SlideShare uma empresa Scribd logo
1 de 22
1
V. Besse, C. Cassagne, H. Leblond, G. Boudebs
Laboratoire de Photonique d’Angers EA 4464, Université d’Angers,
2 Bd Lavoisier, 49000 Angers, France
valentin.besse@univ-angers.fr
Third- and Fifth-order Optical
Nonlinearities Characterization Using the
D4σ-Z-scan Method
2
OUTLINE
• Introduction : Propagation equation, Newton’s method, D4σ-Z-
scan technique …
• Theory : analytic solution of the equation, numerical inversion
• Nonlinear coefficients measurement using D4σ-Z-scan method
• Conclusion
3
PROPAGATION OF A BEAM
NLM
Linear absorption
α (m-1)
Two photon absorption
β (m/W)
Three photon absorption
γ (m3
/W2
)
Third-order refractive index
n2 (m2
/W)
Fifth-order refractive index
n4 (m4
/W2
)
Linear refractive index
n0
?
χ(3)
χ(5)
χ(1)
4
D4σ-Z-SCAN INSIDE A 4f SYSTEM
C.C.D.
f1 f1 f2
L1 L2
L3M1 M2
NLM
BS1 BS2
f2
O(x,y)
L2: far field diffraction
x
z
y
[M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, E. W. Stryland, "Sensitive measurement of optical nonlinearities using a single
beam", IEEE J. Quantum Electron. 26, 4, 760-769, (1990)]
[K. Fedus, G. Boudebs, "Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction", Opt. Comm.
292, 140–148 (2013)]
[G. Boudebs, V. Besse, C. Cassagne, H. Leblond and C.B. de Araújo, “Nonlinear characterization of materials using the D4σ method
inside a Z-scan 4f-system”, Opt. Lett. 38, 13, 2206-2208 (2013)]
5
CCD
PRINCIPLE OF THE D4σ METHOD
The detector is a CCD to allow distance measurements
y
NL regime :
Linear regime :
x
NL L
L
ω − ω
ω
NLyω
Lyω
Beam Waist Relative Variation
(BWRV)
z(mm)
NL L
L
ω − ω
ω
Δωpv
NLphase
shift
BWRV
6
WHY WE CHOOSE THE D4σ METHOD
• The sensitivity is independent from the experimental setup and CCD
pixel size.
• The relation between Δω and the effective phase shift at the focus
remains valid in the presence of relatively high nonlinear absorption
• Does not need to divide two different profile to obtain the nonlinear
refractive response
( ) ( )
( )
2
im
x
im
I x, y x x dxdy
2
I x, y dxdy
+∞ +∞
−∞ −∞
+∞ +∞
−∞ −∞
−
ω =
∫ ∫
∫ ∫
( )
( )
im
im
I x, y xdxdy
x
I x, y dxdy
+∞ +∞
−∞ −∞
+∞ +∞
−∞ −∞
=
∫ ∫
∫ ∫
where
7
OUTLINE
• Introduction : Beam propagating equation, Newton’s method,
D4σ-Z-scan technique …
• Theory : analytic solution of the equation, numerical inversion
• Nonlinear coefficients measurement using D4σ-Z-scan method
• Conclusion
8
PROPAGATION EQUATION
• under the slow varying envelope
approximation
• thin sample approximation
Modulus of the wave vector : k = 2π/λ Wavelength : λ
(1)
2 3d
d
= − − −
I
αI βI γI
z
Optical intensity I (W/m2
)
( )2d
d
= +
ϕ
2 4k n I n I
z
(2)
Phase ϕ
2 2
2
2 2 2 2
0
1 1∂ ∂
∇ − =
∂ ∂εc t c t
% % %E E P
[R. W. Boyd, Nonlinear Optics, third edition (Academic Press, New York 2007)]
• : electric field
• : nonlinear polarization
%E
%P
9
SOLUTION OF (1)
( ) ( )
ln ln lnL L L
0 0 0
I I X I X
I I X I X
L
X X X X X X X X
− +
− +
+ − − − + + − +
      − −
  ÷  ÷  ÷− −      = − + −
 − −
 
