SlideShare uma empresa Scribd logo
1 de 56
Baixar para ler offline
Bellman functions and Lp
estimates for
paraproducts
Vjekoslav Kovaˇc (University of Zagreb)
Joint work with Kristina Ana ˇSkreb (University of Zagreb)
Harmonic analysis, complex analysis, spectral theory and all that
Bedlewo, August 2, 2016
Dyadic paraproduct
Dyadic paraproduct
As a bilinear operator:
Π(f , g) :=
I∈D
I f ,
1I
|I|1/2
1I
|I|1/2
g,
hI
|I|1/2
hI
|I|1/2
=
k∈Z
(Ekf ) (∆kg)
D = dyadic intervals ⊂ R, hI = 1Ileft
− 1Iright
, | I | ≤ 1
Dyadic paraproduct
As a bilinear operator:
Π(f , g) :=
I∈D
I f ,
1I
|I|1/2
1I
|I|1/2
g,
hI
|I|1/2
hI
|I|1/2
=
k∈Z
(Ekf ) (∆kg)
D = dyadic intervals ⊂ R, hI = 1Ileft
− 1Iright
, | I | ≤ 1
f → Π(f , g) is usually called the (linear) paraproduct
g → Π(f , g) is the martingale transform or the Haar multiplier
Dyadic paraproduct
As a bilinear operator:
Π(f , g) :=
I∈D
I f ,
1I
|I|1/2
1I
|I|1/2
g,
hI
|I|1/2
hI
|I|1/2
=
k∈Z
(Ekf ) (∆kg)
D = dyadic intervals ⊂ R, hI = 1Ileft
− 1Iright
, | I | ≤ 1
f → Π(f , g) is usually called the (linear) paraproduct
g → Π(f , g) is the martingale transform or the Haar multiplier
As a trilinear form:
Λ(f , g, h) :=
I∈D
I |I|−2
f , 1I g, hI h, hI
=
R k∈Z
(Ekf ) (∆kg) (∆kh)
Dyadic paraproduct
Lp
estimates (in the Banach range only):
|Λ(f , g, h)| ≤ Cp,q,r f Lp g Lq h Lr
hold whenever 1 < p, q, r ≤ ∞, 1
p + 1
q + 1
r = 1
Dyadic paraproduct
Lp
estimates (in the Banach range only):
|Λ(f , g, h)| ≤ Cp,q,r f Lp g Lq h Lr
hold whenever 1 < p, q, r ≤ ∞, 1
p + 1
q + 1
r = 1
The easiest proof (when q, r < ∞):
|Λ(f , g, h)| ≤
R
(Mf ) (Sg) (Sh)
≤ Mf Lp Sg Lq Sh Lr
where
Mf := sup
I∈D
|I|−1 f , 1I 1I is the dyadic maximal function
Sf :=
I∈D
|I|−2| f , hI |21I
1/2
is the dyadic square function
Dyadic paraproduct
The Bellman function restatement
The Bellman function restatement
Assume that f , g, h ≥ 0
In terms of the averages:
ΦI (f , g, h) :=
1
|I|
J⊆I
|J| f J
1
2
g Jleft
− g Jright
1
2
h Jleft
− h Jright
The Bellman function restatement
Assume that f , g, h ≥ 0
In terms of the averages:
ΦI (f , g, h) :=
1
|I|
J⊆I
|J| f J
1
2
g Jleft
− g Jright
1
2
h Jleft
− h Jright
The estimate:
ΦI (f , g, h) ≤ Cp,q,r
1
p f p
I + 1
q gq
I + 1
r hr
I
The Bellman function restatement
Assume that f , g, h ≥ 0
In terms of the averages:
ΦI (f , g, h) :=
1
|I|
J⊆I
|J| f J
1
2
g Jleft
− g Jright
1
2
h Jleft
− h Jright
The estimate:
ΦI (f , g, h) ≤ Cp,q,r
1
p f p
I + 1
q gq
I + 1
r hr
I
The abstract Bellman function:
B(u, v, w, U, V , W ) := sup
f ,g,h
ΦI (f , g, h),
where the supremum is taken over all f , g, h ≥ 0 s.t.
f I = u, g I = v, h I = w, f p
I = U, gq
I = V , hr
I = W
The Bellman function restatement
(B1) Domain:
u, v, w, U, V , W ≥ 0, up
≤ U, vq
≤ V , wr
≤ W
The Bellman function restatement
(B1) Domain:
u, v, w, U, V , W ≥ 0, up
≤ U, vq
≤ V , wr
≤ W
(B2) Range:
0 ≤ B(u, v, w, U, V , W ) ≤ Cp,q,r
1
p U + 1
q V + 1
r W
The Bellman function restatement
(B1) Domain:
u, v, w, U, V , W ≥ 0, up
≤ U, vq
≤ V , wr
≤ W
(B2) Range:
0 ≤ B(u, v, w, U, V , W ) ≤ Cp,q,r
1
p U + 1
q V + 1
r W
(B3) The main inequality:
B(u, v, w, U, V , W ) ≥
1
2
B(u1, v1, w1, U1, V1, W1)
+
1
2
B(u2, v2, w2, U2, V2, W2)
+
1
2
(u1 + u2)
1
2
|v1 − v2|
1
2
|w1 − w2|
whenever u = 1
2(u1 + u2), v = 1
2(v1 + v2), etc. and all
6-tuples belong to the domain
The Bellman function restatement
Substitute u = 1
2(u1 − u2), etc.
Assume that B is C1
and “piecewise” C2
:
(B3 ) Infinitesimal version:
−
1
2
( d2
B
quadratic form
) (u, v, w, U, V , W )
at a point
( u, v, w, U, V , W )
on a vector
≥ u| v|| w|
The Bellman function restatement
Substitute u = 1
2(u1 − u2), etc.
Assume that B is C1
and “piecewise” C2
:
(B3 ) Infinitesimal version:
−
1
2
( d2
B
quadratic form
) (u, v, w, U, V , W )
at a point
( u, v, w, U, V , W )
on a vector
≥ u| v|| w|
(B3)
Taylor’s formula
=⇒ (B3 )
(B3 )
convexity of the domain
=⇒ (B3)
The Bellman function restatement
Sufficiency of (B1)–(B3)
The Bellman function restatement
Sufficiency of (B1)–(B3)
Apply (B3) n times:
|I| B f I , g I , h I , f p
I , gq
I , hr
I
≥
J⊆I
|J|=2−n|I|
|J| B f J , g J , h J , f p
J , gq
J , hr
J
≥0
+
J⊆I
|J|>2−n|I|
f J
1
2
g Jleft
− g Jright
1
2
h Jleft
− h Jright
The Bellman function restatement
Sufficiency of (B1)–(B3)
Apply (B3) n times:
|I| B f I , g I , h I , f p
I , gq
I , hr
I
≥
J⊆I
|J|=2−n|I|
|J| B f J , g J , h J , f p
J , gq
J , hr
J
≥0
+
J⊆I
|J|>2−n|I|
f J
1
2
g Jleft
− g Jright
1
2
h Jleft
− h Jright
Use (B2) and let n → ∞
Martingale paraproduct
Martingale paraproduct
Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the
Brownian filtration (Ft)t≥0
The martingale paraproduct Ba˜nuelos & Bennett (1988):
P(X, Y ) :=
∞
0
XsdYs
Established Lp
, Hp
, BMO estimates
Martingale paraproduct
Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the
Brownian filtration (Ft)t≥0
The martingale paraproduct Ba˜nuelos & Bennett (1988):
P(X, Y ) :=
∞
0
XsdYs
Established Lp
, Hp
, BMO estimates
Consider the process
(X · Y )t :=
t
0
XsdYs
Take Z and define Zs := E(Z|Fs)
Martingale paraproduct
Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the
Brownian filtration (Ft)t≥0
The martingale paraproduct Ba˜nuelos & Bennett (1988):
P(X, Y ) :=
∞
0
XsdYs
Established Lp
, Hp
, BMO estimates
Consider the process
(X · Y )t :=
t
0
XsdYs
Take Z and define Zs := E(Z|Fs)
As a trilinear form:
Λt(X, Y , Z) := E (X · Y )tZ = E (X · Y )t(Zt − Z0)
Martingale paraproduct
Using It¯o’s isometry:
Λt(X, Y , Z) = E
t
0
XsdYs
t
0
1dZs
= E
t
0
Xsd Y , Z s
Y , Z t is the predictable quadratic covariation process
coincides with the quadratic covariation [Y , Z]t
Martingale paraproduct
Using It¯o’s isometry:
Λt(X, Y , Z) = E
t
0
XsdYs
t
0
1dZs
= E
t
0
Xsd Y , Z s
Y , Z t is the predictable quadratic covariation process
coincides with the quadratic covariation [Y , Z]t
Let us show the estimate
|Λt(X, Y , Z)| ≤ Cp,q,r Xt Lp Yt Lq Zt Lr
for 1 < p, q, r < ∞, 1
p + 1
q + 1
r = 1
A simple proof uses Doob’s inequality and the Burkholder-Gundy
inequality
Martingale paraproduct
Assume Xs, Ys, Zs ≥ 0 (or split into + and − parts)
Also introduce martingales (for a fixed t and for s ∈ [0, t]):
Us := E(Xp
t |Fs), Vs := E(Y q
t |Fs), Ws := E(Zr
t |Fs)
Martingale paraproduct
Assume Xs, Ys, Zs ≥ 0 (or split into + and − parts)
Also introduce martingales (for a fixed t and for s ∈ [0, t]):
Us := E(Xp
t |Fs), Vs := E(Y q
t |Fs), Ws := E(Zr
t |Fs)
We use It¯o’s formula (assuming for simplicity that B ∈ C2
):
B(Xt)−B(X0) =
i
t
0
∂i B(Xs)dXi
s
the martingale part
+
1
2
i,j
t
0
∂i ∂j B(Xs)d Xi
, Xj
s
=⇒ E B(Xt) − B(X0) = E
t
0
1
2
i,j
∂i ∂j B(Xs)d Xi
, Xj
s
for Xs = (Xs, Ys, Zs, Us, Vs, Ws)
Martingale paraproduct
Use the martingale representation theorem:
Xt = X0 +
t
0
AsdBt,
where Bt is the 1D Brownian motion and At is predictable
Martingale paraproduct
Use the martingale representation theorem:
Xt = X0 +
t
0
AsdBt,
where Bt is the 1D Brownian motion and At is predictable
Since d Xi , Xj
s = Ai
sAj
sds:
E
t
0
−
1
2
i,j
∂i ∂j B(Xs)Ai
sAj
s
(d2B)(Xs )(As )
ds = EB(X0) − EB(Xt)
≥0
Martingale paraproduct
Use the martingale representation theorem:
Xt = X0 +
t
0
AsdBt,
where Bt is the 1D Brownian motion and At is predictable
Since d Xi , Xj
s = Ai
sAj
sds:
E
t
0
−
1
2
i,j
∂i ∂j B(Xs)Ai
sAj
s
(d2B)(Xs )(As )
ds = EB(X0) − EB(Xt)
≥0
Using (B3 ) and (B2):
±E
t
0
X1
s A2
s A3
s ds
Xs d Y ,Z s
≤ EB(X0) ≤ Cp,q,r
1
p EU0
Xt
p
Lp
+1
q EV0
Yt
q
Lq
+1
r EW0
Zt
r
Lr
Martingale paraproduct
For general martingales:
Consider
∞
k=1
Xk−1(Yk − Yk−1) or
∞
0
Xs−dYs
Martingale paraproduct
For general martingales:
Consider
∞
k=1
Xk−1(Yk − Yk−1) or
∞
0
Xs−dYs
B also works but not so directly
Martingale paraproduct
For general martingales:
Consider
∞
k=1
Xk−1(Yk − Yk−1) or
∞
0
Xs−dYs
B also works but not so directly
The optimal constant Cp,q,r increases
at least when 1 < p < ∞, q = r
unlike with Burkholder’s martingale transform
Heat flow paraproduct
Heat flow paraproduct
k(x, t) := 1√
2πt
e−x2
2t the heat kernel on the line
Let u, v, w be the heat extensions of f , g, h:
u(x, t) :=
R
f (y)k(x − y, t)dy, etc.
Λ(f , g, h) :=
R
∞
0
u(x, t) ∂x v(x, t) ∂x w(x, t) dt dx
Heat flow paraproduct
k(x, t) := 1√
2πt
e−x2
2t the heat kernel on the line
Let u, v, w be the heat extensions of f , g, h:
u(x, t) :=
R
f (y)k(x − y, t)dy, etc.
Λ(f , g, h) :=
R
∞
0
u(x, t) ∂x v(x, t) ∂x w(x, t) dt dx
We get a more familiar expression if we substitute
ϕs(x) := k(x, s2
), ψs(x) := −21/2
s ∂x k(x, s2
)
Λ(f , g, h) =
R
∞
0
(f ∗ ϕs)(x) (g ∗ ψs)(x) (h ∗ ψs)(x)
ds
s
dx
Heat flow paraproduct
Imitating the “heating” technique from Petermichl & Volberg
(2002) or Nazarov & Volberg (2003)
Heat flow paraproduct
Imitating the “heating” technique from Petermichl & Volberg
(2002) or Nazarov & Volberg (2003)
Assume f , g, h ≥ 0 and assume for simplicity that B ∈ C2
Let also U, V , W be the heat extensions of f p, gq, hr and define
b(x, t) := B u(x, t), v(x, t), w(x, t), U(x, t), V (x, t), W (x, t)
=⇒ ∂t − 1
2∂2
x b(x, t) = ( B)(u, v, . . .) · ∂t − 1
2∂2
x (u, v, . . .)
=0
− 1
2(d2
B)(u, v, . . .)(∂x u, ∂x v, . . .)
Heat flow paraproduct
Imitating the “heating” technique from Petermichl & Volberg
(2002) or Nazarov & Volberg (2003)
Assume f , g, h ≥ 0 and assume for simplicity that B ∈ C2
Let also U, V , W be the heat extensions of f p, gq, hr and define
b(x, t) := B u(x, t), v(x, t), w(x, t), U(x, t), V (x, t), W (x, t)
=⇒ ∂t − 1
2∂2
x b(x, t) = ( B)(u, v, . . .) · ∂t − 1
2∂2
x (u, v, . . .)
=0
− 1
2(d2
B)(u, v, . . .)(∂x u, ∂x v, . . .)
Using (B3 ) we get
±u(x, t) ∂x v(x, t) ∂x w(x, t) ≤ ∂t − 1
2∂2
x b(x, t)
Heat flow paraproduct
Integrating by parts and using B ≥ 0 we get for δ, T > 0:
±
R×(δ,T−δ)
k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt
≤
R
k(x, δ)b(x, T − δ)dx
Heat flow paraproduct
Integrating by parts and using B ≥ 0 we get for δ, T > 0:
±
R×(δ,T−δ)
k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt
≤
R
k(x, δ)b(x, T − δ)dx
Letting δ → 0 and using (B2):
±
R×(0,T)
k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ b(0, T)
≤
Cp,q,r
√
2πT R
f (y)p
e− y2
2T dy
1/p
R
g(y)q
e− y2
2T dy
1/q
R
h(y)r
e− y2
2T dy
1/r
Heat flow paraproduct
Integrating by parts and using B ≥ 0 we get for δ, T > 0:
±
R×(δ,T−δ)
k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt
≤
R
k(x, δ)b(x, T − δ)dx
Letting δ → 0 and using (B2):
±
R×(0,T)
k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ b(0, T)
≤
Cp,q,r
√
2πT R
f (y)p
e− y2
2T dy
1/p
R
g(y)q
e− y2
2T dy
1/q
R
h(y)r
e− y2
2T dy
1/r
Observe lim
T→∞
√
2πT k(x, T − t) = 1 uniformly over
(x, t) ∈ [−R, R] × (0, T1] and let T → ∞, R → ∞, T1 → ∞
The explicit Bellman function
The explicit Bellman function
An exercise:
Find the explicit Bellman function for Lp
estimates for the dyadic
paraproduct!
The explicit Bellman function
An exercise:
Find the explicit Bellman function for Lp
estimates for the dyadic
paraproduct!
Motivation:
Very few Bellman functions for multilinear estimates in the
literature
The explicit Bellman function
An exercise:
Find the explicit Bellman function for Lp
estimates for the dyadic
paraproduct!
Motivation:
Very few Bellman functions for multilinear estimates in the
literature
In some contexts the explicit formula (involving powers) could
be useful Carbonaro & Dragiˇcevi´c (2011, 2013)
The explicit Bellman function
An exercise:
Find the explicit Bellman function for Lp
estimates for the dyadic
paraproduct!
Motivation:
Very few Bellman functions for multilinear estimates in the
literature
In some contexts the explicit formula (involving powers) could
be useful Carbonaro & Dragiˇcevi´c (2011, 2013)
We would like to find a direct proof (i.e. with no stopping
times) of the estimates for the “twisted” paraproduct K.
(2010) or the “twisted” quadrilinear form Durcik (2015)
The explicit Bellman function
An exercise:
Find the explicit Bellman function for Lp
estimates for the dyadic
paraproduct!
Motivation:
Very few Bellman functions for multilinear estimates in the
literature
In some contexts the explicit formula (involving powers) could
be useful Carbonaro & Dragiˇcevi´c (2011, 2013)
We would like to find a direct proof (i.e. with no stopping
times) of the estimates for the “twisted” paraproduct K.
(2010) or the “twisted” quadrilinear form Durcik (2015)
This could also extend the range of exponents for:
a non-adapted stochastic integral K. & ˇSkreb (2014)
norm-variation of ergodic averages w.r.t. two commuting
transformations Durcik, K., ˇSkreb, Thiele (2016)
The explicit Bellman function
WLOG assume q > r and use the ansatz:
B(u, v, w, U, V , W ) = Cp,q,r
1
p U + 1
q V + 1
r W − A(u, v, w)
A(u, v, w) = up
γ
vq
up
t
,
wr
up
s
The explicit Bellman function
WLOG assume q > r and use the ansatz:
B(u, v, w, U, V , W ) = Cp,q,r
1
p U + 1
q V + 1
r W − A(u, v, w)
A(u, v, w) = up
γ
vq
up
t
,
wr
up
s
γ(t, s) =



A1 + B1t + C1s; 1 ≤ s ≤ t
A2 + B2t + C2s
1
p ; s ≤ 1 ≤ t
A3 + B3t
1
p + C3s
1
p ; s ≤ t ≤ 1
A4 + B4t
2
q s
1
r − 1
q + C4s
1
p ; t ≤ s ≤ 1
A5 + B5t
2
q + C5t
2
q s1− 2
q + D5s; t ≤ 1 ≤ s
A6 + B6t + C6t
2
q s1− 2
q + D6s; 1 ≤ t ≤ s
Adjust the coefficients so that γ is C1
on (0, ∞)2
The explicit Bellman function
γ(t, s) =



A + Bt + Cs; 1 ≤ s ≤ t
A(p−1)−C
p−1 + Bt + Cp
p−1 s
1
p ; s ≤ 1 ≤ t
A(p−1)−(B+C)
p−1 + Bp
p−1 t
1
p + Cp
p−1 s
1
p ; s ≤ t ≤ 1
A(p−1)−(B+C)
p−1 + Bq
2 t
2
q s
1
r − 1
q + 2Cpr−Bp(q−r)
2r(p−1) s
1
p ; t ≤ s ≤ 1
2Ar(p−1)−B(q+r)
2r(p−1) + Bq2
2p(q−2) t
2
q + Bq(q−r)
2r(q−2) t
2
q s1− 2
q
+2Cr−B(q−r)
2r s; t ≤ 1 ≤ s
A + Bq
p(q−2) t + Bq(q−r)
2r(q−2) t
2
q s1− 2
q + 2Cr−B(q−r)
2r s; 1 ≤ t ≤ s
The explicit Bellman function
B contains terms:
U, V , W
up
, vq
, wr
uv
q−q
p , uw
r− r
p , u
p−2p
q v2
, v2
w
r−2r
q , uv2
w
1− r
q
The explicit Bellman function
B contains terms:
U, V , W
up
, vq
, wr
uv
q−q
p , uw
r− r
p , u
p−2p
q v2
, v2
w
r−2r
q , uv2
w
1− r
q
There are 3 critical hypersurfaces:
up
= vq
, up
= wr
, vq
= wr
The explicit Bellman function
B contains terms:
U, V , W
up
, vq
, wr
uv
q−q
p , uw
r− r
p , u
p−2p
q v2
, v2
w
r−2r
q , uv2
w
1− r
q
There are 3 critical hypersurfaces:
up
= vq
, up
= wr
, vq
= wr
Similar to the function constructed by Nazarov & Treil (1995)
Thank you!
Thank you for your attention!

Mais conteúdo relacionado

Mais procurados

Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 

Mais procurados (20)

Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 

Semelhante a Bellman functions and Lp estimates for paraproducts

Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesIOSR Journals
 
A note on the density of Gumbel-softmax
A note on the density of Gumbel-softmaxA note on the density of Gumbel-softmax
A note on the density of Gumbel-softmaxTomonari Masada
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAlex (Oleksiy) Varfolomiyev
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Francesco Tudisco
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
Famous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdfFamous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdfAbdulHannif2
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesbarasActuarial
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...HidenoriOgata
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Alberto Maspero
 
34032 green func
34032 green func34032 green func
34032 green funcansarixxx
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...BRNSS Publication Hub
 
Fast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimizationFast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimizationPantelis Sopasakis
 

Semelhante a Bellman functions and Lp estimates for paraproducts (20)

Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
A note on the density of Gumbel-softmax
A note on the density of Gumbel-softmaxA note on the density of Gumbel-softmax
A note on the density of Gumbel-softmax
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
presentazione
presentazionepresentazione
presentazione
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
VCU(Seminar)
VCU(Seminar)VCU(Seminar)
VCU(Seminar)
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Famous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdfFamous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdf
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
 
34032 green func
34032 green func34032 green func
34032 green func
 
02_AJMS_168_19_RA.pdf
02_AJMS_168_19_RA.pdf02_AJMS_168_19_RA.pdf
02_AJMS_168_19_RA.pdf
 
02_AJMS_168_19_RA.pdf
02_AJMS_168_19_RA.pdf02_AJMS_168_19_RA.pdf
02_AJMS_168_19_RA.pdf
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...
 
Fast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimizationFast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimization
 

Último

Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 

Último (20)

Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 

Bellman functions and Lp estimates for paraproducts

  • 1. Bellman functions and Lp estimates for paraproducts Vjekoslav Kovaˇc (University of Zagreb) Joint work with Kristina Ana ˇSkreb (University of Zagreb) Harmonic analysis, complex analysis, spectral theory and all that Bedlewo, August 2, 2016
  • 3. Dyadic paraproduct As a bilinear operator: Π(f , g) := I∈D I f , 1I |I|1/2 1I |I|1/2 g, hI |I|1/2 hI |I|1/2 = k∈Z (Ekf ) (∆kg) D = dyadic intervals ⊂ R, hI = 1Ileft − 1Iright , | I | ≤ 1
  • 4. Dyadic paraproduct As a bilinear operator: Π(f , g) := I∈D I f , 1I |I|1/2 1I |I|1/2 g, hI |I|1/2 hI |I|1/2 = k∈Z (Ekf ) (∆kg) D = dyadic intervals ⊂ R, hI = 1Ileft − 1Iright , | I | ≤ 1 f → Π(f , g) is usually called the (linear) paraproduct g → Π(f , g) is the martingale transform or the Haar multiplier
  • 5. Dyadic paraproduct As a bilinear operator: Π(f , g) := I∈D I f , 1I |I|1/2 1I |I|1/2 g, hI |I|1/2 hI |I|1/2 = k∈Z (Ekf ) (∆kg) D = dyadic intervals ⊂ R, hI = 1Ileft − 1Iright , | I | ≤ 1 f → Π(f , g) is usually called the (linear) paraproduct g → Π(f , g) is the martingale transform or the Haar multiplier As a trilinear form: Λ(f , g, h) := I∈D I |I|−2 f , 1I g, hI h, hI = R k∈Z (Ekf ) (∆kg) (∆kh)
  • 6. Dyadic paraproduct Lp estimates (in the Banach range only): |Λ(f , g, h)| ≤ Cp,q,r f Lp g Lq h Lr hold whenever 1 < p, q, r ≤ ∞, 1 p + 1 q + 1 r = 1
  • 7. Dyadic paraproduct Lp estimates (in the Banach range only): |Λ(f , g, h)| ≤ Cp,q,r f Lp g Lq h Lr hold whenever 1 < p, q, r ≤ ∞, 1 p + 1 q + 1 r = 1 The easiest proof (when q, r < ∞): |Λ(f , g, h)| ≤ R (Mf ) (Sg) (Sh) ≤ Mf Lp Sg Lq Sh Lr where Mf := sup I∈D |I|−1 f , 1I 1I is the dyadic maximal function Sf := I∈D |I|−2| f , hI |21I 1/2 is the dyadic square function
  • 9. The Bellman function restatement
  • 10. The Bellman function restatement Assume that f , g, h ≥ 0 In terms of the averages: ΦI (f , g, h) := 1 |I| J⊆I |J| f J 1 2 g Jleft − g Jright 1 2 h Jleft − h Jright
  • 11. The Bellman function restatement Assume that f , g, h ≥ 0 In terms of the averages: ΦI (f , g, h) := 1 |I| J⊆I |J| f J 1 2 g Jleft − g Jright 1 2 h Jleft − h Jright The estimate: ΦI (f , g, h) ≤ Cp,q,r 1 p f p I + 1 q gq I + 1 r hr I
  • 12. The Bellman function restatement Assume that f , g, h ≥ 0 In terms of the averages: ΦI (f , g, h) := 1 |I| J⊆I |J| f J 1 2 g Jleft − g Jright 1 2 h Jleft − h Jright The estimate: ΦI (f , g, h) ≤ Cp,q,r 1 p f p I + 1 q gq I + 1 r hr I The abstract Bellman function: B(u, v, w, U, V , W ) := sup f ,g,h ΦI (f , g, h), where the supremum is taken over all f , g, h ≥ 0 s.t. f I = u, g I = v, h I = w, f p I = U, gq I = V , hr I = W
  • 13. The Bellman function restatement (B1) Domain: u, v, w, U, V , W ≥ 0, up ≤ U, vq ≤ V , wr ≤ W
  • 14. The Bellman function restatement (B1) Domain: u, v, w, U, V , W ≥ 0, up ≤ U, vq ≤ V , wr ≤ W (B2) Range: 0 ≤ B(u, v, w, U, V , W ) ≤ Cp,q,r 1 p U + 1 q V + 1 r W
  • 15. The Bellman function restatement (B1) Domain: u, v, w, U, V , W ≥ 0, up ≤ U, vq ≤ V , wr ≤ W (B2) Range: 0 ≤ B(u, v, w, U, V , W ) ≤ Cp,q,r 1 p U + 1 q V + 1 r W (B3) The main inequality: B(u, v, w, U, V , W ) ≥ 1 2 B(u1, v1, w1, U1, V1, W1) + 1 2 B(u2, v2, w2, U2, V2, W2) + 1 2 (u1 + u2) 1 2 |v1 − v2| 1 2 |w1 − w2| whenever u = 1 2(u1 + u2), v = 1 2(v1 + v2), etc. and all 6-tuples belong to the domain
  • 16. The Bellman function restatement Substitute u = 1 2(u1 − u2), etc. Assume that B is C1 and “piecewise” C2 : (B3 ) Infinitesimal version: − 1 2 ( d2 B quadratic form ) (u, v, w, U, V , W ) at a point ( u, v, w, U, V , W ) on a vector ≥ u| v|| w|
  • 17. The Bellman function restatement Substitute u = 1 2(u1 − u2), etc. Assume that B is C1 and “piecewise” C2 : (B3 ) Infinitesimal version: − 1 2 ( d2 B quadratic form ) (u, v, w, U, V , W ) at a point ( u, v, w, U, V , W ) on a vector ≥ u| v|| w| (B3) Taylor’s formula =⇒ (B3 ) (B3 ) convexity of the domain =⇒ (B3)
  • 18. The Bellman function restatement Sufficiency of (B1)–(B3)
  • 19. The Bellman function restatement Sufficiency of (B1)–(B3) Apply (B3) n times: |I| B f I , g I , h I , f p I , gq I , hr I ≥ J⊆I |J|=2−n|I| |J| B f J , g J , h J , f p J , gq J , hr J ≥0 + J⊆I |J|>2−n|I| f J 1 2 g Jleft − g Jright 1 2 h Jleft − h Jright
  • 20. The Bellman function restatement Sufficiency of (B1)–(B3) Apply (B3) n times: |I| B f I , g I , h I , f p I , gq I , hr I ≥ J⊆I |J|=2−n|I| |J| B f J , g J , h J , f p J , gq J , hr J ≥0 + J⊆I |J|>2−n|I| f J 1 2 g Jleft − g Jright 1 2 h Jleft − h Jright Use (B2) and let n → ∞
  • 22. Martingale paraproduct Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the Brownian filtration (Ft)t≥0 The martingale paraproduct Ba˜nuelos & Bennett (1988): P(X, Y ) := ∞ 0 XsdYs Established Lp , Hp , BMO estimates
