SlideShare uma empresa Scribd logo
1 de 50
Baixar para ler offline
Technische Universität MünchenLehrstuhl für Geoinformatik
Smart Models for Smart Cities –
Modeling of Dynamics, Sensors,
Urban Indicators, and Planning Actions
Thomas H. Kolbe
Chair of Geoinformatics
Technische Universität München
thomas.kolbe@tum.de
29th of October 2015
Joint International Geoinformation
Conference JIGC 2015, Kuala Lumpur
Technische Universität MünchenLehrstuhl für Geoinformatik
229.10.2015
Model Entities
(Resources,
Objects)
Actors (Agents,
Stakeholders,
Citizens)
Processes
(Activities,
Actions, Flows)
City System Modeling
T. H. Kolbe – Smart Models for Smart Cities
represented by
City System
Technische Universität MünchenLehrstuhl für Geoinformatik
329.10.2015
Today: Separate Modeling by Sectors
T. H. Kolbe – Smart Models for Smart Cities
Energy
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
Mobility
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning Ecology
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
Economy
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
City System
Technische Universität MünchenLehrstuhl für Geoinformatik
429.10.2015
Linking Sectors creates a Lattice of Models
T. H. Kolbe – Smart Models for Smart Cities
Energy
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
Mobility
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning Ecology
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
Economy
• Commu-
nity
• Models
• Indicators
• Evalua
-tion
• Planning
City System
Technische Universität MünchenLehrstuhl für Geoinformatik
Lattice of Sector Models
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 5
► n Sectors  potentially n2 connections!
► difficult to express, to maintain, and to keep consistent
Energy
Economy
. . .Ecology
Mobility
Technische Universität MünchenLehrstuhl für Geoinformatik
What if we could link to One Common Model?
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 6
► n Sectors  n connections!
► Sector models can be linked via the Common Model
► Sector models need to be aligned with the Common City
System Model  high degree of coherence required
Common
City
System
Model
Energy
Economy
. . .Ecology
Mobility
Technische Universität MünchenLehrstuhl für Geoinformatik
729.10.2015
Is there such an integrative model? Candidates?
T. H. Kolbe – Smart Models for Smart Cities
City System
Common
City
System
Model
Energy
Economy
. . .Ecology
Mobility
repre-
sented
by
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
Semantic
3D City Models
Technische Universität MünchenLehrstuhl für Geoinformatik
3D Decomposition of Urban Space
► City is decomposed into meaningful objects with clear
semantics and defined spatial and thematic properties
● buildings, roads, railways, terrain, water bodies, vegetation, bridges
● buildings may be further decomposed into different storeys
(and even more detailed into apartments and single rooms)
● application specific data are associated with the different objects
Image: Paul Cote, Harvard Graduate School of Design
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 9
Technische Universität MünchenLehrstuhl für Geoinformatik
City Geography Markup Language – CityGML
Application independent Geospatial Information Model
for semantic 3D city and landscape models
► comprises different thematic areas
(buildings, vegetation, water, terrain,
traffic, tunnels, bridges etc.)
► Internat‘l Standard of the Open Geospatial Consortium
● V1.0.0 adopted in 08/2008; V2.0.0 adopted in 3/2012
► Data model (UML) + Exchange format (based on GML3)
CityGML represents
► 3D geometry, 3D topology, semantics, and appearance
► in 5 discrete scales (Levels of Detail, LOD)
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 10
Technische Universität MünchenLehrstuhl für Geoinformatik
Energy
Heat energy demand
Energy demand for warm water
Electric power demand
Noise immission
Noise levels on the facade
Number of inhabitants
Economy
Assessed real estate value
Provided support for rents
Information Integration within the 3D City Model
T. H. Kolbe – Smart Models for Smart Cities 1129.10.2015
Technische Universität MünchenLehrstuhl für Geoinformatik
New: CityGML Model of New York City in LOD 0&1
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 12
> 1,000,000 buildings
> 866,000 land lots
> 149,000 streets
> 16,000 parks
> 9,500 water bodies
> DTM with 1m resolution
• fully-automatically generated
from the 2D geodata
published in the NYC Open
Data Portal
• semantic and geometric
transformations
• all objects have 3D geometry
• rich semantic information
(5 - 75 attributes per object
resulting from combining
different NYC datasets)
• integrated within 1 dataset!
The 3D CityGML model is Open Data! Download:
www.gis.bgu.tum.de/en/projects/new-york-city-3d/
[Barbara Burger, Berit Cantzler 2015]
Technische Universität MünchenLehrstuhl für Geoinformatik
Web-based 3D Visualization & Data Inspection
► Using the Open Source 3DCityDB + the new Webclient
● www.3dcitydb.net & https://github.com/3dcitydb/3dcitydb-web-map
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 13
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
Current Challenges
in the light of
Smart City Projects
Technische Universität MünchenLehrstuhl für Geoinformatik
3D City Models – State of the Art + Challenges (I)
► Semantic 3D City Models
● Standardization (CityGML) provides a common vocabulary &
common ways to represent the many urban objects
● Semantic 3D city models are provided by official authorities
 high reliability, stability, full coverage
● Objects of a semantic city model are a good platform to organize
and integrate data & sensors
► Today, 3D city models are mostly being used to describe
the current / a specific state of the city
● But: cities are constantly changing and there are many
dynamic aspects (moving objects, time variant attributes)
● Some of the time varying properties are provided by sensors
● Dynamics and processes not addressed much so far
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 15
Technische Universität MünchenLehrstuhl für Geoinformatik
3D City Models – State of the Art + Challenges (II)
► 3D City Models are used as a data source for simulations
and decision support in multiple application sectors
● these are interested in (computing) their specific indicators
● different application sectors have their own models and rules how
to compute indicator values (e.g. in the energy or mobility sectors)
► In planning & decision support it is important to have
immediate impact analyses of planned actions
● 3D City Model needs be modified according to some planned action
(like the energetic retrofitting of a building)
● Then, the (change of) relevant indicators should be derived from the
modified city model
● Planned actions mean complex transactions on the 3D city model
with specific meanings  semantic modeling of actions
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 16
Technische Universität MünchenLehrstuhl für Geoinformatik
Modeling City Systems (MCS)
► Climate-KIC Innovation Project
► Project partners: ETH Zürich (iA, CVL), Imperial College,
TU Berlin, TU München, SmarterBetterCities, TNO, ESRI
► Project duration: 1. 1. 2014 – 31. 12. 2015 (2 years)
► EIT Funding (total): 2.4 Mio €
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 17
Technische Universität MünchenLehrstuhl für Geoinformatik
New Frameworks developed in the MCS Project
► General Indicator Model (GIM)
► General Planning Actions Model (GPAM)
● GIM and GPAM are based on Model Driven Engineering (MDE)
concepts defined in Software Engineering
► Dynamics in CityGML 3.0
● Two frequencies: low frequency changes  evolution of the city 
presentation of Kanishk Chaturvedi this morning
● Dynamic properties and behaviours of city objects (like the current
energy consumption, solar power production, traffic density) 
introducing “Dynamizers“
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 18
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
General Indicator
Model (GIM)
Technische Universität MünchenLehrstuhl für Geoinformatik
City
(and its parts)
Measuring City Performance
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 20
Energy
Indicators Ecological
Indicators
Financial
IndicatorsSocial
Indicators
Mobility
Indicators
► Evaluation is typically based on indicators,
the most relevant are called Key Performance Indicators (KPIs)
Source: shuttersock.com
Technische Universität MünchenLehrstuhl für Geoinformatik
Indicators Geobase data
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 21
Energy
Indicators
Mobility
Indicators
Ecological
Indicators
Social
Indicators
Financial
Indicators
CityGML Data
Data from National
Topography Models
LADM Data
INSPIRE Data
BIM Data
Technische Universität MünchenLehrstuhl für Geoinformatik
Observations
1. Geobase data are available for entire countries and can
be used for computing indicator values
● (however, typically additional domain specific data are required)
2. All these geospatial information are based on
standardised semantic data models / ontologies
● e.g. 3D City Models: CityGML; European SDI: INSPIRE; BIM: IFC
3. So far, indicators are typically not formally modelled
using a standardised framework
4. Furthermore, no systematic model exists yet for linking
indicators and geobase data
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 22
Technische Universität MünchenLehrstuhl für Geoinformatik
Model Driven Engineering (MDE)
► … is a software engineering paradigm which began to
evolve in the 1980s
► MDE puts the “model” in the form of formal specifications
in the center of software analysis and design
● Application relevant structures are represented by formal data
models (e.g. using Unified Modeling Language, UML)
● Program code is automatically derived from models
► MDE also addresses the linking of different models
● This is called Model Weaving
● Different models are linked by a weaving model which takes care
of data transformation across the models
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 23
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 24
General Feature
Model
ISO 19109
CityGML
Application
Schema
M1: Model
M2: Metamodel
X Y Z
This is the general schema which
all geospatial data models follow
(e.g. CityGML, INSPIRE, LADM,
national cadastre & topogr. models)
This is the data model of the
3D city model (here: CityGML)
It defines the structures of all
possible 3D city models
3D city model data, e.g. the objects
of the 3D city model of Berlin
M0: Instance
Geospatial Information Modelling
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 25
General Feature
Model
ISO 19109
CityGML
Application
Schema
General
Indicator
Model
Energy Related
KPIs Application
Schema
Climate Related
KPIs Application
Schema
KPI A Building Y
KPI B Building Z
M1: Model
M2: Metamodel
X Y Z
M0: Instance
Indicator Modelling
Domain specific
indicators follow a
General Ind. Model
These are the
indicator models
from different
application
domains
Concrete indicators
for concrete city /
landscape objects
Technische Universität MünchenLehrstuhl für Geoinformatik
Requirements for Indicator Models
► Different types of indicators need to be distinguished
(i.e. numerical, textual, categorical indicators)
► Complex indicators can be composed & computed from
● attribute values from associated city / landscape model objects
● constants
● mathematical expressions (unary / binary arithmetic operations)
on other indicators
► Indicator value aggregation (e.g. summation, average,
maximum, etc.) of other indicators
► Augment indicator values with meta information like
accuracy, lineage / source etc.
● allowing for automatic sensitivity analysis
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 26
Technische Universität MünchenLehrstuhl für Geoinformatik
Domain Specific Indicator Modelling (I)
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 28
HeatDemand
+ value
Numeric
Indicator
General Indicator
Model
Domain
Indicators
Energy Planner
Where do I get
the data from?
Domain of the stakeholder/application specialist
Energy Planner
Domain of the stakeholder/application specialist
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 29
-volume
Building
District
HeatDemand
+ value
Numeric
Indicator
DistrictHeat
EnergyDemand
+ compute()
BuildingHeat
EnergyDemand
OCL Rule 2
General Indicator
Model
Domain
Indicators
Object Related
Domain Indicators
Reference
Objects
«Aggregation»
num
Energy Planner
Where do I get
the data from?
Domain of the stakeholder/application specialist
*
*
Domain Specific Indicator Modelling (II)
Many of the
reference objects in
the context of urban
indicators are
spatial objects
Energy Planner
Domain of the stakeholder/application specialist
Technische Universität MünchenLehrstuhl für Geoinformatik
Linking Geospatial and Indicator Models
Building CityObject
Group
Building
Connector
District
Connector
-volume
Building
District
HeatDemand
+ value
Numeric
Indicator
CityObject
DistrictHeat
EnergyDemand
+ compute()
BuildingHeat
EnergyDemand
Solid
OCL Rule 2
General Indicator
Model
Domain
Indicators
Object Related
Domain Indicators
Reference
Objects
«Aggregation»
num
geometry
Geospatial Application Model
(e.g. CityGML)
Energy Planner
Where do I get
the data from?
City Modeler
What can
we do with
our data?
Weaving
Model
Domain of the geodata provider Domain of the stakeholder/application specialist
*
*
*
OCL Rule 1
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 30
City Modeler Energy Planner
Domain of the stakeholder/application specialistDomain of the geodata provider
Technische Universität MünchenLehrstuhl für Geoinformatik
General Indicator Modeling Framework
► Each Indicator Application Model is defined purely from
the viewpoint and requirements of the domain specialist
● data is modeled and structured according to application domain
needs only – and not according to a given geospatial data model
► The data model is separated into 5 consecutive sections
1. Abstract Indicator classes (e.g. numeric indicator)
2. Domain specific indicators (e.g. heat demand)
3. Object-related domain specific indicators (e.g. building heat demand)
4. Reference Objects for the indicators (e.g. building)
► The 5th section addresses linking of the indicator model with
a geospatial application schema (like CityGML)
● Weaving Classes relate Reference Objects with Feature Types from
the geospatial application schema
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 31
Technische Universität MünchenLehrstuhl für Geoinformatik
Linking Geospatial and Indicator Models
Building CityObject
Group
Building
Connector
District
Connector
-volume
Building
District
HeatDemand
+ value
Numeric
Indicator
CityObject
DistrictHeat
EnergyDemand
+ compute()
BuildingHeat
EnergyDemand
Solid
OCL Rule 2
General Indicator
Model
Domain
Indicators
Object Related
Domain Indicators
Reference
Objects
«Aggregation»
num
geometry
Geospatial Application Model
(e.g. CityGML)
Energy Planner
Where do I get
the data from?
City Modeler
What can
we do with
our data?
Weaving
Model
Domain of the geodata provider Domain of the stakeholder/application specialist
*
*
*
OCL Rule 1
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 32
City Modeler Energy Planner
Domain of the stakeholder/application specialistDomain of the geodata provider
12345
Technische Universität MünchenLehrstuhl für Geoinformatik
Linking of an Indicator Model to
different Geospatial Application Models and BIM
Reference
Object Classes
Weaving
Classes 1
Weaving
Classes 2
Weaving
Classes 3
CityGML
INSPIRE
BIM / IFC
Object Related
Indicators
Domain A
Object Related
Indicators
Domain B
General
Indicator Model
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 33
Domain of the stakeholder/application specialistDomains of
the geodata /
BIM providers
Model Weavings
Reference
Object Classes
Weaving
Classes 1
Weaving
Classes 2
Weaving
Classes 3
CityGML
INSPIRE
BIM / IFC
Object Related
Indicators
Domain A
Object Related
Indicators
Domain B
General
Indicator Model
HeatDemand
+ value
Numeric
Indicator
General Indicator
Model
Domain
Indicators
Energy Planner
Where do I get
the data from?
Domain of the stakeholder/application specialist
Building CityObject
Group
Building
Connector
District
Connector
-volume
Building
District
HeatDemand
+ value
Numeric
Indicator
CityObject
DistrictHeat
EnergyDemand
+ compute()
BuildingHeat
EnergyDemand
Solid
OCL Rule 2
General Indicator
Model
Domain
Indicators
Object Related
Domain Indicators
Reference
Objects
«Aggregation»
num
geometry
Geospatial Application Model
(e.g. CityGML)
Energy Planner
Where do I get
the data from?
City Modeler
What can
we do with
our data?
Weaving
Model
Domain of the geodata provider Domain of the stakeholder/application specialist
*
*
*
OCL Rule 1
Building CityObject
Group
Building
Connector
District
Connector
-volume
Building
District
HeatDemand
+ value
Numeric
Indicator
CityObject
DistrictHeat
EnergyDemand
+ compute()
BuildingHeat
EnergyDemand
Solid
OCL Rule 2
General Indicator
Model
Domain
Indicators
Object Related
Domain Indicators
Reference
Objects
«Aggregation»
num
geometry
Geospatial Application Model
(e.g. CityGML)
Energy Planner
Where do I get
the data from?
City Modeler
What can
we do with
our data?
Weaving
Model
Domain of the geodata provider Domain of the stakeholder/application specialist
*
*
*
OCL Rule 1
We can analyse & compare how good /
easy an indicator model fits to a
specific geospatial application model!
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
General Planning
Actions Model
(GPAM)
Technische Universität MünchenLehrstuhl für Geoinformatik
present
t0
past
t-1
future
t1
Reality t-1
City Model t-1
KPIs t-1
Reality t0
City Model t0
KPIs t0
registration/
updateregistration
Reality t1 ?
City Model t1
KPIs t1
City Model t1‘
Reality t1‘ ?
KPIs t1‘
NO data
collection
possible
calculation
change
calculation
T. H. Kolbe – Smart Models for Smart Cities29.10.2015 35
Technische Universität MünchenLehrstuhl für Geoinformatik
Formalization of Action Plans
100 %
0 %
political text regulation ontology for
actions
T. H. Kolbe – Smart Models for Smart Cities
 Aim: making action plans virtually executable on 3D city models!
29.10.2015 36
Technische Universität MünchenLehrstuhl für Geoinformatik
Properties of Planning Actions (I)
► Actions cause a change of the geometry or the
attributes of the city objects
● they are planned modifications / operations on the entities of a city
► Actions always pursue a specific goal
● that is of different nature / motivation (e.g. monetary, cultural,
personal) and is politically intended
● can be measured by the impact on some key performance
indicators (KPIs)
► Types of actions
● extend existing objects (by new parts, properties, relations)
● change existing objects (update attributes, relations)
● remove existing objects (delete whole & parts, properties, relations)
T. H. Kolbe – Smart Models for Smart Cities29.10.2015 37
Technische Universität MünchenLehrstuhl für Geoinformatik
Properties of Planning Actions (II)
► Relations and dependencies between actions – they can
be composed of others, competing, conflicting, coherent
► Actions can be applied to different reference units from
the city model
● administrative boundaries buildings  building parts
● correspond to concrete decision levels
► Actions consist of an ordered sequence of operations
● insert / delete / update of geometries, attributes, and relations
► Actions require resources
● time, cost and goods
T. H. Kolbe – Smart Models for Smart Cities29.10.2015 38
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 39
Data Model
Aus dem Dissertationsvorhaben
von Maximilian Sindram
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 40
General Planning Actions Model (Draft)
Aus dem Dissertationsvorhaben
von Maximilian Sindram
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 41
General Planning Actions Model (Draft)
Aus dem Dissertationsvorhaben
von Maximilian Sindram
Technische Universität MünchenLehrstuhl für Geoinformatik
Prototypical Action
Specific Action
Semantic 3D City Model
FrameParameter
Instance
T. H. Kolbe – Smart Models for Smart Cities29.10.2015 42
Technische Universität MünchenLehrstuhl für Geoinformatik
German regulation
11 and 12 main street
Buildings (11, 12 and 13 main street)
• refurbishment (energy) (A): policy measure
(1bn Euro)
• sub action (SA): renovation of a building
• facade renovation (S1): insulation of a wall causes a
change of U-value (of the wall)
• window renovation (S2): exchanging windows causes a
change of UW-values (of the window)
11 12 13
S1 S2
A
SA
• (A): political funding
(1m Euro in Munich)
• (SA): renovation of all buildings in main street
• (S1) and (S2): insulation of all buildings with:
bricks (24cm) U-value > 0,8 W/m2K and
double-glazed windows UW-Wert > 1,1 W/m2K
• 11 main street: U-value = 0,7 and UW-value = 2,0
• 12 main street: listed building (age: 200)
• 13 main street: U-value = 1,8 and UW-value = 3,9
 11 partial renovation / 12 no renovation / 13 renovation
I
I
I
I
I
I I
T. H. Kolbe – Smart Models for Smart Cities29.10.2015 43
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
Bringing it
all together
Technische Universität MünchenLehrstuhl für Geoinformatik
General Feature
Model
ISO 19109
General Indicator
Model General Planning
Actions Model
Energy Related
KPIs Application
Schema
Climate Related
KPIs Application
Schema
Energy Planning
Application
Schema
Traffic Planning
Application
Schema
KPI
building X
KPI
building Y
Facade
retrofitting
building X
CityGML
Application
Schema
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 45
Technische Universität MünchenLehrstuhl für Geoinformatik
29.10.2015
Outlook: Dynamics
in CityGML 3.0
&
Conclusions
Technische Universität MünchenLehrstuhl für Geoinformatik
An Outlook to CityGML 3.0
► CityGML 3.0 is currently under development in the OGC
● release of the new version expected in 2017
► New CityGML 3.0 features (subject to voting)
● data model based on ISO 19136 (GML 3.2.1); automatic derivation
of the exchange format (i.e. the CityGML application schema)
● more flexible LOD concept – separate indoor & outdoor LODs
possible; the previous LOD 0-4 concept is retained as a profile
● new feature types (e.g. for non-building constructions) &
refinements (e.g. building units)
● versioning and historization
● dynamic, i.e. time-dependent object properties e.g. for energy
consumption, energy production, moving objects
● direct linking of sensor data to object properties
● tabulated & interpolated values; simple & complex patterns
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 47
Technische Universität MünchenLehrstuhl für Geoinformatik
Dynamic Data in CityGML 3.0
► Two distinct approaches
● For slow changes / city model evolution: versioning & historization
● For fast changes: time-variant properties (attributes, geometry)
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 48
CityGML
V2
V3
How to organize
the state of our
world
Dynamizer
Dynamic variations
Periodic patterns
Mechanism
required to
ensure that
within one
version we
have a
consistent
city model
Provides
replacers /
overriders,
replacing the
attributes in
the static
CityGML
model
Dynamic Data Schema
Versioning SchemaCity Model
V2
V3
V1 V1
[Kanishk Chaturvedi 2015]
Technische Universität MünchenLehrstuhl für Geoinformatik
Conclusions
► Semantic 3D city models are good platforms to structure
and organize urban data – but mostly in a static way so far!
► We propose two new frameworks complementing the
General Feature Model (GFM) ISO 19109
► General Indicator Model (GIM)
● allows to specify domain specific indicator models independent from
geospatial application schemas
● concept for linking indicator models to geospatial application schemas
● programs for indicator computations are automatically derivable
► General Planning Actions Model (GPAM)
● allows to formalize planning actions in different application domains
● consideration of affected KPIs, modified objects, transactions
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 49
Technische Universität MünchenLehrstuhl für Geoinformatik
References
► Elfouly, Mostafa; Kutzner, Tatjana; Kolbe, Thomas H.: General Indicator Modeling for Decision
Support based on 3D City and Landscape Models using Model Driven Engineering. Peer Reviewed
Proceedings of Digital Landscape Architecture 2015 at Anhalt University of Applied Sciences,
Wichmann, 2015
Click for article download
► Sindram, Maximilian; Kolbe, Thomas H.: Modeling of Urban Planning Actions by Complex
Transactions on Semantic 3D City Models. Proceedings of the International Environmental Modelling
and Software Society Conference 2014 (iEMSs), San Diego, International Environmental Modelling
and Software Society (iEMSs), 2014
Click for article download
► Chaturvedi, Kanishk; Kolbe, Thomas H.: Dynamizers - Modeling and implementing dynamic
properties for semantic 3D city models. 3rd Eurographics Workshop on Urban Data Modelling and
Visualisation (UDMV 2015), 2015 (in print)
Click for article download
► Chaturvedi, Kanishk; Smyth, Carl Stephen; Gesquière, Gilles; Kutzner, Tatjana; Kolbe, Thomas H.:
Managing versions and history within semantic 3D city models for the next generation of CityGML.
Selected papers from the 3D GeoInfo 2015 Conference (Lecture Notes in Geoinformation and
Cartography), Springer, 2015 (in print)
Click for article download
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 50
Technische Universität MünchenLehrstuhl für Geoinformatik
Credits
► The projects Energy Atlas, Modeling City Systems,
Smart Sustainable Districts have been funded
by Climate-KIC of the European Institute
for Innovation and Technology (EIT)
29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 51

