SlideShare uma empresa Scribd logo
1 de 17
CLASE N° 9
RELACIONES
PROFESOR: URBANO CERVANTES MAURO
Chiclayo, 4 de noviembre de 2010
PAR ORDENADO
Definición.- Es un conjunto de dos elementos ordenados de acuerdo
a como aparecen
Se representan por (a, b) donde:
a : primer elemento
b : segundo elemento
Pares ordenados iguales
(a, b) = (c, d) si y solo si a = c y b = d
Ejemplo: Hallar el valor de x e y si (3x + 2y, -5) = (11, 3x – 2y)
Solución 3x + 2y = 11
3x - 2y = -5
Resolviendo el sistema de ecuaciones:
Se obtiene x = 1
y = 4
3x + 2y = 11 (1)
3x - 2y = -5 (2)
6x = 6
x = 6/6 =  x =1
En (1) Reemplazando x=1
3(1) + 2y = 11
3 + 2y = 11
2y = 11 – 3
2y = 8
y = 8/2  y = 4
PRODUCTO CARTESIANO A x B
Definición.- El producto cartesiano de dos conjuntos no vacíos A y B se define como el
conjunto de todos los pares ordenados (a; b) donde a pertenece al conjunto A y b
pertenece al conjunto B
Se representa por:
Ejemplo Sean los conjuntos : A = { 1; 3; 5} y B = {r; s} entonces:
A x B = {(1, r),(1, s),(3, r),(3, s),(5, r),(5, s)}
Representación:
1) Con diagrama de árbol
A B A x B
1 r (1, r)
s (1, s)
3 r (3, r)
s (3, s)
5 r (5, r)
s (5, s)
}/);{( BbAabaAxB 
2) Utilizando tabla
3) Utilizando diagrama de flechas
1 r
2 s
3
A B r S
1 (1, r) (1, s)
3 (3, r) (3, s)
5 (5, r) (5, s)
A B
4) Utilizando el plano cartesiano
B
A
Número de elementos de un producto cartesiano
Si los conjuntos A y B son finitos y tienen m y n elementos
respectivamente entonces el producto cartesiano A x B tienen m x n
elementos
Ejemplo: sean
A = { 1; 3; 5} y B = {r; s}
Luego n(A x B) = 3 x 2 = 6
RELACIONES
Relación es un subconjunto de un producto cartesiano
Definición.- Es una correspondencia entre el primer conjunto
llamado DOMINIO y el segundo conjunto llamado RANGO, de
modo que a cada elemento del dominio le corresponde uno o más
elementos del rango. Simbólicamente se define como:
R = {(x,y) є AxB / xRy}
Dominio de una relación Dom(R) Es el subconjunto de A, formado
por todos los primeros componentes de los pares ordenados que
pertenecen a la relación. Dom(R) = { x є A / (x, y) є R}
Rango de una relación Ran((R).- Es el subconjunto de B, formado
por todos los segundos componentes de los pares ordenados que
pertenecen a la relación Ran(R) = { y є B / (x, y) є R}
AxBR 
CLASES DE RELACIONES
1. Relaciones Reflexivas.- Cuando un elemento está relacio-nado
consigo mismo . Si Ѵa є A, (a, a) є R,
2. Relaciones Simétricas.- Una relación es simétrica si Ѵ(a,b) єR se
cumple que el par ordenado (b, a) є R
3. Relaciones transitivas.- Una relación es transitiva si Ѵ(a,b) y (b,c)
є R, se cumple que el par ordenado (a,c) є R
4. Relación de equivalencia .- Una relación es de equivalencia cuando
es reflexiva, simétrica y transitiva
5. Relaciones antisimétricas.- Una relación es antisimétrica cuando si
Ѵ(a;b) y (b;a) є R, se cumple que a = b
6. Relaciones de orden.- Una relación es de orden si es reflexiva,
antisimétrica y transitiva
7. Relaciones inversas.- R-1 cuando se determina invirtiendo el orden
de las componentes de las parejas ordenadas en la R
• R-1 = { (b;a)/ (axb) є R
• Ejemplo: La relación R = { (a,a), (b,b), (c,c)} establecida en el
conjunto A = {a, b, c} es una relación reflexiva ya que todos
los elementos de A están relacionados consigo mismos.
