SlideShare uma empresa Scribd logo
1 de 95
Baixar para ler offline
Terry Taewoong Um (terry.t.um@gmail.com)
University of Waterloo
Department of Electrical & Computer Engineering
Terry Taewoong Um
DEEP LEARNING TUTORIAL
IN 100 MINS
1
Terry Taewoong Um (terry.t.um@gmail.com)
WHO AM I
2
2008 – 2010 M.S. at Seoul National University, Korea
c.f. “Tangent Space RRT with Lazy Projection: An Efficient Planning
Algorithm for Constrained Motions”, T. T. Um et al., ARK2010.
2010 – 2014 Robotics researcher at LIG Nex1 / KIST, Korea
c.f. “Independent Joint Learning: A Novel Task-to-Task Transfer Learning
Scheme for Robot Models”, T. T. Um et al., ICRA2014.
• I am a robotics researcher
Terry Taewoong Um (terry.t.um@gmail.com)
WHO AM I
3
2014 – Present PhD candidate at U.Waterloo, Canada
c.f. “Exercise Motion Classification from Large-Scale Wearable Sensor
Data Using Convolutional Neural Networks”, T. T. Um et al., IROS2017.
• I am a deep learning researcher
http://hookedoneverything.com/parkinsons/
https://www.trainwithpush.com/
PUSH project Parkinson’s disease (PD) project
WHO AM I
4
• But I am more known for ... - Facebook communities
: 로봇공학을 위한 열린 모임,
Tensorflow Korea, etc.
- Blog / Youtube
: 테리의 딥러닝 토크, T-Robotics,
대학원생 때 알았더라면
좋았을 이야기들
- Etc.
: Most-cited DL papers (github)
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
5
1. Introduction to ML & DL 50min
2. DL methods: CNN, RNN, VAE, GAN 35min
3. Can we believe DNNs? 15min
4. Q & A 15min
Break 10min
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
6
1. Introduction to ML & DL 50min
2. DL methods: CNN, RNN, VAE, GAN 35min
3. Can we believe DNNs? 15min
4. Q & A 15min
Break 10min
7
Terry Taewoong Um (terry.t.um@gmail.com)
https://github.com/sjchoi86/
dl_tutorials_10weeks
https://github.com/terryum/
awesome-deep-learning-papers
http://videolectures.net/
deeplearning2017_montreal/
• Deep learning summer school
STUDY MATERIALS
• Andrew Ng, Deeplearning.ai / Coursera
• Stanford Univ., CS231n (CNNs) / CS224d (RNNs)
• Various tutorials presented in NIPS, ICML, etc.
Terry Taewoong Um (terry.t.um@gmail.com)
8
AI, ML, DL, NN
https://medium.com/zeroth-ai/understanding-
artificial-intelligence-b9b58f9b25c2
Terry Taewoong Um (terry.t.um@gmail.com)
9
RECOGNITION - IMAGE
Google photos
Object recognition (image retrieval)
Terry Taewoong Um (terry.t.um@gmail.com)
10
YOLO v2, https://www.youtube.com/watch?v=VOC3huqHrss
RECOGNITION - IMAGE
Object detection
Terry Taewoong Um (terry.t.um@gmail.com)
11
RECOGNITION - NATURAL LANGUAGE
Sentiment classification
SAD Joyful
Terry Taewoong Um (terry.t.um@gmail.com)
12
Speech recognition
RECOGNITION - SPEECH
PUSH Inc., https://youtu.be/JpzuVPesFLY
Terry Taewoong Um (terry.t.um@gmail.com)
13
RECOGNITION - WEARABLES
Exercise recognition Parkinson’s disease assessment
Terry Taewoong Um (terry.t.um@gmail.com)
14
SUPERVISED LEARNING
Train : X → Y
image, text, speech,
wearable data, etc.
labels
Test : X → ?
(real practice)
* Never use the test dataset during the development of a model (training)
15
MODEL SELECTION
Terry Taewoong Um (terry.t.um@gmail.com)
16
OVERFITTING
good performance for training data
bad performance for test data
model complexity
error
training error
test error
• Model complexity vs. Error
Terry Taewoong Um (terry.t.um@gmail.com)
17
SUPERVISED LEARNING
Train : X → Y
image, text, speech,
wearable data, etc.
labels
Test : X → ?
(real practice)
* Never use the test dataset during the development of a model (training)
Terry Taewoong Um (terry.t.um@gmail.com)
18
VALIDATION SET
Train : X → Y
image, text, speech,
wearable data, etc.
labels
Validation : X → ?
(real-practice indicator)
Test : X → ?
(real practice)
Terry Taewoong Um (terry.t.um@gmail.com)
19
PREVENTING OVERFITTING
training time
error
training error
test error
we should
stop here
training
set
validation
set
test
set
for training
(parameter
optimization)
for early
stopping
(avoid
overfitting)
for evaluation
(measure the
performance)
keep watching the validation error
• Training / Validation / Test datasets
Terry Taewoong Um (terry.t.um@gmail.com)
20
PREVENTING OVERFITTING
training validation test
• N-fold cross validation
Terry Taewoong Um (terry.t.um@gmail.com)
21
BOLTS & NUTS OF BUILDING DL
http://www.computervisionblog.com/2016/12/
nuts-and-bolts-of-building-deep.html
Andrew Ng at NIPS2016
Terry Taewoong Um (terry.t.um@gmail.com)
22
REGULARIZATION
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 σ ||𝑦 − 𝑓(𝑥)||2
, where,
𝑓 𝑥 = 𝑤0 + 𝑤1 𝑥1 + 𝑤2 𝑥2 + ⋯
= 𝑊𝑋
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ ||𝑦 − 𝑓(𝑥)||2 + ||𝑊|| 𝑚
(minimize error & prefer a simpler model)
Terry Taewoong Um (terry.t.um@gmail.com)
23
GENERAL PROCEDURE OF ML
Task
Representation
(Features)
Feature
extraction
Machine
learning
IMAGE
SPEECH
Feature engineering
Terry Taewoong Um (terry.t.um@gmail.com)
24
WHAT ARE THE GOOD FEATURES?
http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/
Terry Taewoong Um (terry.t.um@gmail.com)
25
GENERAL PROCEDURE OF DL
Task
Representation
(Features)
Feature
extraction
Machine
learning
Task
Deep learning
(end-to-end)
* Feature
extraction included
Terry Taewoong Um (terry.t.um@gmail.com)
26
DEEP LEARNING
• What is Deep Learning (DL) ?
- Learning methods which have deep (not shallow) architecture
- It usually allows end-to-end learning
- It automatically learn intermediate representation. Thus,
it can be regarded as a representation learning
- It often contains stacked “neural network”. Thus,
Deep learning usually indicates “deep neural network”
“Deep Gaussian Process” (2013)
https://youtu.be/NwoGqYsQifg
http://goo.gl/fxmmPE
http://goo.gl/5Ry08S
Terry Taewoong Um (terry.t.um@gmail.com)