Mais conteúdo relacionado

Mais procurados

Embedding user generated content into oblique airborne photogrammetry based 3...
Embedding user generated content into oblique airborne photogrammetry based 3...Embedding user generated content into oblique airborne photogrammetry based 3...
Embedding user generated content into oblique airborne photogrammetry based 3...
Jianming Liang
 
EU-Project Smarter Together Munich Documentation of Activities and Achievements
EU-Project Smarter Together Munich Documentation of Activities and AchievementsEU-Project Smarter Together Munich Documentation of Activities and Achievements
EU-Project Smarter Together Munich Documentation of Activities and Achievements
Pavlína Dravecká
 
Airborne vehicle detection in dense urban areas using ho g features and dispa...
Airborne vehicle detection in dense urban areas using ho g features and dispa...Airborne vehicle detection in dense urban areas using ho g features and dispa...
Airborne vehicle detection in dense urban areas using ho g features and dispa...
Ecway Technologies
 

Mais procurados (20)

Ecppm 2014 presentation_beetz
Ecppm 2014 presentation_beetzEcppm 2014 presentation_beetz
Ecppm 2014 presentation_beetz
 
BIMMeeting 2016 - BIM-Infra-GIS: building bridges from single buildings to di...
BIMMeeting 2016 - BIM-Infra-GIS: building bridges from single buildings to di...BIMMeeting 2016 - BIM-Infra-GIS: building bridges from single buildings to di...
BIMMeeting 2016 - BIM-Infra-GIS: building bridges from single buildings to di...
 
Digital Built Environment Management
Digital Built Environment ManagementDigital Built Environment Management
Digital Built Environment Management
 
Open BIM: bridging the gap between BIM and GIS
Open BIM: bridging the gap between BIM and GISOpen BIM: bridging the gap between BIM and GIS
Open BIM: bridging the gap between BIM and GIS
 
Berlin. Planning, regeneration and transformation.
Berlin. Planning, regeneration and transformation.Berlin. Planning, regeneration and transformation.
Berlin. Planning, regeneration and transformation.
 
Layerized and temporally - Digital+humanities 2010 @MIT Medialab
Layerized and temporally - Digital+humanities 2010 @MIT MedialabLayerized and temporally - Digital+humanities 2010 @MIT Medialab
Layerized and temporally - Digital+humanities 2010 @MIT Medialab
 
Urban design tools
Urban design tools  Urban design tools
Urban design tools
 
An assessment-based process for modifying the built fabric of historic centre...
An assessment-based process for modifying the built fabric of historic centre...An assessment-based process for modifying the built fabric of historic centre...
An assessment-based process for modifying the built fabric of historic centre...
 
Embedding user generated content into oblique airborne photogrammetry based 3...
Embedding user generated content into oblique airborne photogrammetry based 3...Embedding user generated content into oblique airborne photogrammetry based 3...
Embedding user generated content into oblique airborne photogrammetry based 3...
 
EU-Project Smarter Together Munich Documentation of Activities and Achievements
EU-Project Smarter Together Munich Documentation of Activities and AchievementsEU-Project Smarter Together Munich Documentation of Activities and Achievements
EU-Project Smarter Together Munich Documentation of Activities and Achievements
 
Smarter Together General Assembly 2019, Sofia
Smarter Together General Assembly 2019, SofiaSmarter Together General Assembly 2019, Sofia
Smarter Together General Assembly 2019, Sofia
 
201703330 Booosting 3D IMRO - Abdoulaye Diakite TU Delft
201703330 Booosting 3D IMRO - Abdoulaye Diakite TU Delft201703330 Booosting 3D IMRO - Abdoulaye Diakite TU Delft
201703330 Booosting 3D IMRO - Abdoulaye Diakite TU Delft
 
2019 General Assembly - Sofia - presentations
2019 General Assembly - Sofia - presentations2019 General Assembly - Sofia - presentations
2019 General Assembly - Sofia - presentations
 
Delivering Urban Efficiency through Collaboration: Smart Cities & IT
Delivering Urban Efficiency through Collaboration: Smart Cities & ITDelivering Urban Efficiency through Collaboration: Smart Cities & IT
Delivering Urban Efficiency through Collaboration: Smart Cities & IT
 
Smarter Together: Simmering Smart Urban Renewal (Implementation Report of Sma...
Smarter Together: Simmering Smart Urban Renewal (Implementation Report of Sma...Smarter Together: Simmering Smart Urban Renewal (Implementation Report of Sma...
Smarter Together: Simmering Smart Urban Renewal (Implementation Report of Sma...
 
BERLIN 2030 | A strong city with a strong future | 2013
BERLIN 2030 | A strong city with a strong future | 2013BERLIN 2030 | A strong city with a strong future | 2013
BERLIN 2030 | A strong city with a strong future | 2013
 
Berlin LST : Berlin 2030 Plan
Berlin LST : Berlin 2030 PlanBerlin LST : Berlin 2030 Plan
Berlin LST : Berlin 2030 Plan
 
Airborne vehicle detection in dense urban areas using ho g features and dispa...
Airborne vehicle detection in dense urban areas using ho g features and dispa...Airborne vehicle detection in dense urban areas using ho g features and dispa...
Airborne vehicle detection in dense urban areas using ho g features and dispa...
 
OPTEEMAL data requirements experiences
OPTEEMAL data requirements experiencesOPTEEMAL data requirements experiences
OPTEEMAL data requirements experiences
 
A New Dimension
A New DimensionA New Dimension
A New Dimension
 

Destaque

Towards Linked Ontologies and Data on the Semantic Web
Towards Linked Ontologies and Data on the Semantic WebTowards Linked Ontologies and Data on the Semantic Web
Towards Linked Ontologies and Data on the Semantic Web
Jie Bao
 
Concept Modeling on Semantic Wiki
Concept Modeling on Semantic WikiConcept Modeling on Semantic Wiki
Concept Modeling on Semantic Wiki
Jie Bao
 
Semantic Modeling - A Query Language for the 21st century
Semantic Modeling - A Query Language for the 21st centurySemantic Modeling - A Query Language for the 21st century
Semantic Modeling - A Query Language for the 21st century
Clifford Heath
 

Destaque (20)

3D Model of Buildings Automatically Created from Open Datasets
3D Model of Buildings Automatically Created from Open Datasets3D Model of Buildings Automatically Created from Open Datasets
3D Model of Buildings Automatically Created from Open Datasets
 
Заседание №1. Научно-практический семинар "Информационное моделирование"
Заседание №1. Научно-практический семинар "Информационное моделирование"Заседание №1. Научно-практический семинар "Информационное моделирование"
Заседание №1. Научно-практический семинар "Информационное моделирование"
 
Information Modeling (course presentation in RUS)
Information Modeling (course presentation in RUS)Information Modeling (course presentation in RUS)
Information Modeling (course presentation in RUS)
 
формализация и визуализация моделей
формализация и визуализация моделейформализация и визуализация моделей
формализация и визуализация моделей
 
Building Semantic Web Portals with WebML
Building Semantic Web Portals with WebMLBuilding Semantic Web Portals with WebML
Building Semantic Web Portals with WebML
 
Towards Linked Ontologies and Data on the Semantic Web
Towards Linked Ontologies and Data on the Semantic WebTowards Linked Ontologies and Data on the Semantic Web
Towards Linked Ontologies and Data on the Semantic Web
 