 
γ γ γ
• Exactly solve after partial fraction decomposition
• Each coefficient is nonzero
2
4>β αγ( ) ( )2
4 2± = ± − −β αγ β γX assuming
[V. Besse, G. Boudebs and H. Leblond, “Determination of the third-and fifth-order optical nonlinearities: the general case”, Appl.
Phys. B, (2014)]
• Sample located between : z = 0 and z = L, with boundary conditions I (z = 0) = I0 and
I (z = L) = IL
10
SOLUTION OF (1)
Problem !
We have : z ( I ) We need : I ( z )
?
11
NEWTON’S METHOD
• Find approximations to the root
• Iterative method
• Using first-order Taylor expansion
( ) ( ) ( )( )'
n 1 ,n ,n ,n 1 ,nL, L L L Lz I z I z I I I+ += + −
( )( ) ( )'
,n 1 ,n 1 ,n ,nL+ += − −L L L LI I z I z I
• Easy to implement
• Need an adequate choice of the
starting values
( )1
n
lim L,nz I L+
→∞
=
[T. R. Oliveira, L. de S. Menezes, C. B. de Araújo and A. A. Lipovskii, “Nonlinear absorption of transparent glass ceramics containing sodium
niobate nanocrystals”, Phys. Rev. B 76, 134207 (2007)]
12
SOLUTION OF (2)
( )
( )
( )
2 4
2 4
ln
ln
+
+
+ − +
−
−
−
  −
∆ = − +  ÷
− − 
 −
+ +  ÷
− 
ϕ
γ
L
0
L
0
I Xk
n n X
X X I X
I X
n n X
I X
( )2d
d
= +
ϕ
2 4k n I n I
z
(2)
Phase ϕ
2 3
d
d =
− − −
I
z
αI βI γI
by using (1) :
( )2
2 3
d
d
+
=
ϕ 2 4k n I n I
IαI+βI +γI
(2)
Phase ϕ
2
4>β αγ( ) ( )2
4 2± = ± − −β αγ β γX assuming
andwhere ∆ϕ = ϕ − ϕL 0
13
OUTLINE
• Introduction : Beam propagating equation, Newton’s method,
D4σ-Z-scan technique …
• Theory : analytic solution of the equation, numerical inversion
• Nonlinear coefficients measurement using D4σ-Z-scan method
• Conclusion
14
CARBON DISULFIDE (CS2)
• Considered as a reference material for nonlinear characteristics measurement.
• at λ = 532 nm, α = 0 and β = 0.
• Three photon absorption phenomenon becomes predominant at high intensity
• Fifth-order (n4 and γ) coefficients values previously published.
[S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas and X. Michaut, “An experimental investigation of the nonlinear
refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques”, Chem. Phys. Lett., 369, 3, 318-
324 (2003)]
15
NONLINEAR ABSORPTION COEFFICIENTS
Pure Two-Photon Absorption (2PA)
0 L
L 0
I I
L
βI I
−
=
Pure Three-Photon Absorption (3PA)
2
2 2
0 L
2 2
L 0
I I
L
γI I
−
=
16
NONLINEAR ABSORPTION COEFFICIENTS
λ = 532 nm and I0 = 25 GW/cm2
Pure 3PA: γ = (9.3 ± 1.9)×10-26
m3
/W2
(red solid line)
Pure 2PA: β = (8.5 ± 0.9)×10-12
m/W
(blue dotted line)
λ = 1,064 nm and I0 = 65 GW/cm2
Pure 3PA: γ = (4.6 ± 0.9)×10-26
m3
/W2
(red
solid line)
Pure 2PA: β = (1.7 ± 0.2)×10-12
m/W (blue
dotted line)
[G. Boudebs, V. Besse, C. Cassagne, H. Leblond and C.B. de Araújo, “Nonlinear characterization of materials using the
D4σ method inside a Z-scan 4f-system” Opt. Lett., 38, 13, 2206-2208 (2013)]
[G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of
higher-order nonlinearities in chalcogenide glasses” Opt. Comm., 219, 1, 427-433 (2003)]
17
NONLINEAR REFRACTIVE INDEX
Pure third-order susceptibility contribution (only χ(3)
)
Mixed third- and fifth-order susceptibilities contribution (χ(3)
and χ(5)
)
ln
  −
∆ =   ÷
  
ϕ L
2
0
Ik
n
β I
ln
  −−
∆ = +  ÷
  
ϕ L 0 L
2 4
L 0 0
I I Ik
n n
γ I I I
18
NONLINEAR REFRACTIVE INDEX
Measured at low intensity
λ = 532 nm and I0 = 1.6 GW/cm2
n2 = (1.5 ± 0.3)×10-18
m2
/W
β < 0.2 cm/GW
λ = 1,064 nm and I0 = 4.5 GW/cm2
n2 = (4.5 ± 1.3)×10-19
m2
/W
β < 0.05 cm/GW
Fifth-order contribution is INSIGNIFICANT
19
NONLINEAR REFRACTIVE INDEX
λ = 532 nm and I0 = 25 GW/cm2
χ(3)
and χ(5)
: γ = (9.3 ± 1.9)×10-26
m3
/W2,
n2
= (1.5 ± 0.3)×10-18
m2
/W and n4 =
(1.2 ± 0.3) ×10-32
m4
/W2
(red solid line)
χ(3)
: β = (8.5 ± 0.9)×10-12
m/W and
n2 = (2.7 ± 0.3)×10-18
m2
/W (blue dotted
line)
λ = 1,064 nm and I0 = 65 GW/cm2
χ(3)
and χ(5)
: γ = (4.6 ± 1.9)×10-27
m3
/W2,
n2
= (4.5 ± 1.3)×10-19
m2
/W and n4 =
(2.2 ± 0.4) ×10-33
m4
/W2
(red solid line)
χ(3)
: β = (1.7 ± 0.2)×10-12
m/W and
n2 = (1.4 ± 0.2)×10-18
m2
/W (blue dotted
line)
20
OUTLINE
• Introduction : Beam propagating equation, Newton’s method,
D4σ-Z-scan technique …
• Theory : analytic solution of the equation, numerical inversion
• Nonlinear coefficients measurement using D4σ-Z-scan method
• Conclusion
21
CONCLUSION
• Analytical solution of the z (I) and ϕ (I) with third- (n2 and β) and fifth-order (n4 and
γ) nonlinearities.
• Allows to measure the fifth-order nonlinearities.
•The fitting method is easy to implement.
• Confusion could appear when considering ONLY data at high intensity leading to a
overstimation of the n2 values of CS2 at 532 nm and 1064 nm.
22
THANK YOU
FOR YOUR
ATTENTION

Mais conteúdo relacionado

Mais procurados

Reflective high energy electron diffraction
Reflective high energy electron diffractionReflective high energy electron diffraction
Reflective high energy electron diffraction
Oleg Maksimov
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional Theory
Wesley Chen
 
PPT thesis defense_nikhil
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhil
Nikhil Jain
 

Mais procurados (20)

Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Mott metal insulator transitions satej soman, robert tang-kong
Mott metal insulator transitions  satej soman, robert tang-kongMott metal insulator transitions  satej soman, robert tang-kong
Mott metal insulator transitions satej soman, robert tang-kong
 
Photodetector (Photodiode)
Photodetector (Photodiode)Photodetector (Photodiode)
Photodetector (Photodiode)
 
PLASMONICS
PLASMONICSPLASMONICS
PLASMONICS
 
Generation of optical harmonics
Generation of optical harmonicsGeneration of optical harmonics
Generation of optical harmonics
 
Reflective high energy electron diffraction
Reflective high energy electron diffractionReflective high energy electron diffraction
Reflective high energy electron diffraction
 
Introduction to DFT Part 1
Introduction to DFT Part 1 Introduction to DFT Part 1
Introduction to DFT Part 1
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
 
Laser diode structures
Laser diode structuresLaser diode structures
Laser diode structures
 
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
 
METAMATERIALS
METAMATERIALSMETAMATERIALS
METAMATERIALS
 
Quinck's method
Quinck's methodQuinck's method
Quinck's method
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional Theory
 
Growth of single crystals
Growth of  single crystalsGrowth of  single crystals
Growth of single crystals
 
Plasmonic Chain waveguides
Plasmonic Chain waveguidesPlasmonic Chain waveguides
Plasmonic Chain waveguides
 
Basic of semiconductors and optical properties
Basic of semiconductors and optical propertiesBasic of semiconductors and optical properties
Basic of semiconductors and optical properties
 
0417062299 Sakib Reza
0417062299 Sakib Reza0417062299 Sakib Reza
0417062299 Sakib Reza
 
PPT thesis defense_nikhil
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhil
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 

