuando sobre él actúan fuerzas que tienden a estirarlo. Los tensores
son elementos resistentes que aguantan muy bien este tipo de
esfuerzos
Compresión
Un cuerpo se encuentra sometido a compresión si las fuerzas
aplicadas tienden a aplastarlo o comprimirlo. Los pilares y
columnas son ejemplo de elementos diseñados para resistir
esfuerzos de compresión.
Cuando se somete a compresión una pieza de gran longitud en
relación a su sección, se arquea recibiendo este fenómeno el
nombre de pandeo.
Flexión
Un elemento estará sometido a flexión cuando actúen sobre las
cargas que tiendan a doblarlo. A este tipo de esfuerzo se ven
sometidas las vigas de una estructura.
Torsión
Un cuerpo sufre esfuerzos de torsión cuando existen fuerzas que
tienden a retorcerlo. Es el caso del esfuerzo que sufre una llave al
girarla dentro de la cerradura.
Cortadura
Autor: Valor Creativo
12
Mecanica y resistencia de materiales
Valor Creativo
Es el esfuerzo al que está sometida a una pieza cuando las fuerzas aplicadas tienden a cortarla o
desgarrarla. El ejemplo más claro de cortadura lo representa la acción de cortar con unas tijeras.
APLICACIÓN EN LA VIDA DIARIA:
Se representara un ejemplo en el cual aplicamos el conocimiento adquirido en la parte teórica que
inusualmente no tenemos en cuenta en los trabajos de riesgo en altura a diario, pero debemos de
tomar conciencia por nuestro propio bien y evitar accidentes que en su finalidad los únicos
perjudicados somos nosotros mismos. Aplicaremos ejercicios relacionados con la teoría.
PRUEBAS AREALIZAR:
 Rescate en altura.
 Calculo de soportes de estructuras.
TORRE DE PRUEBAS DE RIESGOS EN ALTURA
RESULTADOS
Autor: Valor Creativo
13
Mecanica y resistencia de materiales
Valor Creativo
EJERCICIO 1: RESCATE EN ALTURA
El sistema se encuentra en equilibrio, la persona tiene 100 kg de masa y la constante elástica del
amortiguador de la línea de vida es K= 320 N/m, según muestra la figura el ángulo es = 30°. (a=ϕ
4, b=3; g= 10 m/s2
). Determinar:
a) La deformación en el amortiguador de línea de vida.
b) La tensión en la cuerda AB
c) La tensión en la cuerda BD
d) La tensión en la cuerda BC
RESOLUCION:
Autor: Valor Creativo 14
A
B
ESTRUCTURA
b
aC
D
E
PUNTO DE ANCLAJE
a=4
b=3
30°
100 Kg
Mecanica y resistencia de materiales
Valor Creativo
a) La deformación en el amortiguador de línea de vida.
b) La tensión en la cuerda AB
Autor: Valor Creativo 15
EQUILIBRIO: F = 1 000 N
FORMULA: F = K.X
1 000 = 320.X
X = 3,125 m
TAE
F = 1 000 N
150°
90° 90°
=30°
TAB = 2 000 N
TAB
A
E
B
TAB
Mecanica y resistencia de materiales
Valor Creativo
Autor: Valor Creativo 16
3
0
4
0
TBC = 3 065,86 N
TBC
TBD
143,14°
=30
=36,86
150°
C
D
B
TBD = 1 667,05 N
Mecanica y resistencia de materiales
Valor Creativo
EJERCICIO 2: CALCULO DE SOPORTES DE ESTRUCTURAS
Autor: Valor Creativo 17
TAB = 2 000 NA
Mecanica y resistencia de materiales
Valor Creativo
La estructura mostrada se encuentra en equilibrio, Indique si los miembros están en tensión o en
compresión. AB = BD = 10 m; AD = 6 m; BC= 3 m; CD= 8 m; F1= 200N y F2= 140N. (A=rodillo
y C= articulación).
Determinar:
a) La fuerza en AB
b) La fuerza en AD
c) La fuerza en BC
d) La fuerza en CD
e) La fuerza en BD
PASO 2:
F1.d – F2.d + RA.d = 0
200 (2) + 140 (4) - RA (5) = 0
5 RA = 960
RA = 192 N.
PASO 3:
Autor: Valor Creativo 18
En X: Cx + 140 = 0
Cx = - 140
En Y: Cy+ RA + F1 = 0
Cy = -192 + 200
Mecanica y resistencia de materiales
Valor Creativo
NUDO A:
a) La fuerza en AB
b) La fuerza en AD
NUDO C:
c) La fuerza en BC
d) La fuerza en CD
NUDO D:
e) La fuerza en BD
Autor: Valor Creativo 19
RA
FAB
FAD
53°
10K 8K
6K
RA = 192 N.
8K = 192 N.
K = 24 N.
FAB: 10K = 240 N. COMPRESION
FAD: 6K = 144 N. TENSION
Cy = 8 N
FBC
Cx = 140 N
FDC
෍ � = �
FBC: 140 N COMPRESION
FDC: 8 N COMPRESION
53°
10K
8K
6K
FCD = 8 N
140 NFAD = 144 N
En Y: 8K = 8 N.
K = 1 N.
FBD: 10K
FBD: 10 N COMPRESION
Mecanica y resistencia de materiales
Valor Creativo
CONCLUSIÓN:
Se da a conocer las definiciones básicas y se elabora ejercicios aplicables en los trabajos de riesgo
en altura, los conceptos relacionados con los ejercicios nos pueden ayudar a tener mayor seguridad
cuando se trabaje en altura, aplicando lo aprendido se busca minimizar los riesgos de accidentes que
son comunes y frecuentes cuando trabajamos en altura.
Los ejercicios se pueden utilizar como comprobación de casos similares normalmente los trabajos en
altura son subestimados pero ahora obtenido el conocimiento adecuado y ejercicios aplicables a estos
tipos de trabajo se podrá realizar la actividad de forma correcta.
La teórica y practica es estos tipos de trabaja van conjuntamente de la mano aunque en ocasiones la
mayoría de personas no las conoce es por eso la importancia de contar con los estudios requeridos
en la ingeniería con cursos como mecánica y resistencia a los materiales ya que podemos darnos
ideas en las labores que finalmente hacemos días tras día, evitar una accidente y hacer que el
trabajador llegue a su hogar sin lesiones es lo más importante para la empresa y para nosotros
mismos.
BIBLIOGRAFIA:
https://es.wikipedia.org/wiki/Mec%C3%A1nica
https://es.wikipedia.org/wiki/Resistencia_de_materiales
http://www.eis.uva.es/reic/jc/IQweb/Docs_varios/apuntes_RMgrado.pdf
http://es.scribd.com/doc/73084207/EQUILIBRIO-ESTATICO#scribd
http://cpreuni.blogspot.pe/2010/04/teorema-de-lamy.html
http://www.linalquibla.com/TecnoWeb/estructuras/contenidos/concepto.htm
Autor: Valor Creativo 20

