SlideShare uma empresa Scribd logo
1 de 21
POLÍGONOS ABRAHAM  GARCIA  ROCA [email_address]
POLÍGONOS Es la figura que esta formado por segmento de recta unido por sus extremos dos a dos.
ELEMENTOS DE UN POLÍGONO Medida del ángulo central  A B C D E           Diagonal Vértice Medida del ángulo externo Lado Medida del ángulo interno Centro
CLASIFICACIÓN DE LOS POLÍGONOS POR SU FORMA 01 .- Polígono convexo .-Las medidas de sus ángulos interiores son agudos. 02.- Polígono cóncavo .-La medida de uno o mas de sus ángulos interiores es cóncavo. 03.- Polígono equilátero .-Sus lados son congruentes. 04.- Polígono equiángulo .-Las medidas de sus ángulos interiores son congruentes.
POR SU NÚMERO DE LADOS Triángulo :  3 lados  Cuadrilátero: 4 lados  Pentágono: 5 lados  Hexágono: 6 lados  Heptágono: 7 lados  Octógono: 8 lados Eneágono :    9 lados  Decágono:  10 lados  Endecágono:   11 lados  Dodecágono:   12 lados  Pentadecágono:15 lados  Icoságono:   20 lados 05.- Polígono regular .-Es equilátero y a su vez equiángulo. 06.- Polígono irregular .-Sus lados tienen longitudes diferentes.
PROPIEDADES DE LOS POLIGONOS PRIMERA PROPIEDAD Numéricamente:  Lados, vértices, ángulos interiores, ángulos exteriores y ángulos centrales son iguales. ,[object Object],[object Object],[object Object],[object Object],[object Object],n
SEGUNDA PROPIEDAD A partir de un vértice de un polígono, se pueden trazar  (n-3 )  diagonales. Ejemplo: N D  = (n-3)  = (5-3) =  2   diagonales
TERCERA PROPIEDAD El número total de diagonales que se puede trazar en un polígono: Ejemplo:
CUARTA  PROPIEDAD Al trazar diagonales desde un mismo vértice se obtiene  (n-2)  triángulos Ejemplo: N  s. =  ( n – 2 )  = 5 - 2 =  3   triángulos 3 2 1
QUINTA  PROPIEDAD Suma de las medidas de los ángulos interiores de un polígono: S  i  =180°(n-2) Ejemplo: S  i  = 180º  x  número de triángulos =  180º(5-2)  =  540º Donde  (n-2)  es número de triángulos 180º 180º 180º Suma de las medidas de los ángulos interiores del triangulo
SEXTA  PROPIEDAD Suma de las medidas de los ángulos exteriores de un polígono es 360º S  e  = 360°    +    +    +    +    = 360º Ejemplo:     
SEPTIMA PROPIEDAD Al unir un punto de un lado con los vértices opuestos se obtiene  (n-1)  triángulos Ejemplo: N  s. =  ( n – 1 )  = 5 - 1 =  4   triángulos 3 2 1 4 Punto cualquiera de un lado
OCTAVA PROPIEDAD Al unir un punto interior cualquiera con los vértices se obtiene  “n”  triángulos N  s. =  n  = 5 =  6   triángulos Ejemplo: 3 2 1 4 5
NOVENA PROPIEDAD Número de diagonales trazadas desde  “V”  vértices consecutivos, se obtiene con la siguiente fómula.   Ejemplo: 2 1 y así sucesivamente
Suma de las medidas de los ángulos centrales. S  c  = 360° Medida de un ángulo interior de un polígono regular o polígono equiángulo. PROPIEDADES DE LOS POLÍGONOS REGULARES Medida de un ángulo exterior de un polígono regular o polígono equiángulo. Medida de un ángulo central de un polígono regular. 1ra. Propiedad 2da. Propiedad 3ra. Propiedad 4ta. Propiedad
PROBLEMAS  DE APLICACIÓN
En un polígono, la suma de las medidas de los ángulos exteriores e interiores es 1980°. Calcule el total de diagonales de dicho polígono. 360° + 180°( n - 2 ) = 1980° S  e   +  S  i  = 1980°   Resolviendo:   n = 11  lados Número de diagonales: N D  = 44 Del enunciado: Luego, reemplazando por las propiedades: Problema Nº 01 RESOLUCIÓN
¿Cómo se denomina aquel polígono regular, en el cual la medida de cada uno de su ángulo interno es igual a 8 veces la medida de un ángulo externo m  i  =  8(m  e )   Resolviendo:   n = 18  lados Polígono de 18 lados Polígono es regular: Problema Nº 02 Del enunciado: Reemplazando por las propiedades: Luego polígono es regular se denomina: RESOLUCIÓN
Calcule el número de diagonales de un polígono convexo, sabiendo que el total de las diagonales es mayor que su número de lados en 75. Resolviendo:   n = 15  lados Luego, el número total de diagonales: N D  = 90 N D  = n + 75 = n + 75 n 2  - 5n - 150 = 0 Problema Nº 03 Del enunciado: Reemplazando la propiedad: RESOLUCIÓN
En un polígono regular, se le aumenta un lado, la medida de su ángulo interno aumenta en 12°; entonces el número de vértices del polígono es: Resolviendo:   n = 5  lados N V = 5  vértices Polígono es regular: Polígono original:  n   lados Polígono modificado:  (n+1)   lados Número de lados = Número de vértices Problema Nº 04 Del enunciado: Reemplazando por la propiedad: RESOLUCIÓN
El número total de diagonales de un polígono regular es igual al triple del número de vértices. Calcule la medida de un ángulo central de dicho polígono. Resolviendo:   n = 9  lados m  c  = 40° Polígono es regular: =  3n Luego, la medida de un ángulo central: Problema Nº 05 Del enunciado: RESOLUCIÓN N D  = 3n Reemplazando por la propiedad:

Mais conteúdo relacionado

Mais procurados

Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angle
guest793408
 

Mais procurados (20)

Matematica poligonos
Matematica poligonosMatematica poligonos
Matematica poligonos
 
El cilindro
El cilindroEl cilindro
El cilindro
 
Area y volumen de los prismas rectos
Area y volumen de los prismas rectosArea y volumen de los prismas rectos
Area y volumen de los prismas rectos
 
todo sobre trigonometria
todo sobre trigonometriatodo sobre trigonometria
todo sobre trigonometria
 
Triángulos power point
Triángulos power pointTriángulos power point
Triángulos power point
 
Perimetro y area
Perimetro y areaPerimetro y area
Perimetro y area
 
Polígonos regulares
Polígonos regularesPolígonos regulares
Polígonos regulares
 
Razones trigonometricas
Razones trigonometricasRazones trigonometricas
Razones trigonometricas
 
Poligonos
PoligonosPoligonos
Poligonos
 
Areas figuras planas
Areas figuras planasAreas figuras planas
Areas figuras planas
 
Diapositiva de poligonos
Diapositiva de poligonos Diapositiva de poligonos
Diapositiva de poligonos
 
Quadrilaterals
QuadrilateralsQuadrilaterals
Quadrilaterals
 
áNgulos coterminales
áNgulos coterminalesáNgulos coterminales
áNgulos coterminales
 
Teorema De Pitagoras Ejemplos
Teorema De Pitagoras  EjemplosTeorema De Pitagoras  Ejemplos
Teorema De Pitagoras Ejemplos
 
Pink area and perimeter of 2D shapes
Pink area and perimeter of 2D shapesPink area and perimeter of 2D shapes
Pink area and perimeter of 2D shapes
 
Propiedades de las figuras geometricas
Propiedades de las figuras geometricasPropiedades de las figuras geometricas
Propiedades de las figuras geometricas
 
Solid geometry
Solid geometrySolid geometry
Solid geometry
 
áNgulos coterminales
áNgulos coterminalesáNgulos coterminales
áNgulos coterminales
 
Cuadrilateros
CuadrilaterosCuadrilateros
Cuadrilateros
 
Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angle
 

Semelhante a P O L I G O N O S A B

Propiedades de los poligonos
Propiedades de los poligonosPropiedades de los poligonos
Propiedades de los poligonos
UJED
 