A Semantic Multimedia Web (Part 1)
A Semantic Multimedia Web (Part 1)A Semantic Multimedia Web (Part 1)
A Semantic Multimedia Web (Part 1)
 
A Semantic Multimedia Web (Part 2)
A Semantic Multimedia Web (Part 2)A Semantic Multimedia Web (Part 2)
A Semantic Multimedia Web (Part 2)
 
A Semantic Multimedia Web (Part 3)
A Semantic Multimedia Web (Part 3)A Semantic Multimedia Web (Part 3)
A Semantic Multimedia Web (Part 3)
 
Concept Modeling on Semantic Wiki
Concept Modeling on Semantic WikiConcept Modeling on Semantic Wiki
Concept Modeling on Semantic Wiki
 
Semantic Data Normalization For Efficient Clinical Trial Research
Semantic Data Normalization For Efficient Clinical Trial ResearchSemantic Data Normalization For Efficient Clinical Trial Research
Semantic Data Normalization For Efficient Clinical Trial Research
 
MosBuild-2015. Конференция Москва-2030. BIM - основа реализации стратегии 2030.
MosBuild-2015. Конференция Москва-2030. BIM - основа реализации стратегии 2030.MosBuild-2015. Конференция Москва-2030. BIM - основа реализации стратегии 2030.
MosBuild-2015. Конференция Москва-2030. BIM - основа реализации стратегии 2030.
 
Теплюк А.В. Проведение пилотного проекта по организации системы сквозного про...
Теплюк А.В. Проведение пилотного проекта по организации системы сквозного про...Теплюк А.В. Проведение пилотного проекта по организации системы сквозного про...
Теплюк А.В. Проведение пилотного проекта по организации системы сквозного про...
 
Информационное моделирование. Датаориентированный подход.
Информационное моделирование.  Датаориентированный подход.Информационное моделирование.  Датаориентированный подход.
Информационное моделирование. Датаориентированный подход.
 
A Semantic Data Model for Web Applications
A Semantic Data Model for Web ApplicationsA Semantic Data Model for Web Applications
A Semantic Data Model for Web Applications
 
Freebase Schema
Freebase SchemaFreebase Schema
Freebase Schema
 
Freebase, RDF and the Semantic Web
Freebase, RDF and the Semantic WebFreebase, RDF and the Semantic Web
Freebase, RDF and the Semantic Web
 
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
First Steps in Semantic Data Modelling and Search & Analytics in the CloudFirst Steps in Semantic Data Modelling and Search & Analytics in the Cloud
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
 
Semantic Modeling - A Query Language for the 21st century
Semantic Modeling - A Query Language for the 21st centurySemantic Modeling - A Query Language for the 21st century
Semantic Modeling - A Query Language for the 21st century
 
Array of Things Engagement Report | August 2016
Array of Things Engagement Report | August 2016Array of Things Engagement Report | August 2016
Array of Things Engagement Report | August 2016
 

Semelhante a Smart Models for Smart Cities - Modeling of Dynamics, Sensors, Urban Indicators, and Planning Actions

Cud Program Overview 2010
Cud Program Overview 2010Cud Program Overview 2010
Cud Program Overview 2010
Shane Mitchell
 
CUD Seoul May'09 - Program Overview For Conference Delegates
CUD Seoul May'09 - Program Overview For Conference DelegatesCUD Seoul May'09 - Program Overview For Conference Delegates
CUD Seoul May'09 - Program Overview For Conference Delegates
Shane Mitchell
 

Semelhante a Smart Models for Smart Cities - Modeling of Dynamics, Sensors, Urban Indicators, and Planning Actions (20)

Envie project 3_d_city_models_urban_micro_climate
Envie project 3_d_city_models_urban_micro_climateEnvie project 3_d_city_models_urban_micro_climate
Envie project 3_d_city_models_urban_micro_climate
 
Woh Hup Distinguished Lecture (NUS) – Smart Technology for Resilient Cities
Woh Hup Distinguished Lecture (NUS) – Smart Technology for Resilient CitiesWoh Hup Distinguished Lecture (NUS) – Smart Technology for Resilient Cities
Woh Hup Distinguished Lecture (NUS) – Smart Technology for Resilient Cities
 
Envisioning the City of the Future: Making the Invisible Visible.
Envisioning the City of the Future: Making the Invisible Visible.Envisioning the City of the Future: Making the Invisible Visible.
Envisioning the City of the Future: Making the Invisible Visible.
 
Connecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban RevolutionConnecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban Revolution
 
Connecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban RevolutionConnecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban Revolution
 
Cud Program Overview 2010
Cud Program Overview 2010Cud Program Overview 2010
Cud Program Overview 2010
 
Connecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban RevolutionConnecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban Revolution
 
Connecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban RevolutionConnecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban Revolution
 
Transition processes and digital transformation in Smart Sustainable Cities
Transition processes and digital transformation in Smart Sustainable CitiesTransition processes and digital transformation in Smart Sustainable Cities
Transition processes and digital transformation in Smart Sustainable Cities
 
Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.
Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.
Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.
 
enCOMPASS
enCOMPASSenCOMPASS
enCOMPASS
 
Connecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban RevolutionConnecting Cities for Sustainable Living: An Urban Revolution
Connecting Cities for Sustainable Living: An Urban Revolution
 
Future of civil engineering
Future of civil engineering Future of civil engineering
Future of civil engineering
 
Smart City Lab & Mysmartlife: From Innovation To Implementation- Smart Cities...
Smart City Lab & Mysmartlife: From Innovation To Implementation- Smart Cities...Smart City Lab & Mysmartlife: From Innovation To Implementation- Smart Cities...
Smart City Lab & Mysmartlife: From Innovation To Implementation- Smart Cities...
 
Transitions Towards Smart Sustainable Cities. Project examples, ICT, Stakehol...
Transitions Towards Smart Sustainable Cities. Project examples, ICT, Stakehol...Transitions Towards Smart Sustainable Cities. Project examples, ICT, Stakehol...
Transitions Towards Smart Sustainable Cities. Project examples, ICT, Stakehol...
 
CUD Seoul May'09 - Program Overview For Conference Delegates
CUD Seoul May'09 - Program Overview For Conference DelegatesCUD Seoul May'09 - Program Overview For Conference Delegates
CUD Seoul May'09 - Program Overview For Conference Delegates
 
CUD Conference BREAKOUT Agenda - Amsterdam 23-24 September 2008
CUD Conference BREAKOUT Agenda - Amsterdam 23-24 September 2008CUD Conference BREAKOUT Agenda - Amsterdam 23-24 September 2008
CUD Conference BREAKOUT Agenda - Amsterdam 23-24 September 2008
 
The Impact of Digital Engineering – Tim Broyd (ICE) #COMIT2016
The Impact of Digital Engineering – Tim Broyd (ICE)  #COMIT2016The Impact of Digital Engineering – Tim Broyd (ICE)  #COMIT2016
The Impact of Digital Engineering – Tim Broyd (ICE) #COMIT2016
 
Aitor Elorriaga, Institut für Angewandte Systemtechnik Bremen, Germany.
Aitor Elorriaga, Institut für Angewandte Systemtechnik Bremen, Germany.Aitor Elorriaga, Institut für Angewandte Systemtechnik Bremen, Germany.
Aitor Elorriaga, Institut für Angewandte Systemtechnik Bremen, Germany.
 
European Commission perspective on the state-of-play in terms of standards fo...
European Commission perspective on the state-of-play in terms of standards fo...European Commission perspective on the state-of-play in terms of standards fo...
European Commission perspective on the state-of-play in terms of standards fo...
 