27
BIOLOGICAL EVIDENCE
Yann LeCun, https://goo.gl/VVQXJG
• The vental pathway in the visual cortex has multiple stages
• There exist a lot of intermediate representations
Terry Taewoong Um (terry.t.um@gmail.com)
28
IMAGENET CHALLENGE (ILSVRC)
http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf
• 1000 classes, 1.4 million images
• The first “large-scale” ML challenge
• Labeled by Amazon Mechanical Turk
(Fei-Fei Lee, Stanford Univ.)
• Need large-scale data → ImageNet
• Need a scalable method → DL
• Need computation power → GPU
• Convolutional Neural Networks (CNNs)
AlexNet (2012), VGG (2014), GoogLeNet
(2015), ResNet (2016), DenseNet (2017)...
29
NEURAL NETWORKS
Terry Taewoong Um (terry.t.um@gmail.com)
(H. Lalochelle, DLSS2017)
• A large parametric model
(like high-order polynomials)
• Learn the parameters using
gradient descent (GD) method
• Local minima problem? → Stochastic GD (SGD)
• Overfitting problem? → Large-scale data
30
NEURAL NETWORKS
Terry Taewoong Um (terry.t.um@gmail.com)
• Neural networks =
Composition of functions
Linear combination
𝑊𝑥 + 𝑏
Activation
σ(𝑊𝑥 + 𝑏)
(…repeat…)
Linear combination
𝑊 σ 𝑊(… ) + 𝑏 + 𝑏
Output activation
σ 𝑜𝑢𝑡 (… )
Forward pass Backward pass
Calculate the loss
Loss(𝑦𝑡𝑟𝑢𝑒, 𝑦 𝑝𝑟𝑒𝑑)
Gradient of the loss
Gradient of the activation
Gradient of the weights
(…repeat…)
Update the weights
(H. Lalochelle, DLSS2017)
ReLU or tanh
Softmax or Linear
Optimization:
SGD, RMSProb, or Adam
cross-entropy or MSE
Terry Taewoong Um (terry.t.um@gmail.com)
31
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax’))
model.compile(loss='categorical_crossentropy',
optimizer='sgd’)
model.fit(x_train, y_train, epochs=5)
NN IN KERAS
• Recognition & Supervised learning
• Model selection & Overfitting
• Training set split & Cross validation
• Regularization
• Deep learning : End-to-end learning
• Neural Network Basics
Terry Taewoong Um (terry.t.um@gmail.com)
SUMMARY – PART1
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
33
1. Introduction to ML & DL 50min
2. DL methods: CNN, RNN, VAE, GAN 35min
3. Can we believe DNNs? 15min
4. Q & A 15min
Break 10min
34
POPULAR DL METHODS
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN)
Reinforcement learning
Deep Q-
Network
(DQN)
Actor-Critic
Policy gradient
Yuxi Li, “Deep reinforcement
learning: Overview”
https://arxiv.org/abs/1701.07274
35
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
Labels (O) Labels (X)
(mostly)
Discriminative model
(mostly)
Generative model
* RNN can be used as unsupervised manner
POPULAR DL METHODS
36
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Explicit
density
Implicit
density
(try to generate
realistic samples)
POPULAR DL METHODS
37
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
The area that I am
most familiar with
POPULAR DL METHODS
Explicit
density
Implicit
density
(try to generate
realistic samples)
38
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
POPULAR DL METHODS
Explicit
density
Implicit
density
(try to generate
realistic samples)
CONVOLUTIONAL NN (CNN)
Fully-connected layers Convolutional layers
w
h
n
39 / 39
p × 𝑞
Terry Taewoong Um (terry.t.um@gmail.com)
e.g.) (1k*1k) image * 1k nodes = 1 billion parameters [Fully-connected]
(3*3) kernel size * 64 kernels = 576 parameters [Convolutional]
https://github.com/vdumoulin
/conv_arithmetic
Terry Taewoong Um (terry.t.um@gmail.com)
40
• How can we deal with real images which is
much bigger than MNIST digit images?
- Use not fully-connected, but locally-connected NN
- Use convolutions to get various feature maps
- Abstract the results into higher layer by using pooling
- Fine tune with fully-connected NN
https://goo.gl/G7kBjI
https://goo.gl/Xswsbd
http://goo.gl/5OR5oH
CONVOLUTIONAL NN (CNN)
CNN FEATURES
41 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
http://yosinski.com/deepvis
42
CNN ARCHITECTURES
Terry Taewoong Um (terry.t.um@gmail.com)
AlexNet (2012)
VGG (2014)
GoogLeNet (2014) ResNet (2014)
43
APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
https://goo.gl/1SjmTp
A. Karpathy @ Bay area DL school 2016
https://docs.google.com/presentation/d/
1Q1CmVVnjVJM_9CDk3B8Y6MWCavZOti
KmOLQ0XB7s9Vg/edit
44
MASK RCNN
45
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
POPULAR DL METHODS
Explicit
density
Implicit
density
(try to generate
realistic samples)
RECURRENT NN (RNN)
𝑥
ℎ
RNN
(folded)
RNN
(unfolded)
• Vanishing / exploding gradient problem
• Recurrent Neural Network (RNN)
46 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
LONG-SHORT TERM MEMORY (LSTM)
• Long-short term memory (LSTM)
LSTM
47 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
[S. Hochreiter & J. Schmidhuber 1998]
RNN APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
(Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
49
RNN APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• Sequence generation
• Classification
Speech recognition, Sentence/document classification,
Video classification, Activity recognition, …
𝑥
ℎ
RNN APPLICATIONS
(Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
RNN APPLICATIONS
• Machine translation with attention mechanism
https://research.googleblog.com/
2016/09/a-neural-network-for-
machine.html
Terry Taewoong Um (terry.t.um@gmail.com)
52
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
POPULAR DL METHODS
Explicit
density
Implicit
density
(try to generate
realistic samples)
Terry Taewoong Um (terry.t.um@gmail.com)
53
Task 2:
emotion estimation
Task 1:
person identification
TASK-SPECIFIC FEATURES
Terry Taewoong Um (terry.t.um@gmail.com)
54
- Labeled data are difficult to collect
- Is this a right way to obtain a good representation?