Poligonos ab[1]
Poligonos ab[1]Poligonos ab[1]
Poligonos ab[1]
AliciaGL
 
Poligonos y su clasificación
Poligonos y su clasificaciónPoligonos y su clasificación
Poligonos y su clasificación
geldyn
 
Poligonos
PoligonosPoligonos
Poligonos
geldyn
 
Webquest de poligonos (david)
Webquest de poligonos (david)Webquest de poligonos (david)
Webquest de poligonos (david)
David Weichzel
 

Semelhante a P O L I G O N O S A B (20)

Propiedades de los poligonos
Propiedades de los poligonosPropiedades de los poligonos
Propiedades de los poligonos
 
P O L I G O N O S A B
P O L I G O N O S  A BP O L I G O N O S  A B
P O L I G O N O S A B
 
Poligonos ab[1]
Poligonos ab[1]Poligonos ab[1]
Poligonos ab[1]
 
Poligonos y su clasificación
Poligonos y su clasificaciónPoligonos y su clasificación
Poligonos y su clasificación
 
Poligonos
PoligonosPoligonos
Poligonos
 
Poligonos matemática 3°-4°
Poligonos matemática 3°-4°Poligonos matemática 3°-4°
Poligonos matemática 3°-4°
 
Poligonos chanel
Poligonos chanelPoligonos chanel
Poligonos chanel
 
Poligonos
PoligonosPoligonos
Poligonos
 
Poligonos
Poligonos Poligonos
Poligonos
 
Webquest de poligonos (david)
Webquest de poligonos (david)Webquest de poligonos (david)
Webquest de poligonos (david)
 
POLIGONOS.pptx
POLIGONOS.pptxPOLIGONOS.pptx
POLIGONOS.pptx
 
propiedadesdelospoligonos1-110606224719-phpapp02.ppt
propiedadesdelospoligonos1-110606224719-phpapp02.pptpropiedadesdelospoligonos1-110606224719-phpapp02.ppt
propiedadesdelospoligonos1-110606224719-phpapp02.ppt
 
Poligonos ab
Poligonos abPoligonos ab
Poligonos ab
 
Poligonos henry
Poligonos henryPoligonos henry
Poligonos henry
 
Teoria elemental de poligonos p1 ccesa007
Teoria elemental  de poligonos p1 ccesa007Teoria elemental  de poligonos p1 ccesa007
Teoria elemental de poligonos p1 ccesa007
 