Destaque

Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
Lecture 12   andrew fitzgibbon - 3 d vision in a changing worldLecture 12   andrew fitzgibbon - 3 d vision in a changing world
Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
mustafa sarac
 
Qualifier presentation
Qualifier presentationQualifier presentation
Qualifier presentation
Joe Krall
 

Destaque (14)

Types of nonlinearities
Types of nonlinearitiesTypes of nonlinearities
Types of nonlinearities
 
Nonlinear systems
Nonlinear systemsNonlinear systems
Nonlinear systems
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
NLO
NLONLO
NLO
 
Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
Lecture 12   andrew fitzgibbon - 3 d vision in a changing worldLecture 12   andrew fitzgibbon - 3 d vision in a changing world
Lecture 12 andrew fitzgibbon - 3 d vision in a changing world
 
Qualifier
QualifierQualifier
Qualifier
 
Qualifier presentation
Qualifier presentationQualifier presentation
Qualifier presentation
 
All optical image processing using third harmonic generation for image correl...
All optical image processing using third harmonic generation for image correl...All optical image processing using third harmonic generation for image correl...
All optical image processing using third harmonic generation for image correl...
 
Second order and Third order NLO studies of L- alanine crystals grown in aque...
Second order and Third order NLO studies of L- alanine crystals grown in aque...Second order and Third order NLO studies of L- alanine crystals grown in aque...
Second order and Third order NLO studies of L- alanine crystals grown in aque...
 
Translational and Rotational system
Translational and Rotational systemTranslational and Rotational system
Translational and Rotational system
 
ROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONSROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONS
 
Shm
ShmShm
Shm
 
Lecture7
Lecture7Lecture7
Lecture7
 
Roots of Nonlinear Equations - Open Methods
Roots of Nonlinear Equations - Open MethodsRoots of Nonlinear Equations - Open Methods
Roots of Nonlinear Equations - Open Methods
 

Semelhante a ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Using the D4Sigma-Z-scan Method

Refractive Index Lab
Refractive Index LabRefractive Index Lab
Refractive Index Lab
Sean Mc Garry
 
X-ray Characterization of Si-doped InAs nanowires on GaAs(111) substrate
X-ray Characterization of Si-doped InAs  nanowires on GaAs(111) substrateX-ray Characterization of Si-doped InAs  nanowires on GaAs(111) substrate
X-ray Characterization of Si-doped InAs nanowires on GaAs(111) substrate
Muhammad Saqib Abbasi
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
Alexander Decker
 

Semelhante a ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Using the D4Sigma-Z-scan Method (20)

How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
 
Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009
 
Physics practicals
Physics practicalsPhysics practicals
Physics practicals
 
Seminar yefak 2019
Seminar yefak 2019Seminar yefak 2019
Seminar yefak 2019
 
Ellipsometry- non destructive measuring method
Ellipsometry- non destructive measuring methodEllipsometry- non destructive measuring method
Ellipsometry- non destructive measuring method
 
Pycon openlcdfdm
Pycon openlcdfdmPycon openlcdfdm
Pycon openlcdfdm
 
CS 354 Global Illumination
CS 354 Global IlluminationCS 354 Global Illumination
CS 354 Global Illumination
 
Refractive Index Lab
Refractive Index LabRefractive Index Lab
Refractive Index Lab
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
Magnet basics
Magnet basicsMagnet basics
Magnet basics
 
X-ray Characterization of Si-doped InAs nanowires on GaAs(111) substrate
X-ray Characterization of Si-doped InAs  nanowires on GaAs(111) substrateX-ray Characterization of Si-doped InAs  nanowires on GaAs(111) substrate
X-ray Characterization of Si-doped InAs nanowires on GaAs(111) substrate
 
Comparing the Performance of Different Ultrasonic Image Enhancement Technique...
Comparing the Performance of Different Ultrasonic Image Enhancement Technique...Comparing the Performance of Different Ultrasonic Image Enhancement Technique...
Comparing the Performance of Different Ultrasonic Image Enhancement Technique...
 