1.Relaciones Reflexivas
a
b
c
2. Relaciones Simétricas
Ejemplo.- Dado el conjunto A = { 1, 2, 3 } con la relación
R = {(2, 3),(3, 2),(2, 1),(1, 1)(1, 2)}
Se observa que:
• El elemento (2, 3) tiene su elemento inverso (3, 2) y están en R
• El elemento (3, 2) tiene su elemento inverso (2, 3) y están en R
• El elemento (2, 1) tiene su elemento inverso (1, 2) y están en R
• El elemento (1, 2) tiene su elemento inverso (2, 1) y están en R
• El elemento (1, 1) tiene su elemento inverso (1, 1) y están en R
3. Relaciones transitivas
Ejemplo.- Sea el conjunto B = {1, 2, 3, 6} y la relación
R = {(x, y) є BxB / x divide a y}
• R en pares ordenados es :
R = {(1, 1),(1, 2),(1, 3),(1, 6),(2, 2),(2, 6),(3, 3)(3, 6)(6,6)}
• Se podrá verificar que:
Si x divide a y e y divide a z, entonces x divide a z
4. Relación de equivalencia
Ejemplo.- Sea el conjunto A = {a, b, c} y la relación
R = {(a, a),(b, b),(c, c),(b, a),(a, b)}
Se cumple:
1) Es reflexiva porque para todo elemento de A está
reacionado consigo mismo. Los pares (a, a), (b, b) y (c, c)
2) Es simétrica porque todo par (x, y) tiene su par inverso (y, x)
El par (b, a) tiene su par inverso (a, b)
El par (a, a) tiene su par inverso (a, a)
El par (b, b) tiene su par inverso (b, b)
El par (c, c) tiene su par inverso (c, c)
3. Es transitiva porque si los pares (x, y) y (y, z) están
en R, entonces el par (x, z) también está en R
Así tenemos los pares:
(b,b),(b,b) y (b,b) están en R
(b,b),(b,a) y (b,a) están en R
(b,a),(a,a) y (b,a) están en R
(a,a),(a,a) y (a,a) están en R
(c,c), (c,c) y (c,c) están en R
(a,b),(b,b) y (a,b) están en R
(b,a), (a,b) y (b,b) están en R
(a,a), (a,b) y (a,b) están en R
5. Relaciónes antisimétricas
Ejemplo.- Dado el conjunto A = {d, e, f} y la
relación
R = {(d, e),(e, f)(d, f)}
Esta relación es sntisimétrica porque:
Existe (d,e), pero no existe (e, d) en R
Existe (e,f), pero no existe (f, e) en R
Existe (d,f), pero no existe (f, d) en R
6. Relaciones de orden
Ejemplo sean el conjunto A = {a, b, c}
y la relación R = {(a, b), (a, a), (b, b), (c, c)}
Se cumple:
A) Es reflexiva.- prque todo elemento de A está relacionado consigo
mismo. Los pares (a, a), (b, b) y (c, c)
B) Es antisimétrica.- porque para elementos (x, y) de R con x ≠ y,
el par (y, x) no se halla en R. En nuestro ejempl el único elemento
que cumple con esta propiedad es el par (a, b), cuy inverso (b, a)
no se encuentra en R.
C) Es transitiva porque se encuentran los pares:
(a, b), (b,b) y (a,b)
(a,a), (a,b), (a,b)
(a,a), (a,a), (a,a)
(b,b), (b,b), (b,b)
(c,c), (c,c), (c,c)
7. Relación Inversa ( F-1)
EJEMPLO.-
EVALUACIÓN DE LA PRACTICA
1. Si el producto cartesiano BxB tiene 36 elementos, Cuántos elementos tiene el conjunto B?
2. Si n(AxB) = 72, n(A) + n(B) = 17. ? Cuántos Elementos tiene el conjunto A?
3. Escribe por comprensión la relación R = {(0, 0),(1, ½ ),(2, 2), (4, 8),(6, 18)} y = x2/2
4. Sean A = {2, 3, 8, 9} y B = {4, 6, 7} y R1 = {(x, y)/ є AxB/x2 – y = 2} y R2 = {(x, y) є BxA/ x < y }
5. Trazar la gráfica de la relación R = {(x, y) є R2 / 2x – y = 2}
6. Sean los conjuntos A = {x є Z / -2 ≤x < 3} y B = {x є N / 3 ≤x < 7} y la relación R = {(x, y) є AxB /
1<2x< 8}
7. Hallar el dominio y el rango de R
8. 4 DE NOVIEMBRE DE 2010

