SlideShare uma empresa Scribd logo
1 de 17
A presentation of eSyst.org
Electronic Materials
• The goal of electronic materials is to
generate and control the flow of an
electrical current.
• Electronic materials include:
1. Conductors: have low resistance which
allows electrical current flow
2. Insulators: have high resistance which
suppresses electrical current flow
3. Semiconductors: can allow or suppress
electrical current flow
A presentation of eSyst.org
Conductors
• Good conductors have low resistance so
electrons flow through them with ease.
• Best element conductors include:
– Copper, silver, gold, aluminum, & nickel
• Alloys are also good conductors:
– Brass & steel
• Good conductors can also be liquid:
– Salt water
A presentation of eSyst.org
Conductor Atomic Structure
• The atomic structure of
good conductors usually
includes only one
electron in their outer
shell.
– It is called a valence
electron.
– It is easily striped from the
atom, producing current
flow.
Copper Atom
A presentation of eSyst.org
Insulators
• Insulators have a high resistance so current
does not flow in them.
• Good insulators include:
– Glass, ceramic, plastics, & wood
• Most insulators are compounds of several
elements.
• The atoms are tightly bound to one another
so electrons are difficult to strip away for
current flow.
A presentation of eSyst.org
Semiconductors
• Semiconductors are materials that essentially
can be conditioned to act as good conductors,
or good insulators, or any thing in between.
• Common elements such as carbon, silicon,
and germanium are semiconductors.
• Silicon is the best and most widely used
semiconductor.
A presentation of eSyst.org
Semiconductor Valence Orbit
• The main
characteristic of a
semiconductor
element is that it has
four electrons in its
outer or valence
orbit.
A presentation of eSyst.org
Crystal Lattice Structure
• The unique capability
of semiconductor
atoms is their ability to
link together to form a
physical structure
called a crystal lattice.
• The atoms link
together with one
another sharing their
outer electrons.
• These links are called
covalent bonds.
2D Crystal Lattice Structure
A presentation of eSyst.org
3D Crystal Lattice Structure
A presentation of eSyst.org
Semiconductors can be Insulators
• If the material is pure semiconductor material like
silicon, the crystal lattice structure forms an excellent
insulator since all the atoms are bound to one another
and are not free for current flow.
• Good insulating semiconductor material is referred to
as intrinsic.
• Since the outer valence electrons of each atom are
tightly bound together with one another, the electrons
are difficult to dislodge for current flow.
• Silicon in this form is a great insulator.
• Semiconductor material is often used as an insulator.
A presentation of eSyst.org
Doping
• To make the semiconductor conduct electricity,
other atoms called impurities must be added.
• “Impurities” are different elements.
• This process is called doping.
A presentation of eSyst.org
Semiconductors can be Conductors
• An impurity, or element
like arsenic, has 5
valence electrons.
• Adding arsenic (doping)
will allow four of the
arsenic valence
electrons to bond with
the neighboring silicon
atoms.
• The one electron left
over for each arsenic
atom becomes available
to conduct current flow.
A presentation of eSyst.org
Resistance Effects of Doping
• If you use lots of arsenic atoms for doping,
there will be lots of extra electrons so the
resistance of the material will be low and
current will flow freely.
• If you use only a few boron atoms, there will
be fewer free electrons so the resistance will
be high and less current will flow.
• By controlling the doping amount, virtually
any resistance can be achieved.
A presentation of eSyst.org
Another Way to Dope
• You can also dope a
semiconductor material with an
atom such as boron that has
only 3 valence electrons.
• The 3 electrons in the outer orbit
do form covalent bonds with its
neighboring semiconductor
atoms as before. But one atom
is missing from the bond.
• This place where a fourth
electron should be is referred to
as a hole.
• The hole assumes a positive
charge so it can attract electrons
from some other source.
• Holes become a type of current
carrier like the electron to
support current flow.
A presentation of eSyst.org
Types of Semiconductor Materials
• The silicon doped with extra electrons is
called an “N type” semiconductor.
– “N” is for negative, which is the charge of an
electron.
• Silicon doped with material missing
electrons that produce locations called holes
is called “P type” semiconductor.
– “P” is for positive, which is the charge of a hole.
A presentation of eSyst.org
Current Flow in N-type Semiconductors
• The DC voltage source has
a positive terminal that
attracts the free electrons in
the semiconductor and pulls
them away from their atoms
leaving the atoms charged
positively.
• Electrons from the negative
terminal of the supply enter
the semiconductor material
and are attracted by the
positive charge of the atoms
missing one of their
electrons.
• Current (electrons) flows
from the positive terminal to
the negative terminal.
A presentation of eSyst.org
Current Flow in P-type Semiconductors
• Electrons from the
negative supply terminal
are attracted to the
positive holes and fill them.
• The positive terminal of the
supply pulls the electrons
from the holes leaving the
holes to attract more
electrons.
• Current (electrons) flows
from the negative terminal
to the positive terminal.
• Inside the semiconductor
current flow is actually by
the movement of the holes
from positive to negative.
A presentation of eSyst.org
In Summary
• In its pure state, semiconductor material is an excellent
insulator.
• The commonly used semiconductor material is silicon.
• Semiconductor materials can be doped with other atoms to
add or subtract electrons.
• An N-type semiconductor material has extra electrons.
• A P-type semiconductor material has a shortage of
electrons with vacancies called holes.
• The heavier the doping, the greater the conductivity or the
lower the resistance.
• By controlling the doping of silicon the semiconductor
material can be made as conductive as desired.

Mais conteúdo relacionado

Semelhante a Introduction_Semi_Materials-6-09-10.ppt

EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01rizwanspirit
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materialskrishslide
 
Lec 5-semicondutors
Lec 5-semicondutorsLec 5-semicondutors
Lec 5-semicondutorshamzaatiq34
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodesSyiera Rahman
 
CHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptxCHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptxTesfahun Molla
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sourcesPRAVIN SINGARE
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics ruwaghmare
 
1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.pptSpringWisteri
 
Semiconductor devices specialization
Semiconductor devices  specializationSemiconductor devices  specialization
Semiconductor devices specializationAbhishek Sur
 
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptxAENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptxTemesgenDebeloDesiss
 

Semelhante a Introduction_Semi_Materials-6-09-10.ppt (20)

EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materials
 
Lec 5-semicondutors
Lec 5-semicondutorsLec 5-semicondutors
Lec 5-semicondutors
 
Introduction semi materials
Introduction semi materialsIntroduction semi materials
Introduction semi materials
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodes
 
CHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptxCHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptx
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics
 
Lecture-01.pdf
Lecture-01.pdfLecture-01.pdf
Lecture-01.pdf
 
1st leacture
1st leacture1st leacture
1st leacture
 
Electronics
ElectronicsElectronics
Electronics
 
1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt
 
Electronic Principles
Electronic PrinciplesElectronic Principles
Electronic Principles
 
Semiconductor devices specialization
Semiconductor devices  specializationSemiconductor devices  specialization
Semiconductor devices specialization
 
Be lec 1
Be lec 1Be lec 1
Be lec 1
 
Unit 2 semiconductors
Unit 2  semiconductors Unit 2  semiconductors
Unit 2 semiconductors
 
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptxAENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
 
Semiconductor Physics
Semiconductor PhysicsSemiconductor Physics
Semiconductor Physics
 
Edc
EdcEdc
Edc
 

Último

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 

Último (20)

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 

Introduction_Semi_Materials-6-09-10.ppt

  • 1. A presentation of eSyst.org Electronic Materials • The goal of electronic materials is to generate and control the flow of an electrical current. • Electronic materials include: 1. Conductors: have low resistance which allows electrical current flow 2. Insulators: have high resistance which suppresses electrical current flow 3. Semiconductors: can allow or suppress electrical current flow
  • 2. A presentation of eSyst.org Conductors • Good conductors have low resistance so electrons flow through them with ease. • Best element conductors include: – Copper, silver, gold, aluminum, & nickel • Alloys are also good conductors: – Brass & steel • Good conductors can also be liquid: – Salt water
  • 3. A presentation of eSyst.org Conductor Atomic Structure • The atomic structure of good conductors usually includes only one electron in their outer shell. – It is called a valence electron. – It is easily striped from the atom, producing current flow. Copper Atom
  • 4. A presentation of eSyst.org Insulators • Insulators have a high resistance so current does not flow in them. • Good insulators include: – Glass, ceramic, plastics, & wood • Most insulators are compounds of several elements. • The atoms are tightly bound to one another so electrons are difficult to strip away for current flow.
  • 5. A presentation of eSyst.org Semiconductors • Semiconductors are materials that essentially can be conditioned to act as good conductors, or good insulators, or any thing in between. • Common elements such as carbon, silicon, and germanium are semiconductors. • Silicon is the best and most widely used semiconductor.
  • 6. A presentation of eSyst.org Semiconductor Valence Orbit • The main characteristic of a semiconductor element is that it has four electrons in its outer or valence orbit.
  • 7. A presentation of eSyst.org Crystal Lattice Structure • The unique capability of semiconductor atoms is their ability to link together to form a physical structure called a crystal lattice. • The atoms link together with one another sharing their outer electrons. • These links are called covalent bonds. 2D Crystal Lattice Structure
  • 8. A presentation of eSyst.org 3D Crystal Lattice Structure
  • 9. A presentation of eSyst.org Semiconductors can be Insulators • If the material is pure semiconductor material like silicon, the crystal lattice structure forms an excellent insulator since all the atoms are bound to one another and are not free for current flow. • Good insulating semiconductor material is referred to as intrinsic. • Since the outer valence electrons of each atom are tightly bound together with one another, the electrons are difficult to dislodge for current flow. • Silicon in this form is a great insulator. • Semiconductor material is often used as an insulator.
  • 10. A presentation of eSyst.org Doping • To make the semiconductor conduct electricity, other atoms called impurities must be added. • “Impurities” are different elements. • This process is called doping.
  • 11. A presentation of eSyst.org Semiconductors can be Conductors • An impurity, or element like arsenic, has 5 valence electrons. • Adding arsenic (doping) will allow four of the arsenic valence electrons to bond with the neighboring silicon atoms. • The one electron left over for each arsenic atom becomes available to conduct current flow.
  • 12. A presentation of eSyst.org Resistance Effects of Doping • If you use lots of arsenic atoms for doping, there will be lots of extra electrons so the resistance of the material will be low and current will flow freely. • If you use only a few boron atoms, there will be fewer free electrons so the resistance will be high and less current will flow. • By controlling the doping amount, virtually any resistance can be achieved.
  • 13. A presentation of eSyst.org Another Way to Dope • You can also dope a semiconductor material with an atom such as boron that has only 3 valence electrons. • The 3 electrons in the outer orbit do form covalent bonds with its neighboring semiconductor atoms as before. But one atom is missing from the bond. • This place where a fourth electron should be is referred to as a hole. • The hole assumes a positive charge so it can attract electrons from some other source. • Holes become a type of current carrier like the electron to support current flow.
  • 14. A presentation of eSyst.org Types of Semiconductor Materials • The silicon doped with extra electrons is called an “N type” semiconductor. – “N” is for negative, which is the charge of an electron. • Silicon doped with material missing electrons that produce locations called holes is called “P type” semiconductor. – “P” is for positive, which is the charge of a hole.
  • 15. A presentation of eSyst.org Current Flow in N-type Semiconductors • The DC voltage source has a positive terminal that attracts the free electrons in the semiconductor and pulls them away from their atoms leaving the atoms charged positively. • Electrons from the negative terminal of the supply enter the semiconductor material and are attracted by the positive charge of the atoms missing one of their electrons. • Current (electrons) flows from the positive terminal to the negative terminal.
  • 16. A presentation of eSyst.org Current Flow in P-type Semiconductors • Electrons from the negative supply terminal are attracted to the positive holes and fill them. • The positive terminal of the supply pulls the electrons from the holes leaving the holes to attract more electrons. • Current (electrons) flows from the negative terminal to the positive terminal. • Inside the semiconductor current flow is actually by the movement of the holes from positive to negative.
  • 17. A presentation of eSyst.org In Summary • In its pure state, semiconductor material is an excellent insulator. • The commonly used semiconductor material is silicon. • Semiconductor materials can be doped with other atoms to add or subtract electrons. • An N-type semiconductor material has extra electrons. • A P-type semiconductor material has a shortage of electrons with vacancies called holes. • The heavier the doping, the greater the conductivity or the lower the resistance. • By controlling the doping of silicon the semiconductor material can be made as conductive as desired.