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
 
Image formation
Image formationImage formation
Image formation
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
 
Mazurov ferrara2014
Mazurov ferrara2014Mazurov ferrara2014
Mazurov ferrara2014
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
 
Low Coherence Interferometry: From Sensor Multiplexing to Biomedical Imaging
Low Coherence Interferometry:  From Sensor Multiplexing to Biomedical ImagingLow Coherence Interferometry:  From Sensor Multiplexing to Biomedical Imaging
Low Coherence Interferometry: From Sensor Multiplexing to Biomedical Imaging
 
Extreme light research group overview
Extreme light research group overviewExtreme light research group overview
Extreme light research group overview
 

Último

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Silpa
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 

Último (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 

ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Using the D4Sigma-Z-scan Method

  • 1. 1 V. Besse, C. Cassagne, H. Leblond, G. Boudebs Laboratoire de Photonique d’Angers EA 4464, Université d’Angers, 2 Bd Lavoisier, 49000 Angers, France valentin.besse@univ-angers.fr Third- and Fifth-order Optical Nonlinearities Characterization Using the D4σ-Z-scan Method
  • 2. 2 OUTLINE • Introduction : Propagation equation, Newton’s method, D4σ-Z- scan technique … • Theory : analytic solution of the equation, numerical inversion • Nonlinear coefficients measurement using D4σ-Z-scan method • Conclusion
  • 3. 3 PROPAGATION OF A BEAM NLM Linear absorption α (m-1) Two photon absorption β (m/W) Three photon absorption γ (m3 /W2 ) Third-order refractive index n2 (m2 /W) Fifth-order refractive index n4 (m4 /W2 ) Linear refractive index n0 ? χ(3) χ(5) χ(1)
  • 4. 4 D4σ-Z-SCAN INSIDE A 4f SYSTEM C.C.D. f1 f1 f2 L1 L2 L3M1 M2 NLM BS1 BS2 f2 O(x,y) L2: far field diffraction x z y [M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, E. W. Stryland, "Sensitive measurement of optical nonlinearities using a single beam", IEEE J. Quantum Electron. 26, 4, 760-769, (1990)] [K. Fedus, G. Boudebs, "Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction", Opt. Comm. 292, 140–148 (2013)] [G. Boudebs, V. Besse, C. Cassagne, H. Leblond and C.B. de Araújo, “Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system”, Opt. Lett. 38, 13, 2206-2208 (2013)]
  • 5. 5 CCD PRINCIPLE OF THE D4σ METHOD The detector is a CCD to allow distance measurements y NL regime : Linear regime : x NL L L ω − ω ω NLyω Lyω Beam Waist Relative Variation (BWRV) z(mm) NL L L ω − ω ω Δωpv NLphase shift BWRV
  • 6. 6 WHY WE CHOOSE THE D4σ METHOD • The sensitivity is independent from the experimental setup and CCD pixel size. • The relation between Δω and the effective phase shift at the focus remains valid in the presence of relatively high nonlinear absorption • Does not need to divide two different profile to obtain the nonlinear refractive response ( ) ( ) ( ) 2 im x im I x, y x x dxdy 2 I x, y dxdy +∞ +∞ −∞ −∞ +∞ +∞ −∞ −∞ − ω = ∫ ∫ ∫ ∫ ( ) ( ) im im I x, y xdxdy x I x, y dxdy +∞ +∞ −∞ −∞ +∞ +∞ −∞ −∞ = ∫ ∫ ∫ ∫ where
  • 7. 7 OUTLINE • Introduction : Beam propagating equation, Newton’s method, D4σ-Z-scan technique … • Theory : analytic solution of the equation, numerical inversion • Nonlinear coefficients measurement using D4σ-Z-scan method • Conclusion
  • 8. 8 PROPAGATION EQUATION • under the slow varying envelope approximation • thin sample approximation Modulus of the wave vector : k = 2π/λ Wavelength : λ (1) 2 3d d = − − − I αI βI γI z Optical intensity I (W/m2 ) ( )2d d = + ϕ 2 4k n I n I z (2) Phase ϕ 2 2 2 2 2 2 2 0 1 1∂ ∂ ∇ − = ∂ ∂εc t c t % % %E E P [R. W. Boyd, Nonlinear Optics, third edition (Academic Press, New York 2007)] • : electric field • : nonlinear polarization %E %P
  • 9. 9 SOLUTION OF (1) ( ) ( ) ln ln lnL L L 0 0 0 I I X I X I I X I X L X X X X X X X X − + − + + − − − + + − +       − −   ÷  ÷  ÷− −      = − + −  − −     γ γ γ • Exactly solve after partial fraction decomposition • Each coefficient is nonzero 2 4>β αγ( ) ( )2 4 2± = ± − −β αγ β γX assuming [V. Besse, G. Boudebs and H. Leblond, “Determination of the third-and fifth-order optical nonlinearities: the general case”, Appl. Phys. B, (2014)] • Sample located between : z = 0 and z = L, with boundary conditions I (z = 0) = I0 and I (z = L) = IL