Mais conteúdo relacionado

Mais procurados

Relaciones binarias power point
Relaciones binarias power pointRelaciones binarias power point
Relaciones binarias power point
raymel-2411
 
Relaciones Y Funciones
Relaciones Y FuncionesRelaciones Y Funciones
Relaciones Y Funciones
guestee24d3
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
elduro299ful
 
Simetricas Y Transitivas
Simetricas Y TransitivasSimetricas Y Transitivas
Simetricas Y Transitivas
rezzaca
 
producto cartesiano
producto cartesianoproducto cartesiano
producto cartesiano
Edgar Ochoa
 

Mais procurados (20)

Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funciones
 
Relaciones binarias power point
Relaciones binarias power pointRelaciones binarias power point
Relaciones binarias power point
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Relaciones Y Funciones
Relaciones Y FuncionesRelaciones Y Funciones
Relaciones Y Funciones
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Simetricas Y Transitivas
Simetricas Y TransitivasSimetricas Y Transitivas
Simetricas Y Transitivas
 
Relación y función
Relación y funciónRelación y función
Relación y función
 
Propiedades de las relaciones
Propiedades de las relacionesPropiedades de las relaciones
Propiedades de las relaciones
 
Función cuadrática
Función  cuadráticaFunción  cuadrática
Función cuadrática
 
Relación de orden
Relación de ordenRelación de orden
Relación de orden
 
relaciones y funciones
relaciones y funcionesrelaciones y funciones
relaciones y funciones
 
producto cartesiano
producto cartesianoproducto cartesiano
producto cartesiano
 
Propiedades relaciones binarias
Propiedades relaciones binariasPropiedades relaciones binarias
Propiedades relaciones binarias
 
Diapositivas funciones 1
Diapositivas funciones 1Diapositivas funciones 1
Diapositivas funciones 1
 
axiomas de algebra
axiomas de algebraaxiomas de algebra
axiomas de algebra
 
Demostracione mate
Demostracione mateDemostracione mate
Demostracione mate
 
Topologia general (1)
Topologia general (1)Topologia general (1)
Topologia general (1)
 
Relaciones
RelacionesRelaciones
Relaciones
 
relaciones binarias
relaciones binariasrelaciones binarias
relaciones binarias
 

Semelhante a Relaciones Binarias

Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funciones
wilberfig
 
Relaciones entre conjuntos
Relaciones entre conjuntosRelaciones entre conjuntos
Relaciones entre conjuntos
elduro299ful
 
Relaciones y funciones smr
Relaciones y funciones smrRelaciones y funciones smr
Relaciones y funciones smr
cjperu
 
Algebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte IIIAlgebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte III
Luis
 
10MATEMATICA_1ero_sec_relaciones_binarias.doc
10MATEMATICA_1ero_sec_relaciones_binarias.doc10MATEMATICA_1ero_sec_relaciones_binarias.doc
10MATEMATICA_1ero_sec_relaciones_binarias.doc
LuisAlbertoMolinaJim
 

Semelhante a Relaciones Binarias (20)

Relaciones
RelacionesRelaciones
Relaciones
 
Expo elmo
Expo elmoExpo elmo
Expo elmo
 
Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funciones
 
Relacion y grafos
Relacion y grafosRelacion y grafos
Relacion y grafos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Introducción a la Teoría de Conjuntos T1 ccesa007
Introducción a la Teoría de Conjuntos  T1    ccesa007Introducción a la Teoría de Conjuntos  T1    ccesa007
Introducción a la Teoría de Conjuntos T1 ccesa007
 
Revista matematica2 (1)
Revista matematica2 (1)Revista matematica2 (1)
Revista matematica2 (1)
 
Relaciones entre conjuntos
Relaciones entre conjuntosRelaciones entre conjuntos
Relaciones entre conjuntos
 
Unidad I Conjuntos
Unidad I ConjuntosUnidad I Conjuntos
Unidad I Conjuntos
 
Relaciones y Grafos
Relaciones y GrafosRelaciones y Grafos
Relaciones y Grafos
 
05 conjuntos
05 conjuntos05 conjuntos
05 conjuntos
 
Semana 1 Calculo I.pptx
Semana 1 Calculo I.pptxSemana 1 Calculo I.pptx
Semana 1 Calculo I.pptx
 
Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funciones
 
Relaciones y funciones smr
Relaciones y funciones smrRelaciones y funciones smr
Relaciones y funciones smr
 
Algebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte IIIAlgebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte III
 
Reticulados22
Reticulados22Reticulados22
Reticulados22
 
Relaciones y funciones por Karen Coyago
Relaciones y funciones por Karen CoyagoRelaciones y funciones por Karen Coyago
Relaciones y funciones por Karen Coyago
 
03 relaciones (2)
03 relaciones (2)03 relaciones (2)
03 relaciones (2)
 
10MATEMATICA_1ero_sec_relaciones_binarias.doc
10MATEMATICA_1ero_sec_relaciones_binarias.doc10MATEMATICA_1ero_sec_relaciones_binarias.doc
10MATEMATICA_1ero_sec_relaciones_binarias.doc
 
Relaciones entre conjuntos
Relaciones entre conjuntosRelaciones entre conjuntos
Relaciones entre conjuntos
 

Último

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 

Último (20)

OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 

Relaciones Binarias

  • 1. CLASE N° 9 RELACIONES PROFESOR: URBANO CERVANTES MAURO Chiclayo, 4 de noviembre de 2010
  • 2. PAR ORDENADO Definición.- Es un conjunto de dos elementos ordenados de acuerdo a como aparecen Se representan por (a, b) donde: a : primer elemento b : segundo elemento Pares ordenados iguales (a, b) = (c, d) si y solo si a = c y b = d Ejemplo: Hallar el valor de x e y si (3x + 2y, -5) = (11, 3x – 2y) Solución 3x + 2y = 11 3x - 2y = -5 Resolviendo el sistema de ecuaciones: Se obtiene x = 1 y = 4
  • 3. 3x + 2y = 11 (1) 3x - 2y = -5 (2) 6x = 6 x = 6/6 =  x =1 En (1) Reemplazando x=1 3(1) + 2y = 11 3 + 2y = 11 2y = 11 – 3 2y = 8 y = 8/2  y = 4
  • 4. PRODUCTO CARTESIANO A x B Definición.- El producto cartesiano de dos conjuntos no vacíos A y B se define como el conjunto de todos los pares ordenados (a; b) donde a pertenece al conjunto A y b pertenece al conjunto B Se representa por: Ejemplo Sean los conjuntos : A = { 1; 3; 5} y B = {r; s} entonces: A x B = {(1, r),(1, s),(3, r),(3, s),(5, r),(5, s)} Representación: 1) Con diagrama de árbol A B A x B 1 r (1, r) s (1, s) 3 r (3, r) s (3, s) 5 r (5, r) s (5, s) }/);{( BbAabaAxB 
  • 5. 2) Utilizando tabla 3) Utilizando diagrama de flechas 1 r 2 s 3 A B r S 1 (1, r) (1, s) 3 (3, r) (3, s) 5 (5, r) (5, s) A B
  • 6. 4) Utilizando el plano cartesiano B A Número de elementos de un producto cartesiano Si los conjuntos A y B son finitos y tienen m y n elementos respectivamente entonces el producto cartesiano A x B tienen m x n elementos Ejemplo: sean A = { 1; 3; 5} y B = {r; s} Luego n(A x B) = 3 x 2 = 6
  • 7. RELACIONES Relación es un subconjunto de un producto cartesiano Definición.- Es una correspondencia entre el primer conjunto llamado DOMINIO y el segundo conjunto llamado RANGO, de modo que a cada elemento del dominio le corresponde uno o más elementos del rango. Simbólicamente se define como: R = {(x,y) є AxB / xRy} Dominio de una relación Dom(R) Es el subconjunto de A, formado por todos los primeros componentes de los pares ordenados que pertenecen a la relación. Dom(R) = { x є A / (x, y) є R} Rango de una relación Ran((R).- Es el subconjunto de B, formado por todos los segundos componentes de los pares ordenados que pertenecen a la relación Ran(R) = { y є B / (x, y) є R} AxBR 
  • 8. CLASES DE RELACIONES 1. Relaciones Reflexivas.- Cuando un elemento está relacio-nado consigo mismo . Si Ѵa є A, (a, a) є R, 2. Relaciones Simétricas.- Una relación es simétrica si Ѵ(a,b) єR se cumple que el par ordenado (b, a) є R 3. Relaciones transitivas.- Una relación es transitiva si Ѵ(a,b) y (b,c) є R, se cumple que el par ordenado (a,c) є R 4. Relación de equivalencia .- Una relación es de equivalencia cuando es reflexiva, simétrica y transitiva 5. Relaciones antisimétricas.- Una relación es antisimétrica cuando si Ѵ(a;b) y (b;a) є R, se cumple que a = b 6. Relaciones de orden.- Una relación es de orden si es reflexiva, antisimétrica y transitiva 7. Relaciones inversas.- R-1 cuando se determina invirtiendo el orden de las componentes de las parejas ordenadas en la R
  • 9. • R-1 = { (b;a)/ (axb) є R • Ejemplo: La relación R = { (a,a), (b,b), (c,c)} establecida en el conjunto A = {a, b, c} es una relación reflexiva ya que todos los elementos de A están relacionados consigo mismos. 1.Relaciones Reflexivas a b c
  • 10. 2. Relaciones Simétricas Ejemplo.- Dado el conjunto A = { 1, 2, 3 } con la relación R = {(2, 3),(3, 2),(2, 1),(1, 1)(1, 2)} Se observa que: • El elemento (2, 3) tiene su elemento inverso (3, 2) y están en R • El elemento (3, 2) tiene su elemento inverso (2, 3) y están en R • El elemento (2, 1) tiene su elemento inverso (1, 2) y están en R • El elemento (1, 2) tiene su elemento inverso (2, 1) y están en R • El elemento (1, 1) tiene su elemento inverso (1, 1) y están en R
  • 11. 3. Relaciones transitivas Ejemplo.- Sea el conjunto B = {1, 2, 3, 6} y la relación R = {(x, y) є BxB / x divide a y} • R en pares ordenados es : R = {(1, 1),(1, 2),(1, 3),(1, 6),(2, 2),(2, 6),(3, 3)(3, 6)(6,6)} • Se podrá verificar que: Si x divide a y e y divide a z, entonces x divide a z
  • 12. 4. Relación de equivalencia Ejemplo.- Sea el conjunto A = {a, b, c} y la relación R = {(a, a),(b, b),(c, c),(b, a),(a, b)} Se cumple: 1) Es reflexiva porque para todo elemento de A está reacionado consigo mismo. Los pares (a, a), (b, b) y (c, c) 2) Es simétrica porque todo par (x, y) tiene su par inverso (y, x) El par (b, a) tiene su par inverso (a, b) El par (a, a) tiene su par inverso (a, a) El par (b, b) tiene su par inverso (b, b) El par (c, c) tiene su par inverso (c, c)
  • 13. 3. Es transitiva porque si los pares (x, y) y (y, z) están en R, entonces el par (x, z) también está en R Así tenemos los pares: (b,b),(b,b) y (b,b) están en R (b,b),(b,a) y (b,a) están en R (b,a),(a,a) y (b,a) están en R (a,a),(a,a) y (a,a) están en R (c,c), (c,c) y (c,c) están en R (a,b),(b,b) y (a,b) están en R (b,a), (a,b) y (b,b) están en R (a,a), (a,b) y (a,b) están en R
  • 14. 5. Relaciónes antisimétricas Ejemplo.- Dado el conjunto A = {d, e, f} y la relación R = {(d, e),(e, f)(d, f)} Esta relación es sntisimétrica porque: Existe (d,e), pero no existe (e, d) en R Existe (e,f), pero no existe (f, e) en R Existe (d,f), pero no existe (f, d) en R
  • 15. 6. Relaciones de orden Ejemplo sean el conjunto A = {a, b, c} y la relación R = {(a, b), (a, a), (b, b), (c, c)} Se cumple: A) Es reflexiva.- prque todo elemento de A está relacionado consigo mismo. Los pares (a, a), (b, b) y (c, c) B) Es antisimétrica.- porque para elementos (x, y) de R con x ≠ y, el par (y, x) no se halla en R. En nuestro ejempl el único elemento que cumple con esta propiedad es el par (a, b), cuy inverso (b, a) no se encuentra en R. C) Es transitiva porque se encuentran los pares: (a, b), (b,b) y (a,b) (a,a), (a,b), (a,b) (a,a), (a,a), (a,a) (b,b), (b,b), (b,b) (c,c), (c,c), (c,c)
  • 16. 7. Relación Inversa ( F-1) EJEMPLO.-
  • 17. EVALUACIÓN DE LA PRACTICA 1. Si el producto cartesiano BxB tiene 36 elementos, Cuántos elementos tiene el conjunto B? 2. Si n(AxB) = 72, n(A) + n(B) = 17. ? Cuántos Elementos tiene el conjunto A? 3. Escribe por comprensión la relación R = {(0, 0),(1, ½ ),(2, 2), (4, 8),(6, 18)} y = x2/2 4. Sean A = {2, 3, 8, 9} y B = {4, 6, 7} y R1 = {(x, y)/ є AxB/x2 – y = 2} y R2 = {(x, y) є BxA/ x < y } 5. Trazar la gráfica de la relación R = {(x, y) є R2 / 2x – y = 2} 6. Sean los conjuntos A = {x є Z / -2 ≤x < 3} y B = {x є N / 3 ≤x < 7} y la relación R = {(x, y) є AxB / 1<2x< 8} 7. Hallar el dominio y el rango de R 8. 4 DE NOVIEMBRE DE 2010