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Fuerzas mecanicas
Fuerzas mecanicas Fuerzas mecanicas
Fuerzas mecanicas
 
La dinamica - FISICA
La dinamica - FISICA La dinamica - FISICA
La dinamica - FISICA
 
Momento de una fuerza
Momento de una fuerzaMomento de una fuerza
Momento de una fuerza
 
Torque o momento de una fuerza
Torque o momento de una fuerzaTorque o momento de una fuerza
Torque o momento de una fuerza
 
El movimiento rectilíneo uniforme (mru)
El movimiento rectilíneo uniforme (mru)El movimiento rectilíneo uniforme (mru)
El movimiento rectilíneo uniforme (mru)
 
Diapositivas dinamica
Diapositivas dinamicaDiapositivas dinamica
Diapositivas dinamica
 
Fricción 1
Fricción 1Fricción 1
Fricción 1
 
Ejemplos equilibrio
Ejemplos equilibrioEjemplos equilibrio
Ejemplos equilibrio
 
Esfuerzo y deformacion Kevin Mendoza
Esfuerzo y deformacion Kevin MendozaEsfuerzo y deformacion Kevin Mendoza
Esfuerzo y deformacion Kevin Mendoza
 
Mecánica
MecánicaMecánica
Mecánica
 
Equilibrio de una fuerza
Equilibrio de una fuerzaEquilibrio de una fuerza
Equilibrio de una fuerza
 
Torque O Momento De Fuerza
Torque O Momento De FuerzaTorque O Momento De Fuerza
Torque O Momento De Fuerza
 
Estática.pdf
Estática.pdfEstática.pdf
Estática.pdf
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
Factores de inercia 5
Factores de inercia 5Factores de inercia 5
Factores de inercia 5
 
Momentos de inercia
Momentos de inerciaMomentos de inercia
Momentos de inercia
 
Movimiento curvilineo(componentes cilindricas)
Movimiento curvilineo(componentes cilindricas)Movimiento curvilineo(componentes cilindricas)
Movimiento curvilineo(componentes cilindricas)
 
Lanzamiento horizontal
Lanzamiento horizontalLanzamiento horizontal
Lanzamiento horizontal
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
modulo de rigidez
modulo de rigidezmodulo de rigidez
modulo de rigidez
 

Semelhante a Trabajo de resistencia

Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturas
Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturasAplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturas
Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturasJhoan Herrera Huamantalla
 
Trabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaTrabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaEber Delgado Rojas
 
Trabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaTrabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaEber Delgado Rojas
 
Secuencia didactica i 1.1-1.3_27-07-2019
Secuencia didactica i 1.1-1.3_27-07-2019Secuencia didactica i 1.1-1.3_27-07-2019
Secuencia didactica i 1.1-1.3_27-07-2019itcha
 
Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Julio Ruiz
 
Wikilibro fisica
Wikilibro fisicaWikilibro fisica
Wikilibro fisicaMonica L
 
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.pptCONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.pptarqMO1
 
segunda ley de newton y mecanica
segunda ley de newton y mecanicasegunda ley de newton y mecanica
segunda ley de newton y mecanicamakabro65
 
ECUACIONES DE EQUILIBRIO.pptx
ECUACIONES DE EQUILIBRIO.pptxECUACIONES DE EQUILIBRIO.pptx
ECUACIONES DE EQUILIBRIO.pptxDJKAOS1
 
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptx
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptxDIAPOSITIVAS_PUENTE_DE_TALLARIN.pptx
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptxMabeAC
 
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...David Chipantiza Morales
 

Semelhante a Trabajo de resistencia (20)

Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturas
Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturasAplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturas
Aplicación de equilibrio, fuerzas y estructuras en torre de riesgo de alturas
 
ayuda 2.pdf
ayuda 2.pdfayuda 2.pdf
ayuda 2.pdf
 
Trabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaTrabajo de altura en extructura metalica
Trabajo de altura en extructura metalica
 
Trabajo de altura en extructura metalica
Trabajo de altura en extructura metalicaTrabajo de altura en extructura metalica
Trabajo de altura en extructura metalica
 
Secuencia didactica i 1.1-1.3_27-07-2019
Secuencia didactica i 1.1-1.3_27-07-2019Secuencia didactica i 1.1-1.3_27-07-2019
Secuencia didactica i 1.1-1.3_27-07-2019
 
Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)
 
Wikilibro fisica
Wikilibro fisicaWikilibro fisica
Wikilibro fisica
 
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.pptCONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt
CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt
 
Dinamica1
Dinamica1Dinamica1
Dinamica1
 
Dinamica
DinamicaDinamica
Dinamica
 
Dinamica1
Dinamica1Dinamica1
Dinamica1
 
Diapositiva leyes de newton
Diapositiva leyes de newtonDiapositiva leyes de newton
Diapositiva leyes de newton
 
segunda ley de newton y mecanica
segunda ley de newton y mecanicasegunda ley de newton y mecanica
segunda ley de newton y mecanica
 
ECUACIONES DE EQUILIBRIO.pptx
ECUACIONES DE EQUILIBRIO.pptxECUACIONES DE EQUILIBRIO.pptx
ECUACIONES DE EQUILIBRIO.pptx
 
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptx
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptxDIAPOSITIVAS_PUENTE_DE_TALLARIN.pptx
DIAPOSITIVAS_PUENTE_DE_TALLARIN.pptx
 
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...
Diapositiva de Diseño y Construcción de un prototipo que demuestre La primera...
 