(Lack of generalizability / transferability)
WHY UNSUPERVISED LEARNING?
Task
Deep learning
(end-to-end)
* Feature
extraction included
Terry Taewoong Um (terry.t.um@gmail.com)
55
GOOD REPRESENTATION?
Good representation
GOOD & BAD REPRESENTATION
Bad representation
57
Terry Taewoong Um (terry.t.um@gmail.com)
• Attempt to learn a good representation without labels
• Unsupervised learning is far more difficult than supervised learning
• Turn unsupervised learning into supervised learning!
UNSUPERVISED LEARNING
58
Terry Taewoong Um (terry.t.um@gmail.com)
• Objective : Minimize reconstruction error “오토엔코더의 모든것“,
https://www.slideshare.net/
NaverEngineering/ss-
96581209
AUTOENCODER
59
“All about VAE”, H. Lee, https://www.slideshare.net/NaverEngineering/ss-96581209
VARIATIONAL AUTOENCODER (VAE)
• Objective : Minimize reconstruction error + regularization loss
60
Terry Taewoong Um (terry.t.um@gmail.com)
OVERFITTING & REGULARIZATION
• Objective : Minimize reconstruction error + regularization loss
61
Terry Taewoong Um (terry.t.um@gmail.com)
http://blog.fastforwardlabs.com/2016/08/12/introdu
cing-variational-autoencoders-in-prose-and.html
VARIATIONAL AUTOENCODER (VAE)
Terry Taewoong Um (terry.t.um@gmail.com)
62
GENERATED IMAGES BY VAE
https://github.com/davidsandberg/facenet/wiki/Variational-autoencoder
Terry Taewoong Um (terry.t.um@gmail.com)
63
GENERATED IMAGES BY VAE
https://github.com/davidsandberg/facenet/wiki/Variational-autoencoder
64 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
[X. Yan et al. 2016]
CONDITIONAL VAE
65 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
[X. Yan et al. 2016]
Terry Taewoong Um (terry.t.um@gmail.com)
66
MUSIC VAE
67
Terry Taewoong Um (terry.t.um@gmail.com)
Generative
Adversarial
Network (GAN)
Variational
Autoencoder
(VAE)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
POPULAR DL METHODS
Explicit
density
Implicit
density
(try to generate
realistic samples)
68
GENERATIVE MODELS
이활석, “그림 그리는 AI”,
https://www.slideshare.net/NaverEngineering/ai-83896428
69
NOT OPTIMIZATION, BUT GAME
이활석, “그림 그리는 AI”,
https://www.slideshare.net/NaverEngineering/ai-83896428
http://bzit.donga.com/List/3/all/50/1202090/1
70 / 39
Terry Taewoong Um (terry.t.um@gmail.com)
DCGAN EBGAN LSGAN
WGAN BEGAN DRAGAN
GAN
SAMPLES FROM GAN
71
CYCLE-GAN
72
Terry Taewoong Um (terry.t.um@gmail.com)
CYCLE-GAN
73
Terry Taewoong Um (terry.t.um@gmail.com)
GAN VARIANTS
74 / 39
GAN zoo,
https://deephunt.in/the-
gan-zoo-79597dc8c347
Most of them have
been developed for
the last year
Terry Taewoong Um (terry.t.um@gmail.com)
VOICE GENERATION ( A U TOR EGR ESSIVE)
75
김태훈 (OpenAI), 네이버 Deview2017 “책읽는 딥러닝”
https://www.youtube.com/watch?v=klnfWhPGPRs&t=1992s
Terry Taewoong Um (terry.t.um@gmail.com)
76
Google Duplex
https://www.youtube.com/watch?v=D5VN56jQMWM&t=2m47s
RECOGNITION + GENERATION
77
POPULAR METHODS
Terry Taewoong Um (terry.t.um@gmail.com)
Variational
Autoencoder
(VAE)
Generative
Adversarial
Network (GAN)
Unsupervised learningSupervised learning
Convolutional
Neural Network
(CNN)
Recurrent
Neural Network
(RNN*)
* RNN can be used as unsupervised manner
Static
data
(e.g. image)
Sequence
data
(e.g. natural
language)
Explicit
density
Implicit
density
(try to generate
realistic samples)
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
78
1. Introduction to ML & DL 50min
2. DL methods: CNN, RNN, VAE, GAN 35min
3. Can we believe DNNs? 15min
4. Q & A 15min
Break 10min
Terry Taewoong Um (terry.t.um@gmail.com)
BELIEVE OR NOT
79
green?
enemy?
1. Adversarial attacks
2. Uncertainty
3. Interpretability
Terry Taewoong Um (terry.t.um@gmail.com)
BELIEVE OR NOT
80
[Keyword]
= NOISE
(perturbation)
1. Adversarial attacks
2. Uncertainty
3. Interpretability
81
Terry Taewoong Um (terry.t.um@gmail.com)
[Wang &
Bovik, 2002]
ERRORS IN INPUT SPACE
Terry Taewoong Um (terry.t.um@gmail.com)
ADVERSARIAL ATTACKS
82
Gradient ascent method:
Increase “the changes of the loss” w.r.t. the changes of the input”
Terry Taewoong Um (terry.t.um@gmail.com)
83
ADVERSARIAL ATTACKS
• Adversarial examples in the physical world (Kurakin et al. 2016)
Terry Taewoong Um (terry.t.um@gmail.com)
ADVERSARIAL ATTACKS
84
• Adversarial patch (Brown et al. 2017)
Terry Taewoong Um (terry.t.um@gmail.com)
ADVERSARIAL TRAINING
85
https://www.spsc.tugraz.at/research/roM/virtual-adversarial-training-
applied-neural-higher-order-factors-phone-classification
• Virtual adversarial training (Miyato et al. 2016)
https://youtu.be/kvPmArtVoFE
Terry Taewoong Um (terry.t.um@gmail.com)
BELIEVE OR NOT
86
green?
enemy?
1. Adversarial attacks
2. Uncertainty
3. Interpretability
Terry Taewoong Um (terry.t.um@gmail.com)
BAYESIAN APPROACHES
87
https://youtu.be/kvPmArtVoFE
• Posterior ∝ Prior * Likelihood
Terry Taewoong Um (terry.t.um@gmail.com)
GAUSSIAN PROCESS
88
https://youtu.be/kvPmArtVoFE
Beautiful, but not scalable!
Terry Taewoong Um (terry.t.um@gmail.com)
DROPOUT AS BAYESIAN
89
• Dropout: Randomly drop nodes
→ regularization
Terry Taewoong Um (terry.t.um@gmail.com)
BELIEVE OR NOT
90
green?
enemy?
1. Adversarial attacks
2. Uncertainty
3. Interpretability
OCCLUSION TEST
Terry Taewoong Um (terry.t.um@gmail.com)
CLASS ACTIVATION MAP (CAM)
• Detect the most discriminative
parts from the label (without
the need of bounding boxes)
CAM
Terry Taewoong Um (terry.t.um@gmail.com)
93
Terry Taewoong Um (terry.t.um@gmail.com)
AI FOR ETHICS?
94
green?
enemy?
1. Adversarial attacks
2. Uncertainty
3. Interpretability
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
95
1. Introduction & ML basics 35min
2. Supervised Learning: CNN & RNN 20min
3. Unsupervised Learning: VAE & GAN 20min
4. Can we believe DNNs? 15min
5. Q & A 15min
Break 10min

Mais conteúdo relacionado

Mais procurados

2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classificationKrish_ver2
 
Deep Learning - CNN and RNN
Deep Learning - CNN and RNNDeep Learning - CNN and RNN
Deep Learning - CNN and RNNAshray Bhandare
 
Ml10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsMl10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsankit_ppt
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systemsinovex GmbH
 
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaSVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaEdureka!
 
Optimizers
OptimizersOptimizers
OptimizersIl Gu Yi
 
Algorithmic Music Recommendations at Spotify
Algorithmic Music Recommendations at SpotifyAlgorithmic Music Recommendations at Spotify
Algorithmic Music Recommendations at SpotifyChris Johnson
 
Multi Object Tracking | Presentation 1 | ID 103001
Multi Object Tracking | Presentation 1 | ID 103001Multi Object Tracking | Presentation 1 | ID 103001
Multi Object Tracking | Presentation 1 | ID 103001Md. Minhazul Haque
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringViet-Trung TRAN
 
2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methodsKrish_ver2
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality ReductionSaad Elbeleidy
 
Visual Object Tracking: review
Visual Object Tracking: reviewVisual Object Tracking: review
Visual Object Tracking: reviewDmytro Mishkin
 
08 linear classification_2
08 linear classification_208 linear classification_2
08 linear classification_2nep_test_account
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaPreferred Networks
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detectionBrodmann17
 
Trends in machine learning (1)
Trends in machine learning (1)Trends in machine learning (1)
Trends in machine learning (1)Viswanath Shenoi
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systemsNAVER Engineering
 
A Primer on Entity Resolution
A Primer on Entity ResolutionA Primer on Entity Resolution
A Primer on Entity ResolutionBenjamin Bengfort
 

Mais procurados (20)

Lecture13 - Association Rules
Lecture13 - Association RulesLecture13 - Association Rules
Lecture13 - Association Rules
 
2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classification
 
Deep Learning - CNN and RNN
Deep Learning - CNN and RNNDeep Learning - CNN and RNN
Deep Learning - CNN and RNN
 
Ml10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsMl10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topics
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaSVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
 
Optimizers
OptimizersOptimizers
Optimizers
 
Algorithmic Music Recommendations at Spotify
Algorithmic Music Recommendations at SpotifyAlgorithmic Music Recommendations at Spotify
Algorithmic Music Recommendations at Spotify
 
Multi Object Tracking | Presentation 1 | ID 103001
Multi Object Tracking | Presentation 1 | ID 103001Multi Object Tracking | Presentation 1 | ID 103001
Multi Object Tracking | Presentation 1 | ID 103001
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
 
2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
 
Visual Object Tracking: review
Visual Object Tracking: reviewVisual Object Tracking: review
Visual Object Tracking: review
 
08 linear classification_2
08 linear classification_208 linear classification_2
08 linear classification_2
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi Kerola
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
 
Trends in machine learning (1)
Trends in machine learning (1)Trends in machine learning (1)
Trends in machine learning (1)
 
Naive Bayes Presentation
Naive Bayes PresentationNaive Bayes Presentation
Naive Bayes Presentation
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
 
A Primer on Entity Resolution
A Primer on Entity ResolutionA Primer on Entity Resolution
A Primer on Entity Resolution
 

Semelhante a Deep Learning Tutorial in 100 Mins

Introduction to Machine Learning and Deep Learning
Introduction to Machine Learning and Deep LearningIntroduction to Machine Learning and Deep Learning
Introduction to Machine Learning and Deep LearningTerry Taewoong Um
 
Introduction to Deep Learning with TensorFlow
Introduction to Deep Learning with TensorFlowIntroduction to Deep Learning with TensorFlow
Introduction to Deep Learning with TensorFlowTerry Taewoong Um
 
Learning with side information through modality hallucination (2016)
Learning with side information through modality hallucination (2016)Learning with side information through modality hallucination (2016)
Learning with side information through modality hallucination (2016)Terry Taewoong Um
 
기계학습(Machine learning) 입문하기
기계학습(Machine learning) 입문하기기계학습(Machine learning) 입문하기
기계학습(Machine learning) 입문하기Terry Taewoong Um
 
deepnet-lourentzou.ppt
deepnet-lourentzou.pptdeepnet-lourentzou.ppt
deepnet-lourentzou.pptyang947066
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013Philip Zheng
 
Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Ha Phuong
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Julien SIMON
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowS N
 
01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkkJesusTekonbo
 
cs330_2021_lifelong_learning.pdf
cs330_2021_lifelong_learning.pdfcs330_2021_lifelong_learning.pdf
cs330_2021_lifelong_learning.pdfKuan-Tsae Huang
 
Machine Learning and Inductive Inference
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inferencebutest
 
Machine learning-in-details-with-out-python-code
Machine learning-in-details-with-out-python-codeMachine learning-in-details-with-out-python-code
Machine learning-in-details-with-out-python-codeOsama Ghandour Geris
 
A NEAT Way for Evolving Echo State Networks
A NEAT Way for Evolving Echo State NetworksA NEAT Way for Evolving Echo State Networks
A NEAT Way for Evolving Echo State NetworksKyriakos Chatzidimitriou
 
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and PhysicsInteraction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and PhysicsKen Kuroki
 
know Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdfknow Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdfhemangppatel
 
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdfAmirMohamedNabilSale
 
Machine Learning: A gentle Introduction
Machine Learning: A gentle IntroductionMachine Learning: A gentle Introduction
Machine Learning: A gentle IntroductionMatthias Zimmermann
 

Semelhante a Deep Learning Tutorial in 100 Mins (20)

Introduction to Machine Learning and Deep Learning
Introduction to Machine Learning and Deep LearningIntroduction to Machine Learning and Deep Learning
Introduction to Machine Learning and Deep Learning
 
Introduction to Deep Learning with TensorFlow
Introduction to Deep Learning with TensorFlowIntroduction to Deep Learning with TensorFlow
Introduction to Deep Learning with TensorFlow
 
Learning with side information through modality hallucination (2016)
Learning with side information through modality hallucination (2016)Learning with side information through modality hallucination (2016)
Learning with side information through modality hallucination (2016)
 
기계학습(Machine learning) 입문하기
기계학습(Machine learning) 입문하기기계학습(Machine learning) 입문하기
기계학습(Machine learning) 입문하기
 