  • 10. 10 SOLUTION OF (1) Problem ! We have : z ( I ) We need : I ( z ) ?
  • 11. 11 NEWTON’S METHOD • Find approximations to the root • Iterative method • Using first-order Taylor expansion ( ) ( ) ( )( )' n 1 ,n ,n ,n 1 ,nL, L L L Lz I z I z I I I+ += + − ( )( ) ( )' ,n 1 ,n 1 ,n ,nL+ += − −L L L LI I z I z I • Easy to implement • Need an adequate choice of the starting values ( )1 n lim L,nz I L+ →∞ = [T. R. Oliveira, L. de S. Menezes, C. B. de Araújo and A. A. Lipovskii, “Nonlinear absorption of transparent glass ceramics containing sodium niobate nanocrystals”, Phys. Rev. B 76, 134207 (2007)]
  • 12. 12 SOLUTION OF (2) ( ) ( ) ( ) 2 4 2 4 ln ln + + + − + − − −   − ∆ = − +  ÷ − −   − + +  ÷ −  ϕ γ L 0 L 0 I Xk n n X X X I X I X n n X I X ( )2d d = + ϕ 2 4k n I n I z (2) Phase ϕ 2 3 d d = − − − I z αI βI γI by using (1) : ( )2 2 3 d d + = ϕ 2 4k n I n I IαI+βI +γI (2) Phase ϕ 2 4>β αγ( ) ( )2 4 2± = ± − −β αγ β γX assuming andwhere ∆ϕ = ϕ − ϕL 0
  • 13. 13 OUTLINE • Introduction : Beam propagating equation, Newton’s method, D4σ-Z-scan technique … • Theory : analytic solution of the equation, numerical inversion • Nonlinear coefficients measurement using D4σ-Z-scan method • Conclusion
  • 14. 14 CARBON DISULFIDE (CS2) • Considered as a reference material for nonlinear characteristics measurement. • at λ = 532 nm, α = 0 and β = 0. • Three photon absorption phenomenon becomes predominant at high intensity • Fifth-order (n4 and γ) coefficients values previously published. [S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques”, Chem. Phys. Lett., 369, 3, 318- 324 (2003)]
  • 15. 15 NONLINEAR ABSORPTION COEFFICIENTS Pure Two-Photon Absorption (2PA) 0 L L 0 I I L βI I − = Pure Three-Photon Absorption (3PA) 2 2 2 0 L 2 2 L 0 I I L γI I − =
  • 16. 16 NONLINEAR ABSORPTION COEFFICIENTS λ = 532 nm and I0 = 25 GW/cm2 Pure 3PA: γ = (9.3 ± 1.9)×10-26 m3 /W2 (red solid line) Pure 2PA: β = (8.5 ± 0.9)×10-12 m/W (blue dotted line) λ = 1,064 nm and I0 = 65 GW/cm2 Pure 3PA: γ = (4.6 ± 0.9)×10-26 m3 /W2 (red solid line) Pure 2PA: β = (1.7 ± 0.2)×10-12 m/W (blue dotted line) [G. Boudebs, V. Besse, C. Cassagne, H. Leblond and C.B. de Araújo, “Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system” Opt. Lett., 38, 13, 2206-2208 (2013)] [G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses” Opt. Comm., 219, 1, 427-433 (2003)]
  • 17. 17 NONLINEAR REFRACTIVE INDEX Pure third-order susceptibility contribution (only χ(3) ) Mixed third- and fifth-order susceptibilities contribution (χ(3) and χ(5) ) ln   − ∆ =   ÷    ϕ L 2 0 Ik n β I ln   −− ∆ = +  ÷    ϕ L 0 L 2 4 L 0 0 I I Ik n n γ I I I
  • 18. 18 NONLINEAR REFRACTIVE INDEX Measured at low intensity λ = 532 nm and I0 = 1.6 GW/cm2 n2 = (1.5 ± 0.3)×10-18 m2 /W β < 0.2 cm/GW λ = 1,064 nm and I0 = 4.5 GW/cm2 n2 = (4.5 ± 1.3)×10-19 m2 /W β < 0.05 cm/GW Fifth-order contribution is INSIGNIFICANT
  • 19. 19 NONLINEAR REFRACTIVE INDEX λ = 532 nm and I0 = 25 GW/cm2 χ(3) and χ(5) : γ = (9.3 ± 1.9)×10-26 m3 /W2, n2 = (1.5 ± 0.3)×10-18 m2 /W and n4 = (1.2 ± 0.3) ×10-32 m4 /W2 (red solid line) χ(3) : β = (8.5 ± 0.9)×10-12 m/W and n2 = (2.7 ± 0.3)×10-18 m2 /W (blue dotted line) λ = 1,064 nm and I0 = 65 GW/cm2 χ(3) and χ(5) : γ = (4.6 ± 1.9)×10-27 m3 /W2, n2 = (4.5 ± 1.3)×10-19 m2 /W and n4 = (2.2 ± 0.4) ×10-33 m4 /W2 (red solid line) χ(3) : β = (1.7 ± 0.2)×10-12 m/W and n2 = (1.4 ± 0.2)×10-18 m2 /W (blue dotted line)
  • 20. 20 OUTLINE • Introduction : Beam propagating equation, Newton’s method, D4σ-Z-scan technique … • Theory : analytic solution of the equation, numerical inversion • Nonlinear coefficients measurement using D4σ-Z-scan method • Conclusion
  • 21. 21 CONCLUSION • Analytical solution of the z (I) and ϕ (I) with third- (n2 and β) and fifth-order (n4 and γ) nonlinearities. • Allows to measure the fifth-order nonlinearities. •The fitting method is easy to implement. • Confusion could appear when considering ONLY data at high intensity leading to a overstimation of the n2 values of CS2 at 532 nm and 1064 nm.