MAS
MASMAS
MAS
 
Equilibrio de cuerpos
Equilibrio de cuerposEquilibrio de cuerpos
Equilibrio de cuerpos
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materiales
 
estatica
estaticaestatica
estatica
 

Último

Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfapunteshistoriamarmo
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxpvtablets2023
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptAlberto Rubio
 
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptxEL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptxsisimosolorzano
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdfValeriaCorrea29
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.docRodneyFrankCUADROSMI
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Diapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundariaDiapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundariaAlejandraFelizDidier
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024IES Vicent Andres Estelles
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024IES Vicent Andres Estelles
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIAFabiolaGarcia751855
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 

Último (20)

Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptxEL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Diapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundariaDiapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundaria
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 

Trabajo de resistencia

  • 1. Equilibrio, Fuerzas y Estructuras 2015 2015 | Docente: Durand Porras, Juan Carlos Integrantes:  Hernández Jorge  Arias Anthony  Saldaña Wendy  La torre Jonathan
  • 2. Mecanica y resistencia de materiales Valor Creativo 1.- RESUMEN En este proyecto se demuestra la aplicación diaria que encontramos en diversas empresas industriales, cuando laboramos en zonas de riesgo de alturas. El objetivo principal es conocer que tan importante son las leyes de la física, las fuerzas y las estructuras ya que obteniendo el conocimiento adecuado podremos trabajar sin riesgos a caídas, golpes o fracturas. Cuando se realiza trabajos en altura estamos propensos a accidentes y más aun si no conocemos los efectos y resultados de una caída en altura o cuanto puede soportar un punto de anclaje en una estructura bien realizada. 2.- PALABRAS CLAVE: Los temas enfocados a este proyecto son: equilibro, fuerzas y estructuras 3.- INTRODUCCION: Este proyecto está enfocado en conocer algunas definiciones y aplicaciones en la parte teórica que normalmente dejamos de lado al realizar un trabajo de riesgo en altura, estamos acostumbrados a trabajar sin el menor conocimiento, las consecuencias que pueden ocasionar un mal cálculo o desconocimiento producen accidentes irreparables para el trabajador. Por tal motivo se brindara algunos conceptos básicos y ejemplos para una mejor comprensión del tema. 4.- DESARROLLO DEL TEMA: Autor: Valor Creativo 2
  • 3. Mecanica y resistencia de materiales Valor Creativo MECANICA Y RESISTENCIA A LOS MATERIALES A. MECÁNICA: La mecánica es la rama de la física que estudia y analiza el movimiento y reposo de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. Modernamente la mecánica incluye la evolución de sistemas físicos más generales que los cuerpos másicos. En ese enfoque la mecánica estudia también las ecuaciones de evolución temporal de sistemas físicos como los campos electromagnéticos o los sistemas cuánticos donde propiamente no es correcto hablar de cuerpos físicos Los cuatro conceptos básicos utilizados en la mecánica son: MASA, FUERZA, ESPACIO, TIEMPO  Fuerza: La fuerza representa la acción de un cuerpo sobre otro cuerpo, puede ser ejercida por contacto físico o distancia. Una fuerza se caracteriza por su punto de aplicación, magnitud y su dirección y se representa por un vector. Masa: Este término se utiliza para dar carácter y comparar los cuerpos. Espacio: El espacio se asocia con la noción de la posición de un punto X. La posición de X puede ser definida por tres longitudes medidas