Poligonos 2º
Poligonos 2ºPoligonos 2º
Poligonos 2º
 
Poligonos ab
Poligonos abPoligonos ab
Poligonos ab
 
Poligonos
PoligonosPoligonos
Poligonos
 
Poligonos
PoligonosPoligonos
Poligonos
 
polígonos
polígonos polígonos
polígonos
 

P O L I G O N O S A B

  • 1. POLÍGONOS ABRAHAM GARCIA ROCA [email_address]
  • 2. POLÍGONOS Es la figura que esta formado por segmento de recta unido por sus extremos dos a dos.
  • 3. ELEMENTOS DE UN POLÍGONO Medida del ángulo central  A B C D E           Diagonal Vértice Medida del ángulo externo Lado Medida del ángulo interno Centro
  • 4. CLASIFICACIÓN DE LOS POLÍGONOS POR SU FORMA 01 .- Polígono convexo .-Las medidas de sus ángulos interiores son agudos. 02.- Polígono cóncavo .-La medida de uno o mas de sus ángulos interiores es cóncavo. 03.- Polígono equilátero .-Sus lados son congruentes. 04.- Polígono equiángulo .-Las medidas de sus ángulos interiores son congruentes.
  • 5. POR SU NÚMERO DE LADOS Triángulo : 3 lados Cuadrilátero: 4 lados Pentágono: 5 lados Hexágono: 6 lados Heptágono: 7 lados Octógono: 8 lados Eneágono : 9 lados Decágono: 10 lados Endecágono: 11 lados Dodecágono: 12 lados Pentadecágono:15 lados Icoságono: 20 lados 05.- Polígono regular .-Es equilátero y a su vez equiángulo. 06.- Polígono irregular .-Sus lados tienen longitudes diferentes.
  • 6.
  • 7. SEGUNDA PROPIEDAD A partir de un vértice de un polígono, se pueden trazar (n-3 ) diagonales. Ejemplo: N D = (n-3) = (5-3) = 2 diagonales
  • 8. TERCERA PROPIEDAD El número total de diagonales que se puede trazar en un polígono: Ejemplo:
  • 9. CUARTA PROPIEDAD Al trazar diagonales desde un mismo vértice se obtiene (n-2) triángulos Ejemplo: N  s. = ( n – 2 ) = 5 - 2 = 3 triángulos 3 2 1
  • 10. QUINTA PROPIEDAD Suma de las medidas de los ángulos interiores de un polígono: S  i =180°(n-2) Ejemplo: S  i = 180º x número de triángulos = 180º(5-2) = 540º Donde (n-2) es número de triángulos 180º 180º 180º Suma de las medidas de los ángulos interiores del triangulo
  • 11. SEXTA PROPIEDAD Suma de las medidas de los ángulos exteriores de un polígono es 360º S  e = 360°  +  +  +  +  = 360º Ejemplo:     
  • 12. SEPTIMA PROPIEDAD Al unir un punto de un lado con los vértices opuestos se obtiene (n-1) triángulos Ejemplo: N  s. = ( n – 1 ) = 5 - 1 = 4 triángulos 3 2 1 4 Punto cualquiera de un lado
  • 13. OCTAVA PROPIEDAD Al unir un punto interior cualquiera con los vértices se obtiene “n” triángulos N  s. = n = 5 = 6 triángulos Ejemplo: 3 2 1 4 5
  • 14. NOVENA PROPIEDAD Número de diagonales trazadas desde “V” vértices consecutivos, se obtiene con la siguiente fómula. Ejemplo: 2 1 y así sucesivamente
  • 15. Suma de las medidas de los ángulos centrales. S  c = 360° Medida de un ángulo interior de un polígono regular o polígono equiángulo. PROPIEDADES DE LOS POLÍGONOS REGULARES Medida de un ángulo exterior de un polígono regular o polígono equiángulo. Medida de un ángulo central de un polígono regular. 1ra. Propiedad 2da. Propiedad 3ra. Propiedad 4ta. Propiedad
  • 16. PROBLEMAS DE APLICACIÓN
  • 17. En un polígono, la suma de las medidas de los ángulos exteriores e interiores es 1980°. Calcule el total de diagonales de dicho polígono. 360° + 180°( n - 2 ) = 1980° S  e + S  i = 1980° Resolviendo: n = 11 lados Número de diagonales: N D = 44 Del enunciado: Luego, reemplazando por las propiedades: Problema Nº 01 RESOLUCIÓN
  • 18. ¿Cómo se denomina aquel polígono regular, en el cual la medida de cada uno de su ángulo interno es igual a 8 veces la medida de un ángulo externo m  i = 8(m  e ) Resolviendo: n = 18 lados Polígono de 18 lados Polígono es regular: Problema Nº 02 Del enunciado: Reemplazando por las propiedades: Luego polígono es regular se denomina: RESOLUCIÓN
  • 19. Calcule el número de diagonales de un polígono convexo, sabiendo que el total de las diagonales es mayor que su número de lados en 75. Resolviendo: n = 15 lados Luego, el número total de diagonales: N D = 90 N D = n + 75 = n + 75 n 2 - 5n - 150 = 0 Problema Nº 03 Del enunciado: Reemplazando la propiedad: RESOLUCIÓN
  • 20. En un polígono regular, se le aumenta un lado, la medida de su ángulo interno aumenta en 12°; entonces el número de vértices del polígono es: Resolviendo: n = 5 lados N V = 5 vértices Polígono es regular: Polígono original: n lados Polígono modificado: (n+1) lados Número de lados = Número de vértices Problema Nº 04 Del enunciado: Reemplazando por la propiedad: RESOLUCIÓN
  • 21. El número total de diagonales de un polígono regular es igual al triple del número de vértices. Calcule la medida de un ángulo central de dicho polígono. Resolviendo: n = 9 lados m  c = 40° Polígono es regular: = 3n Luego, la medida de un ángulo central: Problema Nº 05 Del enunciado: RESOLUCIÓN N D = 3n Reemplazando por la propiedad: