SlideShare uma empresa Scribd logo
1 de 25
Series circuits Class presentations by James Ayiemba
Series Resistors and Voltage Divider Series Resistors and the Voltage Divider Rule Although electrical circuits can take rather complicated forms, even the most involved circuits can be reduced to combinations of circuit elements in parallel an in series. Thus, it is important that you become acquainted with parallel and series circuits as early as possible, even before formally approaching the topic of network analysis. Parallel and series circuits have a direct relationship with Kirchhoff’s laws.
Objective The objective of this section and the next is to illustrate two common circuits based on series and parallel combinations of resistors:  the voltage and current dividers. These circuits form the basis of all network analysis; it is therefore important to master these topics as early as possible.
Series Resistors For an example of a series circuit, refer to the circuit of below, where a battery has been connected to resistors R1, R2, and R3. The current i flows through each of  the four series elements. Thus, by  KVL, 1.5 = v1 + v2 + v3
Total Resistance Two or more circuit elements are said to be in  series if the identical current flowsthrough  each of the elements. N series resistors as shown beside, are equivalent  to a single resistor equal to the sum of  the individual resistances.
KVL A series of carefully conducted experimental observations regarding the nature of voltages in an electric circuit led Kirchhoff to the formulation of this laws, Kirchhoff’s voltage law, or KVL.  The principle underlying KVL is that no energy is lost or created in an electric circuit; in circuit terms, the sum of all voltages associated with sources must equal the sum of the load voltages, so that the net voltage around a closed circuit is zero.  If this were not the case, we would need to find a physical explanation for the excess (or missing) energy not accounted for in the voltages around a circuit.
Cont… Kirchhoff’s voltage law may be stated in the form below vn are the individual voltages around the closed circuit and in the other conventional forms as seen below: Vs = V1+ V2+ V3+… +Vn Vs – (V1+ V2+ V3+… +Vn) = 0
Series Resistors By applying KVL to the earlier circuit of 3 resistors, you can verify that the sum of the voltages across the three resistors equals the voltage externally provided by the battery:  1.5V = v1 + v2 + v3 and since, according to Ohm’s law, the separate voltages can be expressed by the relations  v1 = iR1, v2 = iR2 ,v3 = iR3
Series Resistors we can therefore write  1.5V = i(R1 + R2 + R3) This simple result illustrates a very important principle: To the battery, the three series resistors appear as a single equivalent resistance of value REQ, where REQ = R1 + R2 + R3
Series Resistors The three resistors could thus be replaced by a single resistor of value REQ without changing the amount of current required of the battery. From this result we may extrapolate to the more general relationship defining the equivalent resistance of N series resistors:
Voltage Divider This concept seen previously very closely tied to series resistors is that of the voltage divider. This terminology originates from the observation that the source voltage divides among the three resistors according to KVL. If we now observe that the series current, i, is given by:
Voltage Divider we can write each of the voltages across the resistors as: That is: The voltage across each resistor in a series circuit is directly proportional to the ratio of its resistance to the total series resistance of the circuit.
Voltage Divider applications Voltage dividers find wide application in electric meter circuits, where specific combinations of series resistors are used to "divide" a voltage into precise proportions as part of a voltage measurement device.
Cont… One device frequently used as a voltage-dividing component is the potentiometer, which is a resistor with a movable element positioned by a manual knob or lever. The movable element, typically called a wiper, makes contact with a resistive strip of material (commonly called the slidewire if made of resistive metal wire) at any point selected by the manual control:
Cont… The wiper contact is the left-facing arrow symbol drawn in the middle of the vertical resistor element. As it is moved up, it contacts the resistive strip closer to terminal 1 and further away from terminal 2, lowering resistance to terminal 1 and raising resistance to terminal 2. As it is moved down, the opposite effect results. The resistance as measured between terminals 1 and 2 is constant for any wiper position.
Types of pots Some linear potentiometers are actuated by straight-line motion of a lever or slide button. Others, like the one depicted in the previous illustration, are actuated by a turn-screw for fine adjustment ability. The latter units are sometimes referred to as trimpots, because they work well for applications requiring a variable resistance to be "trimmed" to some precise value. It should be noted that not all linear potentiometers have the same terminal assignments as shown in this illustration. With some, the wiper terminal is in the middle, between the two end terminals.
The potentiometer as a variable voltage divider Just like the fixed voltage divider, the potentiometer's voltage division ratio is strictly a function of resistance and not of the magnitude of applied voltage. In other words, if the potentiometer knob or lever is moved to the 50 percent (exact center) position, the voltage dropped between wiper and either outside terminal would be exactly 1/2 of the applied voltage, no matter what that voltage happens to be, or what the end-to-end resistance of the potentiometer is. In other words, a potentiometer functions as a variable voltage divider where the voltage division ratio is set by wiper position.
Cont… This application of the potentiometer is a very useful means of obtaining a variable voltage from a fixed-voltage source such as a battery (as shown). If a circuit you're building requires a certain amount of voltage that is less than the value of an available battery's voltage, you may connect the outer terminals of a potentiometer across that battery and "dial up" whatever voltage you need between the potentiometer wiper and one of the outer terminals for use in your circuit:
Review Given the following series circuit, taking into account the sign of the voltage drops we should be able to note that the sum of all voltages in the closed circuit is zero.
Troubleshooting We need to realize that electric circuit components can fail and thus knowing how to analyze such a circuit is of great importance. The two import faults that can happen in a simple series circuit are either opens or shorts.  Anopenis when a disconnection to a circuit component (resistor) has occurred and therefore disrupts the flow of current. This can happen as a result of aging of the component, cold solder connections, dislocation of terminals, excessive current leading to burning open, etc. When this occurs, we have to resolve the circuit to its original operational state. Shown is an operational circuit that will experience one fault at a time of its componets– an open.
Open – Voltage source off  Assuming that we have a control switch somewhere in the circuit and this switch is in the off position. We expect to see that  No current will flow in the circuit  No voltage drops across the circuit components
Expected Voltages
A resistor is open  If one of the resistors in series burns open, then we expect the following conditions No current flow  Total resistance is infinite Total source voltage drops across the burnt-out resistor No voltage drop across the good resistors. Note that the above conditions would happen in the case of any other single open fault.. Eg resistor two open others okay, or resistor three and others okay…
Short Resistor Resistors likewise can have their internal resistances change significantly far below their expected values, sometimes an external component may “short” them out. For a “dead short”, the internal resistance is taken to be zero ohms. Let us see what happens to our circuit if a single short happens…
Expected Voltages If one of the resistors in series shorts, then we expect the following conditions Increase in total current flow  Total resistance is reduced by value of shorted resistor Total source voltage drops across the good resistors proportionately to their resistance values Note that the above conditions would happen in the case of any other single short fault.. Eg resistor two shorts others okay, or resistor three and others okay…

Mais conteúdo relacionado

Mais procurados

ppt Ohm's law
ppt Ohm's lawppt Ohm's law
ppt Ohm's law
djariru
 
Current And Voltages
Current And VoltagesCurrent And Voltages
Current And Voltages
ritchiek
 
Electric Circuits
Electric CircuitsElectric Circuits
Electric Circuits
itutor
 
Series & Parallel
Series & ParallelSeries & Parallel
Series & Parallel
fourangela
 

Mais procurados (20)

ppt Ohm's law
ppt Ohm's lawppt Ohm's law
ppt Ohm's law
 
Current And Voltages
Current And VoltagesCurrent And Voltages
Current And Voltages
 
Electric Circuits
Electric CircuitsElectric Circuits
Electric Circuits
 
Electrical circuit
Electrical circuitElectrical circuit
Electrical circuit
 
Presentation on electric circuit
Presentation on electric circuit Presentation on electric circuit
Presentation on electric circuit
 
Current Electricity & Ohms Law
Current Electricity & Ohms LawCurrent Electricity & Ohms Law
Current Electricity & Ohms Law
 
OHM’S LAW.pptx
OHM’S LAW.pptxOHM’S LAW.pptx
OHM’S LAW.pptx
 
Presentation on Ohm's Law
Presentation on Ohm's LawPresentation on Ohm's Law
Presentation on Ohm's Law
 
Introducing Electricity
Introducing  ElectricityIntroducing  Electricity
Introducing Electricity
 
D.C. Circuits
D.C. CircuitsD.C. Circuits
D.C. Circuits
 
Series & Parallel
Series & ParallelSeries & Parallel
Series & Parallel
 
ELECTRICAL RESISTANCE
ELECTRICAL RESISTANCEELECTRICAL RESISTANCE
ELECTRICAL RESISTANCE
 
Parallel and series
Parallel and seriesParallel and series
Parallel and series
 
Electricity ppt
Electricity  pptElectricity  ppt
Electricity ppt
 
current, voltage and resistance
current, voltage and resistancecurrent, voltage and resistance
current, voltage and resistance
 
AC & DC
AC & DCAC & DC
AC & DC
 
Series Circuit
Series Circuit Series Circuit
Series Circuit
 
Electricity
ElectricityElectricity
Electricity
 
Series and parallel circuits
Series and parallel circuitsSeries and parallel circuits
Series and parallel circuits
 
Kirchoff's Law
Kirchoff's LawKirchoff's Law
Kirchoff's Law
 

Semelhante a Series circuits

Power Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student ManualPower Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student Manual
phase3-120A
 
1.pptx4168484105164649489481510120165165161
1.pptx41684841051646494894815101201651651611.pptx4168484105164649489481510120165165161
1.pptx4168484105164649489481510120165165161
vikknaguem
 
Power Circuits and Transformers-Unit 4 Labvolt Student Manual
Power Circuits and Transformers-Unit 4 Labvolt Student ManualPower Circuits and Transformers-Unit 4 Labvolt Student Manual
Power Circuits and Transformers-Unit 4 Labvolt Student Manual
phase3-120A
 

Semelhante a Series circuits (20)

Power Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student ManualPower Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student Manual
 
EMI_U_III_PPT_pptx (1).pptx
EMI_U_III_PPT_pptx (1).pptxEMI_U_III_PPT_pptx (1).pptx
EMI_U_III_PPT_pptx (1).pptx
 
Circuit theory
Circuit theoryCircuit theory
Circuit theory
 
Lecture24 basiccircuits
Lecture24 basiccircuitsLecture24 basiccircuits
Lecture24 basiccircuits
 
Mesh and nodal
Mesh and nodalMesh and nodal
Mesh and nodal
 
Superposition and norton Theorem
Superposition and norton TheoremSuperposition and norton Theorem
Superposition and norton Theorem
 
1.pptx4168484105164649489481510120165165161
1.pptx41684841051646494894815101201651651611.pptx4168484105164649489481510120165165161
1.pptx4168484105164649489481510120165165161
 
Introduction to electronics second session
Introduction to electronics   second sessionIntroduction to electronics   second session
Introduction to electronics second session
 
4 direct current circuits
4 direct current circuits4 direct current circuits
4 direct current circuits
 
DC measurement.pptx
DC measurement.pptxDC measurement.pptx
DC measurement.pptx
 
chapter28.ppt
chapter28.pptchapter28.ppt
chapter28.ppt
 
Electricity and Electromagnetism (experimental study)
Electricity and Electromagnetism (experimental study)Electricity and Electromagnetism (experimental study)
Electricity and Electromagnetism (experimental study)
 
Basic Terms of Circuit Breaker
Basic Terms of Circuit BreakerBasic Terms of Circuit Breaker
Basic Terms of Circuit Breaker
 
AS Level Physics- Electric circuits
AS Level Physics- Electric circuitsAS Level Physics- Electric circuits
AS Level Physics- Electric circuits
 
Evandro lab 4
Evandro lab 4Evandro lab 4
Evandro lab 4
 
Evandro lab 4
Evandro lab 4Evandro lab 4
Evandro lab 4
 
Power Circuits and Transformers-Unit 4 Labvolt Student Manual
Power Circuits and Transformers-Unit 4 Labvolt Student ManualPower Circuits and Transformers-Unit 4 Labvolt Student Manual
Power Circuits and Transformers-Unit 4 Labvolt Student Manual
 
EmI Unit-2.pptx
EmI Unit-2.pptxEmI Unit-2.pptx
EmI Unit-2.pptx
 
AC circuit
AC circuitAC circuit
AC circuit
 
Measurement of resistance
Measurement of resistanceMeasurement of resistance
Measurement of resistance
 

Último

Último (20)

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 

Series circuits

  • 1. Series circuits Class presentations by James Ayiemba
  • 2. Series Resistors and Voltage Divider Series Resistors and the Voltage Divider Rule Although electrical circuits can take rather complicated forms, even the most involved circuits can be reduced to combinations of circuit elements in parallel an in series. Thus, it is important that you become acquainted with parallel and series circuits as early as possible, even before formally approaching the topic of network analysis. Parallel and series circuits have a direct relationship with Kirchhoff’s laws.
  • 3. Objective The objective of this section and the next is to illustrate two common circuits based on series and parallel combinations of resistors: the voltage and current dividers. These circuits form the basis of all network analysis; it is therefore important to master these topics as early as possible.
  • 4. Series Resistors For an example of a series circuit, refer to the circuit of below, where a battery has been connected to resistors R1, R2, and R3. The current i flows through each of the four series elements. Thus, by KVL, 1.5 = v1 + v2 + v3
  • 5. Total Resistance Two or more circuit elements are said to be in series if the identical current flowsthrough each of the elements. N series resistors as shown beside, are equivalent to a single resistor equal to the sum of the individual resistances.
  • 6. KVL A series of carefully conducted experimental observations regarding the nature of voltages in an electric circuit led Kirchhoff to the formulation of this laws, Kirchhoff’s voltage law, or KVL. The principle underlying KVL is that no energy is lost or created in an electric circuit; in circuit terms, the sum of all voltages associated with sources must equal the sum of the load voltages, so that the net voltage around a closed circuit is zero. If this were not the case, we would need to find a physical explanation for the excess (or missing) energy not accounted for in the voltages around a circuit.
  • 7. Cont… Kirchhoff’s voltage law may be stated in the form below vn are the individual voltages around the closed circuit and in the other conventional forms as seen below: Vs = V1+ V2+ V3+… +Vn Vs – (V1+ V2+ V3+… +Vn) = 0
  • 8. Series Resistors By applying KVL to the earlier circuit of 3 resistors, you can verify that the sum of the voltages across the three resistors equals the voltage externally provided by the battery: 1.5V = v1 + v2 + v3 and since, according to Ohm’s law, the separate voltages can be expressed by the relations v1 = iR1, v2 = iR2 ,v3 = iR3
  • 9. Series Resistors we can therefore write 1.5V = i(R1 + R2 + R3) This simple result illustrates a very important principle: To the battery, the three series resistors appear as a single equivalent resistance of value REQ, where REQ = R1 + R2 + R3
  • 10. Series Resistors The three resistors could thus be replaced by a single resistor of value REQ without changing the amount of current required of the battery. From this result we may extrapolate to the more general relationship defining the equivalent resistance of N series resistors:
  • 11. Voltage Divider This concept seen previously very closely tied to series resistors is that of the voltage divider. This terminology originates from the observation that the source voltage divides among the three resistors according to KVL. If we now observe that the series current, i, is given by:
  • 12. Voltage Divider we can write each of the voltages across the resistors as: That is: The voltage across each resistor in a series circuit is directly proportional to the ratio of its resistance to the total series resistance of the circuit.
  • 13. Voltage Divider applications Voltage dividers find wide application in electric meter circuits, where specific combinations of series resistors are used to "divide" a voltage into precise proportions as part of a voltage measurement device.
  • 14. Cont… One device frequently used as a voltage-dividing component is the potentiometer, which is a resistor with a movable element positioned by a manual knob or lever. The movable element, typically called a wiper, makes contact with a resistive strip of material (commonly called the slidewire if made of resistive metal wire) at any point selected by the manual control:
  • 15. Cont… The wiper contact is the left-facing arrow symbol drawn in the middle of the vertical resistor element. As it is moved up, it contacts the resistive strip closer to terminal 1 and further away from terminal 2, lowering resistance to terminal 1 and raising resistance to terminal 2. As it is moved down, the opposite effect results. The resistance as measured between terminals 1 and 2 is constant for any wiper position.
  • 16. Types of pots Some linear potentiometers are actuated by straight-line motion of a lever or slide button. Others, like the one depicted in the previous illustration, are actuated by a turn-screw for fine adjustment ability. The latter units are sometimes referred to as trimpots, because they work well for applications requiring a variable resistance to be "trimmed" to some precise value. It should be noted that not all linear potentiometers have the same terminal assignments as shown in this illustration. With some, the wiper terminal is in the middle, between the two end terminals.
  • 17. The potentiometer as a variable voltage divider Just like the fixed voltage divider, the potentiometer's voltage division ratio is strictly a function of resistance and not of the magnitude of applied voltage. In other words, if the potentiometer knob or lever is moved to the 50 percent (exact center) position, the voltage dropped between wiper and either outside terminal would be exactly 1/2 of the applied voltage, no matter what that voltage happens to be, or what the end-to-end resistance of the potentiometer is. In other words, a potentiometer functions as a variable voltage divider where the voltage division ratio is set by wiper position.
  • 18. Cont… This application of the potentiometer is a very useful means of obtaining a variable voltage from a fixed-voltage source such as a battery (as shown). If a circuit you're building requires a certain amount of voltage that is less than the value of an available battery's voltage, you may connect the outer terminals of a potentiometer across that battery and "dial up" whatever voltage you need between the potentiometer wiper and one of the outer terminals for use in your circuit:
  • 19. Review Given the following series circuit, taking into account the sign of the voltage drops we should be able to note that the sum of all voltages in the closed circuit is zero.
  • 20. Troubleshooting We need to realize that electric circuit components can fail and thus knowing how to analyze such a circuit is of great importance. The two import faults that can happen in a simple series circuit are either opens or shorts. Anopenis when a disconnection to a circuit component (resistor) has occurred and therefore disrupts the flow of current. This can happen as a result of aging of the component, cold solder connections, dislocation of terminals, excessive current leading to burning open, etc. When this occurs, we have to resolve the circuit to its original operational state. Shown is an operational circuit that will experience one fault at a time of its componets– an open.
  • 21. Open – Voltage source off Assuming that we have a control switch somewhere in the circuit and this switch is in the off position. We expect to see that No current will flow in the circuit No voltage drops across the circuit components
  • 23. A resistor is open If one of the resistors in series burns open, then we expect the following conditions No current flow Total resistance is infinite Total source voltage drops across the burnt-out resistor No voltage drop across the good resistors. Note that the above conditions would happen in the case of any other single open fault.. Eg resistor two open others okay, or resistor three and others okay…
  • 24. Short Resistor Resistors likewise can have their internal resistances change significantly far below their expected values, sometimes an external component may “short” them out. For a “dead short”, the internal resistance is taken to be zero ohms. Let us see what happens to our circuit if a single short happens…
  • 25. Expected Voltages If one of the resistors in series shorts, then we expect the following conditions Increase in total current flow Total resistance is reduced by value of shorted resistor Total source voltage drops across the good resistors proportionately to their resistance values Note that the above conditions would happen in the case of any other single short fault.. Eg resistor two shorts others okay, or resistor three and others okay…