desde un punto de origen. Tiempo: Duración de las cosas sujetas a mutación. B. RESISTENCIA DE MATERIALES: La resistencia de materiales clásica es una disciplina de la ingeniería mecánica, la ingeniería estructural y la ingeniería industrial que estudia los sólidos deformables mediante modelos simplificados. La resistencia de un elemento se define como su capacidad para resistir esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o deteriorarse de algún modo. Un modelo de resistencia de materiales establece una relación entre las fuerzas aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Generalmente las simplificaciones geométricas y las restricciones impuestas sobre el modo de aplicación de las cargas hacen que el campo de deformaciones y tensiones sean sencillos de calcular. En las aplicaciones prácticas el análisis es sencillo. Se construye un esquema ideal de cálculo formado por elementos unidimensionales o bidimensionales, y se aplican fórmulas preestablecidas en base al tipo de solicitación que presentan los elementos. Esas fórmulas preestablecidas que no necesitan ser deducidas para cada caso, se basan en el esquema de Autor: Valor Creativo 3
  • 4. Mecanica y resistencia de materiales Valor Creativo cuatro puntos anterior. Más concretamente la resolución práctica de un problema de resistencia de materiales sigue los siguientes pasos: 1. Cálculo de esfuerzos, se plantean las ecuaciones de equilibrio y ecuaciones de compatibilidad que sean necesarias para encontrar los esfuerzos internos en función de las fuerzas aplicadas. 2. Análisis resistente, se calculan las tensiones a partir de los esfuerzos internos. La relación entre tensiones y deformaciones depende del tipo de solicitación y de la hipótesis cinemática asociada: flexión de Bernoulli, flexión de Timoshenko, flexión esviada, tracción, pandeo, torsión de Coulomb, teoría de Collignon para tensiones cortantes, etc. 3. Análisis de rigidez, se calculan los desplazamientos máximos a partir de las fuerzas aplicadas o los esfuerzos internos. Para ello puede recurrirse directamente a la forma de la hipótesis cinemática o bien a la ecuación de la curva elástica, las fórmulas vectoriales de Navier-Bresse o los teoremas de Castigliano. C. DEFINICIONES BASICAS  EQUILIBRIO ESTÁTICO: El concepto de equilibrio, se aplica tanto para cuerpos en reposo respecto de un sistema de referencia o para cuerpos cuyo centro de masa se mueve con velocidad constante, si el cuerpo está en reposo, entonces se dice que el equilibrio es estático y si el centro de masa se mueve con velocidad constante, se habla de un equilibrio dinámico.  CONDICIONES DE EQUILIBRIO ESTATICO Un cuerpo que está en reposo y permanece en ese estado se dice que se encuentra en equilibrio estático, es una condición necesaria para que se dé esta situación es que la fuerza resultante que actúa sobre el cuerpo sea nula, del mismo modo, el centro de masa de un cuerpo rígido permanece en reposo si la fuerza resultante que actúa sobre el cuerpo es cero, sin embargo, aunque su centro de masa se encuentra en reposo, el cuerpo puede girar, si esto sucede, el cuerpo no está en equilibrio estático, por lo tanto, para que se dé la condición de equilibrio estático, debe cumplirse además que el momento resultante que actúa sobre el cuerpo debe ser cero respecto de cualquier punto, por lo tanto para que el equilibrio sea estático se debe cumplir: Autor: Valor Creativo 4
  • 5. Mecanica y resistencia de materiales Valor Creativo  La fuerza externa resultante que actúa sobre el cuerpo debe ser nula:  El momento externo resultante respecto a un punto cualquiera debe ser nulo:  EQUILIBRIO: Decimos que un cuerpo se encuentra en equilibrio estático cuando permanece en estado de reposo ante la acción de unas fuerzas externas. El equilibrio estático se aplica al cuerpo en sí como a cada una de las partes. Decimos que un cuerpo se encuentra en equilibrio dinámico cuando responde con un movimiento o vibración (aceleración) controlada de sus partes (deformación) mas no de su soportes, ante la acción de las cargas generadas por sismo, viento, motores y en general aquellas excitaciones dinámicas producidas por la carga viva. Ecuaciones básicas de equilibrio Las ecuaciones que describen el equilibrio estático son planteadas en la primera ley de Newton y controlan los movimientos del cuerpo en traslación y rotación. Dos ecuaciones vectoriales que se convierten en seis ecuaciones escalares, tres de traslación y tres de rotación., Estas tres corresponden a tres posibles formas de desplazamiento, es decir, tres grados de libertad del cuerpo y Corresponden a tres grados de libertad de rotación Autor: Valor Creativo 5
  • 6. Mecanica y resistencia de materiales Valor Creativo D. LEYES DE NEWTON: Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular aquellos relativos al movimiento de los cuerpos, que revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo  PRIMERA LEY DE NEWTON: INERCIA  SEGUNDA LEY DE NEWTON: ACELERACIÓN  TERCERA LEY DE NEWTON: ACCIÓN Y REACCIÓN Autor: Valor Creativo 6
  • 7. Mecanica y resistencia de materiales Valor Creativo E. FUERZAS En física, la fuerza es una magnitud vectorial que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas. Según una definición clásica, fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los materiales. No debe confundirse con los conceptos de esfuerzo o de energía. En el Sistema Internacional de Unidades, la unidad de medida de fuerza es el newton que se representa con el símbolo: N , nombrada así en reconocimiento a Isaac Newton por su aportación a la física, especialmente a la mecánica clásica. El newton es una unidad derivada del SI que se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s² a un objeto de 1 kg de masa. Tipos de fuerza: Autor: Valor Creativo 7 FUERZAS DE CONTACTO Y FUERZAS A DISTANCIA FUERZA GRAVITATORIA FUERZA ELÁSTICA FUERZA NORMAL FUERZA DE TENSIÓN FUERZA DE FRICCIÓN
  • 8. Mecanica y resistencia de materiales Valor Creativo  TEOREMA DE LAMY Si un cuerpo rígido en equilibrio se encuentra sometido a la acción de tres (3) fuerzas, estas deben ser coplanares y sus líneas de acción deben ser concurrentes. La razón por la que las tres fuerzas deben ser coplanares es bastante simple. Si no fuese así, no se cumpliría la primera condición de equilibrio. Además, al graficar las 3 fuerzas a partir de un origen común se cumple que el módulo de cada fuerza es proporcional al seno de su ángulo opuesto. NOTA: Cuando un cuerpo rígido en equilibrio se encuentra sometido a la acción de tres fuerzas concurrentes, el módulo de cada una es directamente proporcional al seno de su respectivo ángulo opuesto. F. ESTRUCTURAS Llamamos estructura a un conjunto de elementos capaces de aguantar pesos y cargas sin romperse y sin apenas deformarse. Basta con mirar a nuestro alrededor para encontrarnos todo tipo de estructuras. Algunas de ellas son creadas por la naturaleza y por tanto las denominamos estructuras naturales. El esqueleto de un ser vertebrado, las Autor: Valor Creativo 8
  • 9. Mecanica y resistencia de materiales Valor Creativo formaciones pétreas, el caparazón de un animal o la estructura de un árbol son algunos ejemplos de este tipo de estructura. Otras han sido diseñadas y construidas por el hombre para satisfacer sus necesidades a lo largo de su evolución, las llamaremos estructuras artificiales. Los ejemplos más usuales de este tipo de estructuras son los puentes y edificios, pero las podemos encontrar en la mayoría de los objetos realizados por el hombre. Desde los puentes romanos de piedra hasta los largos puentes colgantes; desde los primeros poblados hasta los grandes rascacielos, los avances tecnológicos y la utilización de nuevos materiales van posibilitando al hombre la construcción de estructuras cada vez más resistentes y ligeras. A la hora de diseñar una estructura esta debe de cumplir tres propiedades principales: ser resistente, rígida y estable. Resistente para que soporte sin romperse el efecto de las fuerzas a las que se encuentra sometida, rígida para que lo haga sin deformarse y estable para que se mantenga en equilibrio sin volcarse ni caerse.  