  • 23. Martingale paraproduct Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the Brownian filtration (Ft)t≥0 The martingale paraproduct Ba˜nuelos & Bennett (1988): P(X, Y ) := ∞ 0 XsdYs Established Lp , Hp , BMO estimates Consider the process (X · Y )t := t 0 XsdYs Take Z and define Zs := E(Z|Fs)
  • 24. Martingale paraproduct Let (Xt)t≥0 and (Yt)t≥0 be continuous-time martingales w.r.t. the Brownian filtration (Ft)t≥0 The martingale paraproduct Ba˜nuelos & Bennett (1988): P(X, Y ) := ∞ 0 XsdYs Established Lp , Hp , BMO estimates Consider the process (X · Y )t := t 0 XsdYs Take Z and define Zs := E(Z|Fs) As a trilinear form: Λt(X, Y , Z) := E (X · Y )tZ = E (X · Y )t(Zt − Z0)
  • 25. Martingale paraproduct Using It¯o’s isometry: Λt(X, Y , Z) = E t 0 XsdYs t 0 1dZs = E t 0 Xsd Y , Z s Y , Z t is the predictable quadratic covariation process coincides with the quadratic covariation [Y , Z]t
  • 26. Martingale paraproduct Using It¯o’s isometry: Λt(X, Y , Z) = E t 0 XsdYs t 0 1dZs = E t 0 Xsd Y , Z s Y , Z t is the predictable quadratic covariation process coincides with the quadratic covariation [Y , Z]t Let us show the estimate |Λt(X, Y , Z)| ≤ Cp,q,r Xt Lp Yt Lq Zt Lr for 1 < p, q, r < ∞, 1 p + 1 q + 1 r = 1 A simple proof uses Doob’s inequality and the Burkholder-Gundy inequality
  • 27. Martingale paraproduct Assume Xs, Ys, Zs ≥ 0 (or split into + and − parts) Also introduce martingales (for a fixed t and for s ∈ [0, t]): Us := E(Xp t |Fs), Vs := E(Y q t |Fs), Ws := E(Zr t |Fs)
  • 28. Martingale paraproduct Assume Xs, Ys, Zs ≥ 0 (or split into + and − parts) Also introduce martingales (for a fixed t and for s ∈ [0, t]): Us := E(Xp t |Fs), Vs := E(Y q t |Fs), Ws := E(Zr t |Fs) We use It¯o’s formula (assuming for simplicity that B ∈ C2 ): B(Xt)−B(X0) = i t 0 ∂i B(Xs)dXi s the martingale part + 1 2 i,j t 0 ∂i ∂j B(Xs)d Xi , Xj s =⇒ E B(Xt) − B(X0) = E t 0 1 2 i,j ∂i ∂j B(Xs)d Xi , Xj s for Xs = (Xs, Ys, Zs, Us, Vs, Ws)
  • 29. Martingale paraproduct Use the martingale representation theorem: Xt = X0 + t 0 AsdBt, where Bt is the 1D Brownian motion and At is predictable
  • 30. Martingale paraproduct Use the martingale representation theorem: Xt = X0 + t 0 AsdBt, where Bt is the 1D Brownian motion and At is predictable Since d Xi , Xj s = Ai sAj sds: E t 0 − 1 2 i,j ∂i ∂j B(Xs)Ai sAj s (d2B)(Xs )(As ) ds = EB(X0) − EB(Xt) ≥0
  • 31. Martingale paraproduct Use the martingale representation theorem: Xt = X0 + t 0 AsdBt, where Bt is the 1D Brownian motion and At is predictable Since d Xi , Xj s = Ai sAj sds: E t 0 − 1 2 i,j ∂i ∂j B(Xs)Ai sAj s (d2B)(Xs )(As ) ds = EB(X0) − EB(Xt) ≥0 Using (B3 ) and (B2): ±E t 0 X1 s A2 s A3 s ds Xs d Y ,Z s ≤ EB(X0) ≤ Cp,q,r 1 p EU0 Xt p Lp +1 q EV0 Yt q Lq +1 r EW0 Zt r Lr
  • 32. Martingale paraproduct For general martingales: Consider ∞ k=1 Xk−1(Yk − Yk−1) or ∞ 0 Xs−dYs
  • 33. Martingale paraproduct For general martingales: Consider ∞ k=1 Xk−1(Yk − Yk−1) or ∞ 0 Xs−dYs B also works but not so directly
  • 34. Martingale paraproduct For general martingales: Consider ∞ k=1 Xk−1(Yk − Yk−1) or ∞ 0 Xs−dYs B also works but not so directly The optimal constant Cp,q,r increases at least when 1 < p < ∞, q = r unlike with Burkholder’s martingale transform
  • 36. Heat flow paraproduct k(x, t) := 1√ 2πt e−x2 2t the heat kernel on the line Let u, v, w be the heat extensions of f , g, h: u(x, t) := R f (y)k(x − y, t)dy, etc. Λ(f , g, h) := R ∞ 0 u(x, t) ∂x v(x, t) ∂x w(x, t) dt dx
  • 37. Heat flow paraproduct k(x, t) := 1√ 2πt e−x2 2t the heat kernel on the line Let u, v, w be the heat extensions of f , g, h: u(x, t) := R f (y)k(x − y, t)dy, etc. Λ(f , g, h) := R ∞ 0 u(x, t) ∂x v(x, t) ∂x w(x, t) dt dx We get a more familiar expression if we substitute ϕs(x) := k(x, s2 ), ψs(x) := −21/2 s ∂x k(x, s2 ) Λ(f , g, h) = R ∞ 0 (f ∗ ϕs)(x) (g ∗ ψs)(x) (h ∗ ψs)(x) ds s dx
  • 38. Heat flow paraproduct Imitating the “heating” technique from Petermichl & Volberg (2002) or Nazarov & Volberg (2003)
  • 39. Heat flow paraproduct Imitating the “heating” technique from Petermichl & Volberg (2002) or Nazarov & Volberg (2003) Assume f , g, h ≥ 0 and assume for simplicity that B ∈ C2 Let also U, V , W be the heat extensions of f p, gq, hr and define b(x, t) := B u(x, t), v(x, t), w(x, t), U(x, t), V (x, t), W (x, t) =⇒ ∂t − 1 2∂2 x b(x, t) = ( B)(u, v, . . .) · ∂t − 1 2∂2 x (u, v, . . .) =0 − 1 2(d2 B)(u, v, . . .)(∂x u, ∂x v, . . .)
  • 40. Heat flow paraproduct Imitating the “heating” technique from Petermichl & Volberg (2002) or Nazarov & Volberg (2003) Assume f , g, h ≥ 0 and assume for simplicity that B ∈ C2 Let also U, V , W be the heat extensions of f p, gq, hr and define b(x, t) := B u(x, t), v(x, t), w(x, t), U(x, t), V (x, t), W (x, t) =⇒ ∂t − 1 2∂2 x b(x, t) = ( B)(u, v, . . .) · ∂t − 1 2∂2 x (u, v, . . .) =0 − 1 2(d2 B)(u, v, . . .)(∂x u, ∂x v, . . .) Using (B3 ) we get ±u(x, t) ∂x v(x, t) ∂x w(x, t) ≤ ∂t − 1 2∂2 x b(x, t)
  • 41. Heat flow paraproduct Integrating by parts and using B ≥ 0 we get for δ, T > 0: ± R×(δ,T−δ) k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ R k(x, δ)b(x, T − δ)dx
  • 42. Heat flow paraproduct Integrating by parts and using B ≥ 0 we get for δ, T > 0: ± R×(δ,T−δ) k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ R k(x, δ)b(x, T − δ)dx Letting δ → 0 and using (B2): ± R×(0,T) k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ b(0, T) ≤ Cp,q,r √ 2πT R f (y)p e− y2 2T dy 1/p R g(y)q e− y2 2T dy 1/q R h(y)r e− y2 2T dy 1/r
  • 43. Heat flow paraproduct Integrating by parts and using B ≥ 0 we get for δ, T > 0: ± R×(δ,T−δ) k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ R k(x, δ)b(x, T − δ)dx Letting δ → 0 and using (B2): ± R×(0,T) k(x, T − t) u(x, t) ∂x v(x, t) ∂x w(x, t) dxdt ≤ b(0, T) ≤ Cp,q,r √ 2πT R f (y)p e− y2 2T dy 1/p R g(y)q e− y2 2T dy 1/q R h(y)r e− y2 2T dy 1/r Observe lim T→∞ √ 2πT k(x, T − t) = 1 uniformly over (x, t) ∈ [−R, R] × (0, T1] and let T → ∞, R → ∞, T1 → ∞
  • 45. The explicit Bellman function An exercise: Find the explicit Bellman function for Lp estimates for the dyadic paraproduct!
  • 46. The explicit Bellman function An exercise: Find the explicit Bellman function for Lp estimates for the dyadic paraproduct! Motivation: Very few Bellman functions for multilinear estimates in the literature
  • 47. The explicit Bellman function An exercise: Find the explicit Bellman function for Lp estimates for the dyadic paraproduct! Motivation: Very few Bellman functions for multilinear estimates in the literature In some contexts the explicit formula (involving powers) could be useful Carbonaro & Dragiˇcevi´c (2011, 2013)
  • 48. The explicit Bellman function An exercise: Find the explicit Bellman function for Lp estimates for the dyadic paraproduct! Motivation: Very few Bellman functions for multilinear estimates in the literature In some contexts the explicit formula (involving powers) could be useful Carbonaro & Dragiˇcevi´c (2011, 2013) We would like to find a direct proof (i.e. with no stopping times) of the estimates for the “twisted” paraproduct K. (2010) or the “twisted” quadrilinear form Durcik (2015)
  • 49. The explicit Bellman function An exercise: Find the explicit Bellman function for Lp estimates for the dyadic paraproduct! Motivation: Very few Bellman functions for multilinear estimates in the literature In some contexts the explicit formula (involving powers) could be useful Carbonaro & Dragiˇcevi´c (2011, 2013) We would like to find a direct proof (i.e. with no stopping times) of the estimates for the “twisted” paraproduct K. (2010) or the “twisted” quadrilinear form Durcik (2015) This could also extend the range of exponents for: a non-adapted stochastic integral K. & ˇSkreb (2014) norm-variation of ergodic averages w.r.t. two commuting transformations Durcik, K., ˇSkreb, Thiele (2016)
  • 50. The explicit Bellman function WLOG assume q > r and use the ansatz: B(u, v, w, U, V , W ) = Cp,q,r 1 p U + 1 q V + 1 r W − A(u, v, w) A(u, v, w) = up γ vq up t , wr up s
  • 51. The explicit Bellman function WLOG assume q > r and use the ansatz: B(u, v, w, U, V , W ) = Cp,q,r 1 p U + 1 q V + 1 r W − A(u, v, w) A(u, v, w) = up γ vq up t , wr up s γ(t, s) =    A1 + B1t + C1s; 1 ≤ s ≤ t A2 + B2t + C2s 1 p ; s ≤ 1 ≤ t A3 + B3t 1 p + C3s 1 p ; s ≤ t ≤ 1 A4 + B4t 2 q s 1 r − 1 q + C4s 1 p ; t ≤ s ≤ 1 A5 + B5t 2 q + C5t 2 q s1− 2 q + D5s; t ≤ 1 ≤ s A6 + B6t + C6t 2 q s1− 2 q + D6s; 1 ≤ t ≤ s Adjust the coefficients so that γ is C1 on (0, ∞)2
  • 52. The explicit Bellman function γ(t, s) =    A + Bt + Cs; 1 ≤ s ≤ t A(p−1)−C p−1 + Bt + Cp p−1 s 1 p ; s ≤ 1 ≤ t A(p−1)−(B+C) p−1 + Bp p−1 t 1 p + Cp p−1 s 1 p ; s ≤ t ≤ 1 A(p−1)−(B+C) p−1 + Bq 2 t 2 q s 1 r − 1 q + 2Cpr−Bp(q−r) 2r(p−1) s 1 p ; t ≤ s ≤ 1 2Ar(p−1)−B(q+r) 2r(p−1) + Bq2 2p(q−2) t 2 q + Bq(q−r) 2r(q−2) t 2 q s1− 2 q +2Cr−B(q−r) 2r s; t ≤ 1 ≤ s A + Bq p(q−2) t + Bq(q−r) 2r(q−2) t 2 q s1− 2 q + 2Cr−B(q−r) 2r s; 1 ≤ t ≤ s
  • 53. The explicit Bellman function B contains terms: U, V , W up , vq , wr uv q−q p , uw r− r p , u p−2p q v2 , v2 w r−2r q , uv2 w 1− r q
  • 54. The explicit Bellman function B contains terms: U, V , W up , vq , wr uv q−q p , uw r− r p , u p−2p q v2 , v2 w r−2r q , uv2 w 1− r q There are 3 critical hypersurfaces: up = vq , up = wr , vq = wr
  • 55. The explicit Bellman function B contains terms: U, V , W up , vq , wr uv q−q p , uw r− r p , u p−2p q v2 , v2 w r−2r q , uv2 w 1− r q There are 3 critical hypersurfaces: up = vq , up = wr , vq = wr Similar to the function constructed by Nazarov & Treil (1995)
  • 56. Thank you! Thank you for your attention!