Último

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 

Último (20)

Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 

Smart Models for Smart Cities - Modeling of Dynamics, Sensors, Urban Indicators, and Planning Actions

  • 1. Technische Universität MünchenLehrstuhl für Geoinformatik Smart Models for Smart Cities – Modeling of Dynamics, Sensors, Urban Indicators, and Planning Actions Thomas H. Kolbe Chair of Geoinformatics Technische Universität München thomas.kolbe@tum.de 29th of October 2015 Joint International Geoinformation Conference JIGC 2015, Kuala Lumpur
  • 2. Technische Universität MünchenLehrstuhl für Geoinformatik 229.10.2015 Model Entities (Resources, Objects) Actors (Agents, Stakeholders, Citizens) Processes (Activities, Actions, Flows) City System Modeling T. H. Kolbe – Smart Models for Smart Cities represented by City System
  • 3. Technische Universität MünchenLehrstuhl für Geoinformatik 329.10.2015 Today: Separate Modeling by Sectors T. H. Kolbe – Smart Models for Smart Cities Energy • Commu- nity • Models • Indicators • Evalua -tion • Planning Mobility • Commu- nity • Models • Indicators • Evalua -tion • Planning Ecology • Commu- nity • Models • Indicators • Evalua -tion • Planning Economy • Commu- nity • Models • Indicators • Evalua -tion • Planning City System
  • 4. Technische Universität MünchenLehrstuhl für Geoinformatik 429.10.2015 Linking Sectors creates a Lattice of Models T. H. Kolbe – Smart Models for Smart Cities Energy • Commu- nity • Models • Indicators • Evalua -tion • Planning Mobility • Commu- nity • Models • Indicators • Evalua -tion • Planning Ecology • Commu- nity • Models • Indicators • Evalua -tion • Planning Economy • Commu- nity • Models • Indicators • Evalua -tion • Planning City System
  • 5. Technische Universität MünchenLehrstuhl für Geoinformatik Lattice of Sector Models 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 5 ► n Sectors  potentially n2 connections! ► difficult to express, to maintain, and to keep consistent Energy Economy . . .Ecology Mobility
  • 6. Technische Universität MünchenLehrstuhl für Geoinformatik What if we could link to One Common Model? 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 6 ► n Sectors  n connections! ► Sector models can be linked via the Common Model ► Sector models need to be aligned with the Common City System Model  high degree of coherence required Common City System Model Energy Economy . . .Ecology Mobility
  • 7. Technische Universität MünchenLehrstuhl für Geoinformatik 729.10.2015 Is there such an integrative model? Candidates? T. H. Kolbe – Smart Models for Smart Cities City System Common City System Model Energy Economy . . .Ecology Mobility repre- sented by
  • 8. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 Semantic 3D City Models
  • 9. Technische Universität MünchenLehrstuhl für Geoinformatik 3D Decomposition of Urban Space ► City is decomposed into meaningful objects with clear semantics and defined spatial and thematic properties ● buildings, roads, railways, terrain, water bodies, vegetation, bridges ● buildings may be further decomposed into different storeys (and even more detailed into apartments and single rooms) ● application specific data are associated with the different objects Image: Paul Cote, Harvard Graduate School of Design 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 9
  • 10. Technische Universität MünchenLehrstuhl für Geoinformatik City Geography Markup Language – CityGML Application independent Geospatial Information Model for semantic 3D city and landscape models ► comprises different thematic areas (buildings, vegetation, water, terrain, traffic, tunnels, bridges etc.) ► Internat‘l Standard of the Open Geospatial Consortium ● V1.0.0 adopted in 08/2008; V2.0.0 adopted in 3/2012 ► Data model (UML) + Exchange format (based on GML3) CityGML represents ► 3D geometry, 3D topology, semantics, and appearance ► in 5 discrete scales (Levels of Detail, LOD) 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 10
  • 11. Technische Universität MünchenLehrstuhl für Geoinformatik Energy Heat energy demand Energy demand for warm water Electric power demand Noise immission Noise levels on the facade Number of inhabitants Economy Assessed real estate value Provided support for rents Information Integration within the 3D City Model T. H. Kolbe – Smart Models for Smart Cities 1129.10.2015
  • 12. Technische Universität MünchenLehrstuhl für Geoinformatik New: CityGML Model of New York City in LOD 0&1 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 12 > 1,000,000 buildings > 866,000 land lots > 149,000 streets > 16,000 parks > 9,500 water bodies > DTM with 1m resolution • fully-automatically generated from the 2D geodata published in the NYC Open Data Portal • semantic and geometric transformations • all objects have 3D geometry • rich semantic information (5 - 75 attributes per object resulting from combining different NYC datasets) • integrated within 1 dataset! The 3D CityGML model is Open Data! Download: www.gis.bgu.tum.de/en/projects/new-york-city-3d/ [Barbara Burger, Berit Cantzler 2015]
  • 13. Technische Universität MünchenLehrstuhl für Geoinformatik Web-based 3D Visualization & Data Inspection ► Using the Open Source 3DCityDB + the new Webclient ● www.3dcitydb.net & https://github.com/3dcitydb/3dcitydb-web-map 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 13
  • 14. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 Current Challenges in the light of Smart City Projects
  • 15. Technische Universität MünchenLehrstuhl für Geoinformatik 3D City Models – State of the Art + Challenges (I) ► Semantic 3D City Models ● Standardization (CityGML) provides a common vocabulary & common ways to represent the many urban objects ● Semantic 3D city models are provided by official authorities  high reliability, stability, full coverage ● Objects of a semantic city model are a good platform to organize and integrate data & sensors ► Today, 3D city models are mostly being used to describe the current / a specific state of the city ● But: cities are constantly changing and there are many dynamic aspects (moving objects, time variant attributes) ● Some of the time varying properties are provided by sensors ● Dynamics and processes not addressed much so far 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 15
  • 16. Technische Universität MünchenLehrstuhl für Geoinformatik 3D City Models – State of the Art + Challenges (II) ► 3D City Models are used as a data source for simulations and decision support in multiple application sectors ● these are interested in (computing) their specific indicators ● different application sectors have their own models and rules how to compute indicator values (e.g. in the energy or mobility sectors) ► In planning & decision support it is important to have immediate impact analyses of planned actions ● 3D City Model needs be modified according to some planned action (like the energetic retrofitting of a building) ● Then, the (change of) relevant indicators should be derived from the modified city model ● Planned actions mean complex transactions on the 3D city model with specific meanings  semantic modeling of actions 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 16
  • 17. Technische Universität MünchenLehrstuhl für Geoinformatik Modeling City Systems (MCS) ► Climate-KIC Innovation Project ► Project partners: ETH Zürich (iA, CVL), Imperial College, TU Berlin, TU München, SmarterBetterCities, TNO, ESRI ► Project duration: 1. 1. 2014 – 31. 12. 2015 (2 years) ► EIT Funding (total): 2.4 Mio € 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 17
  • 18. Technische Universität MünchenLehrstuhl für Geoinformatik New Frameworks developed in the MCS Project ► General Indicator Model (GIM) ► General Planning Actions Model (GPAM) ● GIM and GPAM are based on Model Driven Engineering (MDE) concepts defined in Software Engineering ► Dynamics in CityGML 3.0 ● Two frequencies: low frequency changes  evolution of the city  presentation of Kanishk Chaturvedi this morning ● Dynamic properties and behaviours of city objects (like the current energy consumption, solar power production, traffic density)  introducing “Dynamizers“ 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 18
  • 19. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 General Indicator Model (GIM)
  • 20. Technische Universität MünchenLehrstuhl für Geoinformatik City (and its parts) Measuring City Performance 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 20 Energy Indicators Ecological Indicators Financial IndicatorsSocial Indicators Mobility Indicators ► Evaluation is typically based on indicators, the most relevant are called Key Performance Indicators (KPIs) Source: shuttersock.com
  • 21. Technische Universität MünchenLehrstuhl für Geoinformatik Indicators Geobase data 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 21 Energy Indicators Mobility Indicators Ecological Indicators Social Indicators Financial Indicators CityGML Data Data from National Topography Models LADM Data INSPIRE Data BIM Data
  • 22. Technische Universität MünchenLehrstuhl für Geoinformatik Observations 1. Geobase data are available for entire countries and can be used for computing indicator values ● (however, typically additional domain specific data are required) 2. All these geospatial information are based on standardised semantic data models / ontologies ● e.g. 3D City Models: CityGML; European SDI: INSPIRE; BIM: IFC 3. So far, indicators are typically not formally modelled using a standardised framework 4. Furthermore, no systematic model exists yet for linking indicators and geobase data 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 22
  • 23. Technische Universität MünchenLehrstuhl für Geoinformatik Model Driven Engineering (MDE) ► … is a software engineering paradigm which began to evolve in the 1980s ► MDE puts the “model” in the form of formal specifications in the center of software analysis and design ● Application relevant structures are represented by formal data models (e.g. using Unified Modeling Language, UML) ● Program code is automatically derived from models ► MDE also addresses the linking of different models ● This is called Model Weaving ● Different models are linked by a weaving model which takes care of data transformation across the models 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 23
  • 24. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 24 General Feature Model ISO 19109 CityGML Application Schema M1: Model M2: Metamodel X Y Z This is the general schema which all geospatial data models follow (e.g. CityGML, INSPIRE, LADM, national cadastre & topogr. models) This is the data model of the 3D city model (here: CityGML) It defines the structures of all possible 3D city models 3D city model data, e.g. the objects of the 3D city model of Berlin M0: Instance Geospatial Information Modelling
  • 25. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 25 General Feature Model ISO 19109 CityGML Application Schema General Indicator Model Energy Related KPIs Application Schema Climate Related KPIs Application Schema KPI A Building Y KPI B Building Z M1: Model M2: Metamodel X Y Z M0: Instance Indicator Modelling Domain specific indicators follow a General Ind. Model These are the indicator models from different application domains Concrete indicators for concrete city / landscape objects
  • 26. Technische Universität MünchenLehrstuhl für Geoinformatik Requirements for Indicator Models ► Different types of indicators need to be distinguished (i.e. numerical, textual, categorical indicators) ► Complex indicators can be composed & computed from ● attribute values from associated city / landscape model objects ● constants ● mathematical expressions (unary / binary arithmetic operations) on other indicators ► Indicator value aggregation (e.g. summation, average, maximum, etc.) of other indicators ► Augment indicator values with meta information like accuracy, lineage / source etc. ● allowing for automatic sensitivity analysis 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 26
  • 27. Technische Universität MünchenLehrstuhl für Geoinformatik Domain Specific Indicator Modelling (I) 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 28 HeatDemand + value Numeric Indicator General Indicator Model Domain Indicators Energy Planner Where do I get the data from? Domain of the stakeholder/application specialist Energy Planner Domain of the stakeholder/application specialist
  • 28. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 29 -volume Building District HeatDemand + value Numeric Indicator DistrictHeat EnergyDemand + compute() BuildingHeat EnergyDemand OCL Rule 2 General Indicator Model Domain Indicators Object Related Domain Indicators Reference Objects «Aggregation» num Energy Planner Where do I get the data from? Domain of the stakeholder/application specialist * * Domain Specific Indicator Modelling (II) Many of the reference objects in the context of urban indicators are spatial objects Energy Planner Domain of the stakeholder/application specialist
  • 29. Technische Universität MünchenLehrstuhl für Geoinformatik Linking Geospatial and Indicator Models Building CityObject Group Building Connector District Connector -volume Building District HeatDemand + value Numeric Indicator CityObject DistrictHeat EnergyDemand + compute() BuildingHeat EnergyDemand Solid OCL Rule 2 General Indicator Model Domain Indicators Object Related Domain Indicators Reference Objects «Aggregation» num geometry Geospatial Application Model (e.g. CityGML) Energy Planner Where do I get the data from? City Modeler What can we do with our data? Weaving Model Domain of the geodata provider Domain of the stakeholder/application specialist * * * OCL Rule 1 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 30 City Modeler Energy Planner Domain of the stakeholder/application specialistDomain of the geodata provider
  • 30. Technische Universität MünchenLehrstuhl für Geoinformatik General Indicator Modeling Framework ► Each Indicator Application Model is defined purely from the viewpoint and requirements of the domain specialist ● data is modeled and structured according to application domain needs only – and not according to a given geospatial data model ► The data model is separated into 5 consecutive sections 1. Abstract Indicator classes (e.g. numeric indicator) 2. Domain specific indicators (e.g. heat demand) 3. Object-related domain specific indicators (e.g. building heat demand) 4. Reference Objects for the indicators (e.g. building) ► The 5th section addresses linking of the indicator model with a geospatial application schema (like CityGML) ● Weaving Classes relate Reference Objects with Feature Types from the geospatial application schema 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 31
  • 31. Technische Universität MünchenLehrstuhl für Geoinformatik Linking Geospatial and Indicator Models Building CityObject Group Building Connector District Connector -volume Building District HeatDemand + value Numeric Indicator CityObject DistrictHeat EnergyDemand + compute() BuildingHeat EnergyDemand Solid OCL Rule 2 General Indicator Model Domain Indicators Object Related Domain Indicators Reference Objects «Aggregation» num geometry Geospatial Application Model (e.g. CityGML) Energy Planner Where do I get the data from? City Modeler What can we do with our data? Weaving Model Domain of the geodata provider Domain of the stakeholder/application specialist * * * OCL Rule 1 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 32 City Modeler Energy Planner Domain of the stakeholder/application specialistDomain of the geodata provider 12345
  • 32. Technische Universität MünchenLehrstuhl für Geoinformatik Linking of an Indicator Model to different Geospatial Application Models and BIM Reference Object Classes Weaving Classes 1 Weaving Classes 2 Weaving Classes 3 CityGML INSPIRE BIM / IFC Object Related Indicators Domain A Object Related Indicators Domain B General Indicator Model 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 33 Domain of the stakeholder/application specialistDomains of the geodata / BIM providers Model Weavings Reference Object Classes Weaving Classes 1 Weaving Classes 2 Weaving Classes 3 CityGML INSPIRE BIM / IFC Object Related Indicators Domain A Object Related Indicators Domain B General Indicator Model HeatDemand + value Numeric Indicator General Indicator Model Domain Indicators Energy Planner Where do I get the data from? Domain of the stakeholder/application specialist Building CityObject Group Building Connector District Connector -volume Building District HeatDemand + value Numeric Indicator CityObject DistrictHeat EnergyDemand + compute() BuildingHeat EnergyDemand Solid OCL Rule 2 General Indicator Model Domain Indicators Object Related Domain Indicators Reference Objects «Aggregation» num geometry Geospatial Application Model (e.g. CityGML) Energy Planner Where do I get the data from? City Modeler What can we do with our data? Weaving Model Domain of the geodata provider Domain of the stakeholder/application specialist * * * OCL Rule 1 Building CityObject Group Building Connector District Connector -volume Building District HeatDemand + value Numeric Indicator CityObject DistrictHeat EnergyDemand + compute() BuildingHeat EnergyDemand Solid OCL Rule 2 General Indicator Model Domain Indicators Object Related Domain Indicators Reference Objects «Aggregation» num geometry Geospatial Application Model (e.g. CityGML) Energy Planner Where do I get the data from? City Modeler What can we do with our data? Weaving Model Domain of the geodata provider Domain of the stakeholder/application specialist * * * OCL Rule 1 We can analyse & compare how good / easy an indicator model fits to a specific geospatial application model!
  • 33. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 General Planning Actions Model (GPAM)
  • 34. Technische Universität MünchenLehrstuhl für Geoinformatik present t0 past t-1 future t1 Reality t-1 City Model t-1 KPIs t-1 Reality t0 City Model t0 KPIs t0 registration/ updateregistration Reality t1 ? City Model t1 KPIs t1 City Model t1‘ Reality t1‘ ? KPIs t1‘ NO data collection possible calculation change calculation T. H. Kolbe – Smart Models for Smart Cities29.10.2015 35
  • 35. Technische Universität MünchenLehrstuhl für Geoinformatik Formalization of Action Plans 100 % 0 % political text regulation ontology for actions T. H. Kolbe – Smart Models for Smart Cities  Aim: making action plans virtually executable on 3D city models! 29.10.2015 36
  • 36. Technische Universität MünchenLehrstuhl für Geoinformatik Properties of Planning Actions (I) ► Actions cause a change of the geometry or the attributes of the city objects ● they are planned modifications / operations on the entities of a city ► Actions always pursue a specific goal ● that is of different nature / motivation (e.g. monetary, cultural, personal) and is politically intended ● can be measured by the impact on some key performance indicators (KPIs) ► Types of actions ● extend existing objects (by new parts, properties, relations) ● change existing objects (update attributes, relations) ● remove existing objects (delete whole & parts, properties, relations) T. H. Kolbe – Smart Models for Smart Cities29.10.2015 37
  • 37. Technische Universität MünchenLehrstuhl für Geoinformatik Properties of Planning Actions (II) ► Relations and dependencies between actions – they can be composed of others, competing, conflicting, coherent ► Actions can be applied to different reference units from the city model ● administrative boundaries buildings  building parts ● correspond to concrete decision levels ► Actions consist of an ordered sequence of operations ● insert / delete / update of geometries, attributes, and relations ► Actions require resources ● time, cost and goods T. H. Kolbe – Smart Models for Smart Cities29.10.2015 38
  • 38. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 39 Data Model Aus dem Dissertationsvorhaben von Maximilian Sindram
  • 39. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 40 General Planning Actions Model (Draft) Aus dem Dissertationsvorhaben von Maximilian Sindram
  • 40. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 41 General Planning Actions Model (Draft) Aus dem Dissertationsvorhaben von Maximilian Sindram
  • 41. Technische Universität MünchenLehrstuhl für Geoinformatik Prototypical Action Specific Action Semantic 3D City Model FrameParameter Instance T. H. Kolbe – Smart Models for Smart Cities29.10.2015 42
  • 42. Technische Universität MünchenLehrstuhl für Geoinformatik German regulation 11 and 12 main street Buildings (11, 12 and 13 main street) • refurbishment (energy) (A): policy measure (1bn Euro) • sub action (SA): renovation of a building • facade renovation (S1): insulation of a wall causes a change of U-value (of the wall) • window renovation (S2): exchanging windows causes a change of UW-values (of the window) 11 12 13 S1 S2 A SA • (A): political funding (1m Euro in Munich) • (SA): renovation of all buildings in main street • (S1) and (S2): insulation of all buildings with: bricks (24cm) U-value > 0,8 W/m2K and double-glazed windows UW-Wert > 1,1 W/m2K • 11 main street: U-value = 0,7 and UW-value = 2,0 • 12 main street: listed building (age: 200) • 13 main street: U-value = 1,8 and UW-value = 3,9  11 partial renovation / 12 no renovation / 13 renovation I I I I I I I T. H. Kolbe – Smart Models for Smart Cities29.10.2015 43
  • 43. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 Bringing it all together
  • 44. Technische Universität MünchenLehrstuhl für Geoinformatik General Feature Model ISO 19109 General Indicator Model General Planning Actions Model Energy Related KPIs Application Schema Climate Related KPIs Application Schema Energy Planning Application Schema Traffic Planning Application Schema KPI building X KPI building Y Facade retrofitting building X CityGML Application Schema 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 45
  • 45. Technische Universität MünchenLehrstuhl für Geoinformatik 29.10.2015 Outlook: Dynamics in CityGML 3.0 & Conclusions
  • 46. Technische Universität MünchenLehrstuhl für Geoinformatik An Outlook to CityGML 3.0 ► CityGML 3.0 is currently under development in the OGC ● release of the new version expected in 2017 ► New CityGML 3.0 features (subject to voting) ● data model based on ISO 19136 (GML 3.2.1); automatic derivation of the exchange format (i.e. the CityGML application schema) ● more flexible LOD concept – separate indoor & outdoor LODs possible; the previous LOD 0-4 concept is retained as a profile ● new feature types (e.g. for non-building constructions) & refinements (e.g. building units) ● versioning and historization ● dynamic, i.e. time-dependent object properties e.g. for energy consumption, energy production, moving objects ● direct linking of sensor data to object properties ● tabulated & interpolated values; simple & complex patterns 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 47
  • 47. Technische Universität MünchenLehrstuhl für Geoinformatik Dynamic Data in CityGML 3.0 ► Two distinct approaches ● For slow changes / city model evolution: versioning & historization ● For fast changes: time-variant properties (attributes, geometry) 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 48 CityGML V2 V3 How to organize the state of our world Dynamizer Dynamic variations Periodic patterns Mechanism required to ensure that within one version we have a consistent city model Provides replacers / overriders, replacing the attributes in the static CityGML model Dynamic Data Schema Versioning SchemaCity Model V2 V3 V1 V1 [Kanishk Chaturvedi 2015]
  • 48. Technische Universität MünchenLehrstuhl für Geoinformatik Conclusions ► Semantic 3D city models are good platforms to structure and organize urban data – but mostly in a static way so far! ► We propose two new frameworks complementing the General Feature Model (GFM) ISO 19109 ► General Indicator Model (GIM) ● allows to specify domain specific indicator models independent from geospatial application schemas ● concept for linking indicator models to geospatial application schemas ● programs for indicator computations are automatically derivable ► General Planning Actions Model (GPAM) ● allows to formalize planning actions in different application domains ● consideration of affected KPIs, modified objects, transactions 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 49
  • 49. Technische Universität MünchenLehrstuhl für Geoinformatik References ► Elfouly, Mostafa; Kutzner, Tatjana; Kolbe, Thomas H.: General Indicator Modeling for Decision Support based on 3D City and Landscape Models using Model Driven Engineering. Peer Reviewed Proceedings of Digital Landscape Architecture 2015 at Anhalt University of Applied Sciences, Wichmann, 2015 Click for article download ► Sindram, Maximilian; Kolbe, Thomas H.: Modeling of Urban Planning Actions by Complex Transactions on Semantic 3D City Models. Proceedings of the International Environmental Modelling and Software Society Conference 2014 (iEMSs), San Diego, International Environmental Modelling and Software Society (iEMSs), 2014 Click for article download ► Chaturvedi, Kanishk; Kolbe, Thomas H.: Dynamizers - Modeling and implementing dynamic properties for semantic 3D city models. 3rd Eurographics Workshop on Urban Data Modelling and Visualisation (UDMV 2015), 2015 (in print) Click for article download ► Chaturvedi, Kanishk; Smyth, Carl Stephen; Gesquière, Gilles; Kutzner, Tatjana; Kolbe, Thomas H.: Managing versions and history within semantic 3D city models for the next generation of CityGML. Selected papers from the 3D GeoInfo 2015 Conference (Lecture Notes in Geoinformation and Cartography), Springer, 2015 (in print) Click for article download 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 50
  • 50. Technische Universität MünchenLehrstuhl für Geoinformatik Credits ► The projects Energy Atlas, Modeling City Systems, Smart Sustainable Districts have been funded by Climate-KIC of the European Institute for Innovation and Technology (EIT) 29.10.2015 T. H. Kolbe – Smart Models for Smart Cities 51