Elementos resistentes: La resistencia de una estructura no depende solamente de las propiedades del material con el que está hecha, sino también de la disposición del conjunto de elementos resistentes que la forman. En cualquier estructura podemos encontraremos uno o varios de los siguientes elementos resistentes, encargados de proporcionarle la suficiente resistencia para soportar las cargas a la que está sometida  PILARES: Elementos resistentes dispuestos en posición vertical, que soportan el peso de los elementos que se apoyan sobre ellos. Cuando presentan forma cilíndrica se les denomina columnas.  VIGAS Elementos colocados normalmente en posición horizontal que soportan la carga de la estructura y la transmiten hacia los pilares. Están constituidas por uno o más perfiles. Autor: Valor Creativo 9
  • 10. Mecanica y resistencia de materiales Valor Creativo  Los perfiles son las formas comerciales en que se suele suministrar el acero u otros materiales. El tipo de perfil viene dado por la forma de su sección. PERFILES CERRADOS: PERFILES ABIERTOS a) TIRANTES Son cables, normalmente constituidos por hilos de acero, que dan rigidez y permiten mejorar la resistencia de la estructura. Soportan bien los esfuerzos que tienden a estirarlos y pueden ser tensados mediante tensores o trinquetes como el que se puede observar en la fotografía siguiente. b) ARCOS Forma geométrica muy utilizada a lo largo de la historia como solución arquitectónica. Permite trasmitir las cargas que soporta hacia los elementos que sustentan la estructura c) TRIANGULOS Puede demostrarse, de forma experimental, que el triángulo es la forma geométrica más estable, al no deformarse al actuar sobre él fuerzas externas. Esta es la razón por la que se utiliza la triangulación para aportar mayor rigidez a las estructuras. En caso contrario nos encontraremos con una estructura articulada. Autor: Valor Creativo 10
  • 11. Mecanica y resistencia de materiales Valor Creativo A menudo nos encontramos estructuras que se hayan formadas por un conjunto de perfiles agrupados geométricamente formando una red de triángulos, son las denominadas cerchas. Las vemos en construcciones industriales, grúas, gradas metálicas, postes eléctricos, etc. d) T U B OS Por último, otro tipo de elementos que presentan gran resistencia son los tubos o estructuras tubulares. Su geometría cilíndrica permite un reparto equitativo de las cargas sobre sus paredes. Una de sus principales aplicaciones es la construcción de canalizaciones. G. ESFUERZOS Autor: Valor Creativo 11
  • 12. Mecanica y resistencia de materiales Valor Creativo EN LAS EXTRUCTURAS: Tracción Decimos que un elemento está sometido a un esfuerzo de tracción cuando sobre él actúan fuerzas que tienden a estirarlo. Los tensores son elementos resistentes que aguantan muy bien este tipo de esfuerzos Compresión Un cuerpo se encuentra sometido a compresión si las fuerzas aplicadas tienden a aplastarlo o comprimirlo. Los pilares y columnas son ejemplo de elementos diseñados para resistir esfuerzos de compresión. Cuando se somete a compresión una pieza de gran longitud en relación a su sección, se arquea recibiendo este fenómeno el nombre de pandeo. Flexión Un elemento estará sometido a flexión cuando actúen sobre las cargas que tiendan a doblarlo. A este tipo de esfuerzo se ven sometidas las vigas de una estructura. Torsión Un cuerpo sufre esfuerzos de torsión cuando existen fuerzas que tienden a retorcerlo. Es el caso del esfuerzo que sufre una llave al girarla dentro de la cerradura. Cortadura Autor: Valor Creativo 12
  • 13. Mecanica y resistencia de materiales Valor Creativo Es el esfuerzo al que está sometida a una pieza cuando las fuerzas aplicadas tienden a cortarla o desgarrarla. El ejemplo más claro de cortadura lo representa la acción de cortar con unas tijeras. APLICACIÓN EN LA VIDA DIARIA: Se representara un ejemplo en el cual aplicamos el conocimiento adquirido en la parte teórica que inusualmente no tenemos en cuenta en los trabajos de riesgo en altura a diario, pero debemos de tomar conciencia por nuestro propio bien y evitar accidentes que en su finalidad los únicos perjudicados somos nosotros mismos. Aplicaremos ejercicios relacionados con la teoría. PRUEBAS AREALIZAR:  Rescate en altura.  Calculo de soportes de estructuras. TORRE DE PRUEBAS DE RIESGOS EN ALTURA RESULTADOS Autor: Valor Creativo 13