01_introduction_ML.pdf
01_introduction_ML.pdf01_introduction_ML.pdf
01_introduction_ML.pdf
 
deepnet-lourentzou.ppt
deepnet-lourentzou.pptdeepnet-lourentzou.ppt
deepnet-lourentzou.ppt
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013
 
Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlow
 
01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk
 
cs330_2021_lifelong_learning.pdf
cs330_2021_lifelong_learning.pdfcs330_2021_lifelong_learning.pdf
cs330_2021_lifelong_learning.pdf
 
Machine Learning and Inductive Inference
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inference
 
Machine learning-in-details-with-out-python-code
Machine learning-in-details-with-out-python-codeMachine learning-in-details-with-out-python-code
Machine learning-in-details-with-out-python-code
 
A NEAT Way for Evolving Echo State Networks
A NEAT Way for Evolving Echo State NetworksA NEAT Way for Evolving Echo State Networks
A NEAT Way for Evolving Echo State Networks
 
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and PhysicsInteraction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
 
know Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdfknow Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdf
 
Machine learning
Machine learningMachine learning
Machine learning
 
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
 
Machine Learning: A gentle Introduction
Machine Learning: A gentle IntroductionMachine Learning: A gentle Introduction
Machine Learning: A gentle Introduction
 

Mais de Terry Taewoong Um

#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전
#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전
#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전Terry Taewoong Um
 
A brief introduction to OCR (Optical character recognition)
A brief introduction to OCR (Optical character recognition)A brief introduction to OCR (Optical character recognition)
A brief introduction to OCR (Optical character recognition)Terry Taewoong Um
 
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...Terry Taewoong Um
 
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)Terry Taewoong Um
 
Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)Terry Taewoong Um
 
On Calibration of Modern Neural Networks (2017)
On Calibration of Modern Neural Networks (2017)On Calibration of Modern Neural Networks (2017)
On Calibration of Modern Neural Networks (2017)Terry Taewoong Um
 
Deep Learning: A Critical Appraisal (2018)
Deep Learning: A Critical Appraisal (2018)Deep Learning: A Critical Appraisal (2018)
Deep Learning: A Critical Appraisal (2018)Terry Taewoong Um
 
Understanding Black-box Predictions via Influence Functions (2017)
Understanding Black-box Predictions via Influence Functions (2017)Understanding Black-box Predictions via Influence Functions (2017)
Understanding Black-box Predictions via Influence Functions (2017)Terry Taewoong Um
 
Human Motion Forecasting (Generation) with RNNs
Human Motion Forecasting (Generation) with RNNsHuman Motion Forecasting (Generation) with RNNs
Human Motion Forecasting (Generation) with RNNsTerry Taewoong Um
 
Deformable Convolutional Network (2017)
Deformable Convolutional Network (2017)Deformable Convolutional Network (2017)
Deformable Convolutional Network (2017)Terry Taewoong Um
 
About Two Motion Planning Papers
About Two Motion Planning PapersAbout Two Motion Planning Papers
About Two Motion Planning PapersTerry Taewoong Um
 
Lie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsLie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsTerry Taewoong Um
 
로봇과 인공지능, 그리고 미래의 노동
로봇과 인공지능, 그리고 미래의 노동로봇과 인공지능, 그리고 미래의 노동
로봇과 인공지능, 그리고 미래의 노동Terry Taewoong Um
 
Lie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsLie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsTerry Taewoong Um
 

Mais de Terry Taewoong Um (14)

#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전
#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전
#44. KAIST에서 "대학 유죄"를 외치다: ART Lab의 도전
 
A brief introduction to OCR (Optical character recognition)
A brief introduction to OCR (Optical character recognition)A brief introduction to OCR (Optical character recognition)
A brief introduction to OCR (Optical character recognition)
 
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynami...
 
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)
인공지능의 사회정의의 편이 될 수 있을까? (인공지능과 법)
 
Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)
 
On Calibration of Modern Neural Networks (2017)
On Calibration of Modern Neural Networks (2017)On Calibration of Modern Neural Networks (2017)
On Calibration of Modern Neural Networks (2017)
 
Deep Learning: A Critical Appraisal (2018)
Deep Learning: A Critical Appraisal (2018)Deep Learning: A Critical Appraisal (2018)
Deep Learning: A Critical Appraisal (2018)
 
Understanding Black-box Predictions via Influence Functions (2017)
Understanding Black-box Predictions via Influence Functions (2017)Understanding Black-box Predictions via Influence Functions (2017)
Understanding Black-box Predictions via Influence Functions (2017)
 
Human Motion Forecasting (Generation) with RNNs
Human Motion Forecasting (Generation) with RNNsHuman Motion Forecasting (Generation) with RNNs
Human Motion Forecasting (Generation) with RNNs
 
Deformable Convolutional Network (2017)
Deformable Convolutional Network (2017)Deformable Convolutional Network (2017)
Deformable Convolutional Network (2017)
 
About Two Motion Planning Papers
About Two Motion Planning PapersAbout Two Motion Planning Papers
About Two Motion Planning Papers
 
Lie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsLie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot Mechanics
 
로봇과 인공지능, 그리고 미래의 노동
로봇과 인공지능, 그리고 미래의 노동로봇과 인공지능, 그리고 미래의 노동
로봇과 인공지능, 그리고 미래의 노동
 
Lie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot MechanicsLie Group Formulation for Robot Mechanics
Lie Group Formulation for Robot Mechanics
 