Notas do Editor

  1. La physique est une science qui cherche à comprendre, à modéliser, voire d&amp;apos;expliquer, les phénomènes physiques.
  2. The advantage here is that we can obtain an image of the object situated at the entry which is very useful to characterize the incident beam. It is called &amp;quot;4-f system,&amp;quot; because there are 4 f-lengths separating the object from the image. The 4-f systems allow to improve the sensitivety and signal-to-noise ratio.
  3. Intégration sur l’ensemble du CCD.The measurement of the beam waist can be performed using the ISO standard definition. Based on the second moment of the irradiance profile, the D4σ method gives 4 times the standard deviation of the intensity distribution. For example, the beam radius in the x direction is:
  4. Here we consider the general case with materials exhibiting all the NL coefficients up to the fifth-order including 2PA, 3PA, n2 and n4.
  5. (or zeroes) of a real-valued function.
  6. By replacing dz by dI and after decomposing the solution in partial fractions, we intagreted between I0 and IL DeltaPhi is the NL phase shift. TRANSITION : On peut maintenant correctement faire
  7. Carbon disulfide CS2 used !
  8. We use the D4Sigma-Zscan methode previously shown. Our laser is a Nd:YAG delivering linearly polarized picosecond pulse
  9. We use the D4Sigma-Zscan methode previously shown. Our laser is a Nd:YAG delivering linearly polarized picosecond pulse
  10. Measurement made with an Open aperture Z-scan normalized transmittance (empty circles) of a 1 mm thick cell filled with CS2 measured at . The solid line (red) shows the numerical fitting considering only 3PA where , the dotted line (blue) shows the fitting considering only 2PA:
  11. In order to take into account the third- and fifth-order contributions at this relatively high intensity, the analytical formula line six in Appendix2is used to fit the data where all parameters, exceptn4, are already known. We use the previous values of Gamma.
  12. In both cases, lambda=532 and lambda=1,064 nm, we measured n2 and beta at low intensity, where the fifth-order contribution is insignificant. Then, these measured values were fixed for the second set of acquisitions performed at higher intensity to determine fifth-order coefficients.
  13. Measurement made with an Open aperture Z-scan normalized transmittance (empty circles) of a 1 mm thick cell filled with CS2 measured at . The solid line (red) shows the numerical fitting considering only 3PA where , the dotted line (blue) shows the fitting considering only 2PA:
  14. We use the D4Sigma-Zscan methode previously shown. Our laser is a Nd:YAG delivering linearly polarized picosecond pulse