  • 14. Mecanica y resistencia de materiales Valor Creativo EJERCICIO 1: RESCATE EN ALTURA El sistema se encuentra en equilibrio, la persona tiene 100 kg de masa y la constante elástica del amortiguador de la línea de vida es K= 320 N/m, según muestra la figura el ángulo es = 30°. (a=ϕ 4, b=3; g= 10 m/s2 ). Determinar: a) La deformación en el amortiguador de línea de vida. b) La tensión en la cuerda AB c) La tensión en la cuerda BD d) La tensión en la cuerda BC RESOLUCION: Autor: Valor Creativo 14 A B ESTRUCTURA b aC D E PUNTO DE ANCLAJE a=4 b=3 30° 100 Kg
  • 15. Mecanica y resistencia de materiales Valor Creativo a) La deformación en el amortiguador de línea de vida. b) La tensión en la cuerda AB Autor: Valor Creativo 15 EQUILIBRIO: F = 1 000 N FORMULA: F = K.X 1 000 = 320.X X = 3,125 m TAE F = 1 000 N 150° 90° 90° =30° TAB = 2 000 N TAB A E B TAB
  • 16. Mecanica y resistencia de materiales Valor Creativo Autor: Valor Creativo 16 3 0 4 0 TBC = 3 065,86 N TBC TBD 143,14° =30 =36,86 150° C D B TBD = 1 667,05 N
  • 17. Mecanica y resistencia de materiales Valor Creativo EJERCICIO 2: CALCULO DE SOPORTES DE ESTRUCTURAS Autor: Valor Creativo 17 TAB = 2 000 NA
  • 18. Mecanica y resistencia de materiales Valor Creativo La estructura mostrada se encuentra en equilibrio, Indique si los miembros están en tensión o en compresión. AB = BD = 10 m; AD = 6 m; BC= 3 m; CD= 8 m; F1= 200N y F2= 140N. (A=rodillo y C= articulación). Determinar: a) La fuerza en AB b) La fuerza en AD c) La fuerza en BC d) La fuerza en CD e) La fuerza en BD PASO 2: F1.d – F2.d + RA.d = 0 200 (2) + 140 (4) - RA (5) = 0 5 RA = 960 RA = 192 N. PASO 3: Autor: Valor Creativo 18 En X: Cx + 140 = 0 Cx = - 140 En Y: Cy+ RA + F1 = 0 Cy = -192 + 200
  • 19. Mecanica y resistencia de materiales Valor Creativo NUDO A: a) La fuerza en AB b) La fuerza en AD NUDO C: c) La fuerza en BC d) La fuerza en CD NUDO D: e) La fuerza en BD Autor: Valor Creativo 19 RA FAB FAD 53° 10K 8K 6K RA = 192 N. 8K = 192 N. K = 24 N. FAB: 10K = 240 N. COMPRESION FAD: 6K = 144 N. TENSION Cy = 8 N FBC Cx = 140 N FDC ෍ � = � FBC: 140 N COMPRESION FDC: 8 N COMPRESION 53° 10K 8K 6K FCD = 8 N 140 NFAD = 144 N En Y: 8K = 8 N. K = 1 N. FBD: 10K FBD: 10 N COMPRESION
  • 20. Mecanica y resistencia de materiales Valor Creativo CONCLUSIÓN: Se da a conocer las definiciones básicas y se elabora ejercicios aplicables en los trabajos de riesgo en altura, los conceptos relacionados con los ejercicios nos pueden ayudar a tener mayor seguridad cuando se trabaje en altura, aplicando lo aprendido se busca minimizar los riesgos de accidentes que son comunes y frecuentes cuando trabajamos en altura. Los ejercicios se pueden utilizar como comprobación de casos similares normalmente los trabajos en altura son subestimados pero ahora obtenido el conocimiento adecuado y ejercicios aplicables a estos tipos de trabajo se podrá realizar la actividad de forma correcta. La teórica y practica es estos tipos de trabaja van conjuntamente de la mano aunque en ocasiones la mayoría de personas no las conoce es por eso la importancia de contar con los estudios requeridos en la ingeniería con cursos como mecánica y resistencia a los materiales ya que podemos darnos ideas en las labores que finalmente hacemos días tras día, evitar una accidente y hacer que el trabajador llegue a su hogar sin lesiones es lo más importante para la empresa y para nosotros mismos. BIBLIOGRAFIA: https://es.wikipedia.org/wiki/Mec%C3%A1nica https://es.wikipedia.org/wiki/Resistencia_de_materiales http://www.eis.uva.es/reic/jc/IQweb/Docs_varios/apuntes_RMgrado.pdf http://es.scribd.com/doc/73084207/EQUILIBRIO-ESTATICO#scribd http://cpreuni.blogspot.pe/2010/04/teorema-de-lamy.html http://www.linalquibla.com/TecnoWeb/estructuras/contenidos/concepto.htm Autor: Valor Creativo 20