Último

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 

Último (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 

Deep Learning Tutorial in 100 Mins

  • 1. Terry Taewoong Um (terry.t.um@gmail.com) University of Waterloo Department of Electrical & Computer Engineering Terry Taewoong Um DEEP LEARNING TUTORIAL IN 100 MINS 1
  • 2. Terry Taewoong Um (terry.t.um@gmail.com) WHO AM I 2 2008 – 2010 M.S. at Seoul National University, Korea c.f. “Tangent Space RRT with Lazy Projection: An Efficient Planning Algorithm for Constrained Motions”, T. T. Um et al., ARK2010. 2010 – 2014 Robotics researcher at LIG Nex1 / KIST, Korea c.f. “Independent Joint Learning: A Novel Task-to-Task Transfer Learning Scheme for Robot Models”, T. T. Um et al., ICRA2014. • I am a robotics researcher
  • 3. Terry Taewoong Um (terry.t.um@gmail.com) WHO AM I 3 2014 – Present PhD candidate at U.Waterloo, Canada c.f. “Exercise Motion Classification from Large-Scale Wearable Sensor Data Using Convolutional Neural Networks”, T. T. Um et al., IROS2017. • I am a deep learning researcher http://hookedoneverything.com/parkinsons/ https://www.trainwithpush.com/ PUSH project Parkinson’s disease (PD) project
  • 4. WHO AM I 4 • But I am more known for ... - Facebook communities : 로봇공학을 위한 열린 모임, Tensorflow Korea, etc. - Blog / Youtube : 테리의 딥러닝 토크, T-Robotics, 대학원생 때 알았더라면 좋았을 이야기들 - Etc. : Most-cited DL papers (github)
  • 5. Terry Taewoong Um (terry.t.um@gmail.com) CONTENTS 5 1. Introduction to ML & DL 50min 2. DL methods: CNN, RNN, VAE, GAN 35min 3. Can we believe DNNs? 15min 4. Q & A 15min Break 10min
  • 6. Terry Taewoong Um (terry.t.um@gmail.com) CONTENTS 6 1. Introduction to ML & DL 50min 2. DL methods: CNN, RNN, VAE, GAN 35min 3. Can we believe DNNs? 15min 4. Q & A 15min Break 10min
  • 7. 7 Terry Taewoong Um (terry.t.um@gmail.com) https://github.com/sjchoi86/ dl_tutorials_10weeks https://github.com/terryum/ awesome-deep-learning-papers http://videolectures.net/ deeplearning2017_montreal/ • Deep learning summer school STUDY MATERIALS • Andrew Ng, Deeplearning.ai / Coursera • Stanford Univ., CS231n (CNNs) / CS224d (RNNs) • Various tutorials presented in NIPS, ICML, etc.
  • 8. Terry Taewoong Um (terry.t.um@gmail.com) 8 AI, ML, DL, NN https://medium.com/zeroth-ai/understanding- artificial-intelligence-b9b58f9b25c2
  • 9. Terry Taewoong Um (terry.t.um@gmail.com) 9 RECOGNITION - IMAGE Google photos Object recognition (image retrieval)
  • 10. Terry Taewoong Um (terry.t.um@gmail.com) 10 YOLO v2, https://www.youtube.com/watch?v=VOC3huqHrss RECOGNITION - IMAGE Object detection
  • 11. Terry Taewoong Um (terry.t.um@gmail.com) 11 RECOGNITION - NATURAL LANGUAGE Sentiment classification SAD Joyful
  • 12. Terry Taewoong Um (terry.t.um@gmail.com) 12 Speech recognition RECOGNITION - SPEECH
  • 13. PUSH Inc., https://youtu.be/JpzuVPesFLY Terry Taewoong Um (terry.t.um@gmail.com) 13 RECOGNITION - WEARABLES Exercise recognition Parkinson’s disease assessment
  • 14. Terry Taewoong Um (terry.t.um@gmail.com) 14 SUPERVISED LEARNING Train : X → Y image, text, speech, wearable data, etc. labels Test : X → ? (real practice) * Never use the test dataset during the development of a model (training)
  • 16. Terry Taewoong Um (terry.t.um@gmail.com) 16 OVERFITTING good performance for training data bad performance for test data model complexity error training error test error • Model complexity vs. Error
  • 17. Terry Taewoong Um (terry.t.um@gmail.com) 17 SUPERVISED LEARNING Train : X → Y image, text, speech, wearable data, etc. labels Test : X → ? (real practice) * Never use the test dataset during the development of a model (training)
  • 18. Terry Taewoong Um (terry.t.um@gmail.com) 18 VALIDATION SET Train : X → Y image, text, speech, wearable data, etc. labels Validation : X → ? (real-practice indicator) Test : X → ? (real practice)
  • 19. Terry Taewoong Um (terry.t.um@gmail.com) 19 PREVENTING OVERFITTING training time error training error test error we should stop here training set validation set test set for training (parameter optimization) for early stopping (avoid overfitting) for evaluation (measure the performance) keep watching the validation error • Training / Validation / Test datasets
  • 20. Terry Taewoong Um (terry.t.um@gmail.com) 20 PREVENTING OVERFITTING training validation test • N-fold cross validation
  • 21. Terry Taewoong Um (terry.t.um@gmail.com) 21 BOLTS & NUTS OF BUILDING DL http://www.computervisionblog.com/2016/12/ nuts-and-bolts-of-building-deep.html Andrew Ng at NIPS2016
  • 22. Terry Taewoong Um (terry.t.um@gmail.com) 22 REGULARIZATION 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 σ ||𝑦 − 𝑓(𝑥)||2 , where, 𝑓 𝑥 = 𝑤0 + 𝑤1 𝑥1 + 𝑤2 𝑥2 + ⋯ = 𝑊𝑋 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ ||𝑦 − 𝑓(𝑥)||2 + ||𝑊|| 𝑚 (minimize error & prefer a simpler model)
  • 23. Terry Taewoong Um (terry.t.um@gmail.com) 23 GENERAL PROCEDURE OF ML Task Representation (Features) Feature extraction Machine learning IMAGE SPEECH Feature engineering
  • 24. Terry Taewoong Um (terry.t.um@gmail.com) 24 WHAT ARE THE GOOD FEATURES? http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/
  • 25. Terry Taewoong Um (terry.t.um@gmail.com) 25 GENERAL PROCEDURE OF DL Task Representation (Features) Feature extraction Machine learning Task Deep learning (end-to-end) * Feature extraction included
  • 26. Terry Taewoong Um (terry.t.um@gmail.com) 26 DEEP LEARNING • What is Deep Learning (DL) ? - Learning methods which have deep (not shallow) architecture - It usually allows end-to-end learning - It automatically learn intermediate representation. Thus, it can be regarded as a representation learning - It often contains stacked “neural network”. Thus, Deep learning usually indicates “deep neural network” “Deep Gaussian Process” (2013) https://youtu.be/NwoGqYsQifg http://goo.gl/fxmmPE http://goo.gl/5Ry08S
  • 27. Terry Taewoong Um (terry.t.um@gmail.com) 27 BIOLOGICAL EVIDENCE Yann LeCun, https://goo.gl/VVQXJG • The vental pathway in the visual cortex has multiple stages • There exist a lot of intermediate representations
  • 28. Terry Taewoong Um (terry.t.um@gmail.com) 28 IMAGENET CHALLENGE (ILSVRC) http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf • 1000 classes, 1.4 million images • The first “large-scale” ML challenge • Labeled by Amazon Mechanical Turk (Fei-Fei Lee, Stanford Univ.) • Need large-scale data → ImageNet • Need a scalable method → DL • Need computation power → GPU • Convolutional Neural Networks (CNNs) AlexNet (2012), VGG (2014), GoogLeNet (2015), ResNet (2016), DenseNet (2017)...
  • 29. 29 NEURAL NETWORKS Terry Taewoong Um (terry.t.um@gmail.com) (H. Lalochelle, DLSS2017) • A large parametric model (like high-order polynomials) • Learn the parameters using gradient descent (GD) method • Local minima problem? → Stochastic GD (SGD) • Overfitting problem? → Large-scale data
  • 30. 30 NEURAL NETWORKS Terry Taewoong Um (terry.t.um@gmail.com) • Neural networks = Composition of functions Linear combination 𝑊𝑥 + 𝑏 Activation σ(𝑊𝑥 + 𝑏) (…repeat…) Linear combination 𝑊 σ 𝑊(… ) + 𝑏 + 𝑏 Output activation σ 𝑜𝑢𝑡 (… ) Forward pass Backward pass Calculate the loss Loss(𝑦𝑡𝑟𝑢𝑒, 𝑦 𝑝𝑟𝑒𝑑) Gradient of the loss Gradient of the activation Gradient of the weights (…repeat…) Update the weights (H. Lalochelle, DLSS2017) ReLU or tanh Softmax or Linear Optimization: SGD, RMSProb, or Adam cross-entropy or MSE
  • 31. Terry Taewoong Um (terry.t.um@gmail.com) 31 from keras.models import Sequential from keras.layers import Dense from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax’)) model.compile(loss='categorical_crossentropy', optimizer='sgd’) model.fit(x_train, y_train, epochs=5) NN IN KERAS
  • 32. • Recognition & Supervised learning • Model selection & Overfitting • Training set split & Cross validation • Regularization • Deep learning : End-to-end learning • Neural Network Basics Terry Taewoong Um (terry.t.um@gmail.com) SUMMARY – PART1
  • 33. Terry Taewoong Um (terry.t.um@gmail.com) CONTENTS 33 1. Introduction to ML & DL 50min 2. DL methods: CNN, RNN, VAE, GAN 35min 3. Can we believe DNNs? 15min 4. Q & A 15min Break 10min
  • 34. 34 POPULAR DL METHODS Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN) Reinforcement learning Deep Q- Network (DQN) Actor-Critic Policy gradient Yuxi Li, “Deep reinforcement learning: Overview” https://arxiv.org/abs/1701.07274
  • 35. 35 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) Labels (O) Labels (X) (mostly) Discriminative model (mostly) Generative model * RNN can be used as unsupervised manner POPULAR DL METHODS
  • 36. 36 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Explicit density Implicit density (try to generate realistic samples) POPULAR DL METHODS
  • 37. 37 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) The area that I am most familiar with POPULAR DL METHODS Explicit density Implicit density (try to generate realistic samples)
  • 38. 38 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) POPULAR DL METHODS Explicit density Implicit density (try to generate realistic samples)
  • 39. CONVOLUTIONAL NN (CNN) Fully-connected layers Convolutional layers w h n 39 / 39 p × 𝑞 Terry Taewoong Um (terry.t.um@gmail.com) e.g.) (1k*1k) image * 1k nodes = 1 billion parameters [Fully-connected] (3*3) kernel size * 64 kernels = 576 parameters [Convolutional] https://github.com/vdumoulin /conv_arithmetic
  • 40. Terry Taewoong Um (terry.t.um@gmail.com) 40 • How can we deal with real images which is much bigger than MNIST digit images? - Use not fully-connected, but locally-connected NN - Use convolutions to get various feature maps - Abstract the results into higher layer by using pooling - Fine tune with fully-connected NN https://goo.gl/G7kBjI https://goo.gl/Xswsbd http://goo.gl/5OR5oH CONVOLUTIONAL NN (CNN)
  • 41. CNN FEATURES 41 / 39 Terry Taewoong Um (terry.t.um@gmail.com) http://yosinski.com/deepvis
  • 42. 42 CNN ARCHITECTURES Terry Taewoong Um (terry.t.um@gmail.com) AlexNet (2012) VGG (2014) GoogLeNet (2014) ResNet (2014)
  • 43. 43 APPLICATIONS Terry Taewoong Um (terry.t.um@gmail.com) https://goo.gl/1SjmTp A. Karpathy @ Bay area DL school 2016 https://docs.google.com/presentation/d/ 1Q1CmVVnjVJM_9CDk3B8Y6MWCavZOti KmOLQ0XB7s9Vg/edit
  • 45. 45 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) POPULAR DL METHODS Explicit density Implicit density (try to generate realistic samples)
  • 46. RECURRENT NN (RNN) 𝑥 ℎ RNN (folded) RNN (unfolded) • Vanishing / exploding gradient problem • Recurrent Neural Network (RNN) 46 / 39 Terry Taewoong Um (terry.t.um@gmail.com)
  • 47. LONG-SHORT TERM MEMORY (LSTM) • Long-short term memory (LSTM) LSTM 47 / 39 Terry Taewoong Um (terry.t.um@gmail.com) [S. Hochreiter & J. Schmidhuber 1998]
  • 48. RNN APPLICATIONS Terry Taewoong Um (terry.t.um@gmail.com) (Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
  • 49. 49 RNN APPLICATIONS Terry Taewoong Um (terry.t.um@gmail.com) • Sequence generation • Classification Speech recognition, Sentence/document classification, Video classification, Activity recognition, … 𝑥 ℎ
  • 50. RNN APPLICATIONS (Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
  • 51. RNN APPLICATIONS • Machine translation with attention mechanism https://research.googleblog.com/ 2016/09/a-neural-network-for- machine.html Terry Taewoong Um (terry.t.um@gmail.com)
  • 52. 52 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) POPULAR DL METHODS Explicit density Implicit density (try to generate realistic samples)
  • 53. Terry Taewoong Um (terry.t.um@gmail.com) 53 Task 2: emotion estimation Task 1: person identification TASK-SPECIFIC FEATURES
  • 54. Terry Taewoong Um (terry.t.um@gmail.com) 54 - Labeled data are difficult to collect - Is this a right way to obtain a good representation? (Lack of generalizability / transferability) WHY UNSUPERVISED LEARNING? Task Deep learning (end-to-end) * Feature extraction included
  • 55. Terry Taewoong Um (terry.t.um@gmail.com) 55 GOOD REPRESENTATION?
  • 56. Good representation GOOD & BAD REPRESENTATION Bad representation
  • 57. 57 Terry Taewoong Um (terry.t.um@gmail.com) • Attempt to learn a good representation without labels • Unsupervised learning is far more difficult than supervised learning • Turn unsupervised learning into supervised learning! UNSUPERVISED LEARNING
  • 58. 58 Terry Taewoong Um (terry.t.um@gmail.com) • Objective : Minimize reconstruction error “오토엔코더의 모든것“, https://www.slideshare.net/ NaverEngineering/ss- 96581209 AUTOENCODER
  • 59. 59 “All about VAE”, H. Lee, https://www.slideshare.net/NaverEngineering/ss-96581209 VARIATIONAL AUTOENCODER (VAE) • Objective : Minimize reconstruction error + regularization loss
  • 60. 60 Terry Taewoong Um (terry.t.um@gmail.com) OVERFITTING & REGULARIZATION • Objective : Minimize reconstruction error + regularization loss
  • 61. 61 Terry Taewoong Um (terry.t.um@gmail.com) http://blog.fastforwardlabs.com/2016/08/12/introdu cing-variational-autoencoders-in-prose-and.html VARIATIONAL AUTOENCODER (VAE)
  • 62. Terry Taewoong Um (terry.t.um@gmail.com) 62 GENERATED IMAGES BY VAE https://github.com/davidsandberg/facenet/wiki/Variational-autoencoder
  • 63. Terry Taewoong Um (terry.t.um@gmail.com) 63 GENERATED IMAGES BY VAE https://github.com/davidsandberg/facenet/wiki/Variational-autoencoder
  • 64. 64 / 39 Terry Taewoong Um (terry.t.um@gmail.com) [X. Yan et al. 2016]
  • 65. CONDITIONAL VAE 65 / 39 Terry Taewoong Um (terry.t.um@gmail.com) [X. Yan et al. 2016]
  • 66. Terry Taewoong Um (terry.t.um@gmail.com) 66 MUSIC VAE
  • 67. 67 Terry Taewoong Um (terry.t.um@gmail.com) Generative Adversarial Network (GAN) Variational Autoencoder (VAE) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) POPULAR DL METHODS Explicit density Implicit density (try to generate realistic samples)
  • 68. 68 GENERATIVE MODELS 이활석, “그림 그리는 AI”, https://www.slideshare.net/NaverEngineering/ai-83896428
  • 69. 69 NOT OPTIMIZATION, BUT GAME 이활석, “그림 그리는 AI”, https://www.slideshare.net/NaverEngineering/ai-83896428 http://bzit.donga.com/List/3/all/50/1202090/1
  • 70. 70 / 39 Terry Taewoong Um (terry.t.um@gmail.com) DCGAN EBGAN LSGAN WGAN BEGAN DRAGAN GAN
  • 72. CYCLE-GAN 72 Terry Taewoong Um (terry.t.um@gmail.com)
  • 73. CYCLE-GAN 73 Terry Taewoong Um (terry.t.um@gmail.com)
  • 74. GAN VARIANTS 74 / 39 GAN zoo, https://deephunt.in/the- gan-zoo-79597dc8c347 Most of them have been developed for the last year
  • 75. Terry Taewoong Um (terry.t.um@gmail.com) VOICE GENERATION ( A U TOR EGR ESSIVE) 75 김태훈 (OpenAI), 네이버 Deview2017 “책읽는 딥러닝” https://www.youtube.com/watch?v=klnfWhPGPRs&t=1992s
  • 76. Terry Taewoong Um (terry.t.um@gmail.com) 76 Google Duplex https://www.youtube.com/watch?v=D5VN56jQMWM&t=2m47s RECOGNITION + GENERATION
  • 77. 77 POPULAR METHODS Terry Taewoong Um (terry.t.um@gmail.com) Variational Autoencoder (VAE) Generative Adversarial Network (GAN) Unsupervised learningSupervised learning Convolutional Neural Network (CNN) Recurrent Neural Network (RNN*) * RNN can be used as unsupervised manner Static data (e.g. image) Sequence data (e.g. natural language) Explicit density Implicit density (try to generate realistic samples)
  • 78. Terry Taewoong Um (terry.t.um@gmail.com) CONTENTS 78 1. Introduction to ML & DL 50min 2. DL methods: CNN, RNN, VAE, GAN 35min 3. Can we believe DNNs? 15min 4. Q & A 15min Break 10min
  • 79. Terry Taewoong Um (terry.t.um@gmail.com) BELIEVE OR NOT 79 green? enemy? 1. Adversarial attacks 2. Uncertainty 3. Interpretability
  • 80. Terry Taewoong Um (terry.t.um@gmail.com) BELIEVE OR NOT 80 [Keyword] = NOISE (perturbation) 1. Adversarial attacks 2. Uncertainty 3. Interpretability
  • 81. 81 Terry Taewoong Um (terry.t.um@gmail.com) [Wang & Bovik, 2002] ERRORS IN INPUT SPACE
  • 82. Terry Taewoong Um (terry.t.um@gmail.com) ADVERSARIAL ATTACKS 82 Gradient ascent method: Increase “the changes of the loss” w.r.t. the changes of the input”
  • 83. Terry Taewoong Um (terry.t.um@gmail.com) 83 ADVERSARIAL ATTACKS • Adversarial examples in the physical world (Kurakin et al. 2016)
  • 84. Terry Taewoong Um (terry.t.um@gmail.com) ADVERSARIAL ATTACKS 84 • Adversarial patch (Brown et al. 2017)
  • 85. Terry Taewoong Um (terry.t.um@gmail.com) ADVERSARIAL TRAINING 85 https://www.spsc.tugraz.at/research/roM/virtual-adversarial-training- applied-neural-higher-order-factors-phone-classification • Virtual adversarial training (Miyato et al. 2016) https://youtu.be/kvPmArtVoFE
  • 86. Terry Taewoong Um (terry.t.um@gmail.com) BELIEVE OR NOT 86 green? enemy? 1. Adversarial attacks 2. Uncertainty 3. Interpretability
  • 87. Terry Taewoong Um (terry.t.um@gmail.com) BAYESIAN APPROACHES 87 https://youtu.be/kvPmArtVoFE • Posterior ∝ Prior * Likelihood
  • 88. Terry Taewoong Um (terry.t.um@gmail.com) GAUSSIAN PROCESS 88 https://youtu.be/kvPmArtVoFE Beautiful, but not scalable!
  • 89. Terry Taewoong Um (terry.t.um@gmail.com) DROPOUT AS BAYESIAN 89 • Dropout: Randomly drop nodes → regularization
  • 90. Terry Taewoong Um (terry.t.um@gmail.com) BELIEVE OR NOT 90 green? enemy? 1. Adversarial attacks 2. Uncertainty 3. Interpretability
  • 91. OCCLUSION TEST Terry Taewoong Um (terry.t.um@gmail.com)
  • 92. CLASS ACTIVATION MAP (CAM) • Detect the most discriminative parts from the label (without the need of bounding boxes)
  • 93. CAM Terry Taewoong Um (terry.t.um@gmail.com) 93
  • 94. Terry Taewoong Um (terry.t.um@gmail.com) AI FOR ETHICS? 94 green? enemy? 1. Adversarial attacks 2. Uncertainty 3. Interpretability
  • 95. Terry Taewoong Um (terry.t.um@gmail.com) CONTENTS 95 1. Introduction & ML basics 35min 2. Supervised Learning: CNN & RNN 20min 3. Unsupervised Learning: VAE & GAN 20min 4. Can we believe DNNs? 15min 5. Q & A 15min Break 10min