SlideShare uma empresa Scribd logo
1 de 1
Baixar para ler offline
off-shoot
cuts foliation
Shallow
dipping sill
(NW Dip)
Shallow
dipping sill
(SSE Dip)
Location 3-A
Facing NNE abandoned tip
Melted lenses of
host rock
fractures cut
sill and host
Sub-vertical
foliation
(a)
Sill contact discordant
to foliation
Bedding (12)
0
90
Dip angle
0
90
180
270
Strike direction
HR-Fractures (53)
0
90
Sill-HR contact (77)
0
90
180
270
Sill-Host Rock Contacts
Bedding & Fractures in Host Rock N
Sill-Host Rock Contact (Poles)
Key
Fractures in Host rock (Poles)
Bedding (Poles)
Sill cuts vertical host rock bedding
Magma pressure and σ1
cause opening of
favourably orientated fractures
fracture opening
inflation
progressive inflation and opening
σ1
σ1
σ2
σ3
Pre-existing fracture, or
fracture formed during
sill emplacement
Exploitation
Model
0
90
Stepped Fractures
0
90
180
270
Dip angleStrike direction
Exploited Fractures
Exploited Fracture (Poles)
Stepped Fracture (Poles)
Key
Fractures in Host rock (Poles)
Foliation (Poles)
Flow Lineations (T,P)
N
20 cm
no sill exploiting
fractures
Arrows indicate amount of
rotation/ displacement due
to sill inflation in fracture
Sill
Sill HR
Exploitation of
shallow fractures
B) Sill stepped against steep fractures
BA Sill
Sub-vertical foliated
Moine host rock
Location 2-A
NNE SSW
Facing E
Step
F
Fracture
F
Fracture
Host Rock
F
4 cm
Facing ENE
Sill exploiting
shallow fracture
F
F
A) Sill exploiting shallow fractures
A B
Fractures
σ1
σ2
σ1
σ2
1 m
Sill
(Segment 2)
Sill
(Segment 1)
Facing S
Down-Step
(to West)
Exploitation of shallow
fracture
No intrusion
in fracture
Fracture
roof‘uplift’
Sub-vertical
foliation
Segment linkage
via step
Sill parallels
foliation
Sill parallels
foliation
Sill
Sill obliquely
cuts foliation
Location 2-B
Facing NW
Sill
Facing N
Down-Step
(to West)
Sill parallel
to foliation
20 cm
no instrusion
in foliation
A
B
B
232.07
bottom contact
top contact
Facing WNW
Sill
A 20 cm
1 m
Sub-vertical
foliation
Sill
C
C
B) Sill stepped against sub-vertical beddingA) Sill cutting through sub-vertical bedding
C) Sill segments linked via westward down-step. upper segment exploits a shallow fracture.
(Sill highlighted red for clarity)
(Sill highlighted red for clarity) (host rock highlighted blue for clarity)
Exploitation v.s Stepping
Observed Sill Geometries, Isle of Mull, UK:
Sill segment linkage
1.5 m
abandoned tip
(exploitation)
Segment 1
abandoned tipLocation 3-B
Facing E
HR
(a)
Host rock
Segment 2
Sills are discordant to host rock bedding and fabric:
Segment Linkage
σ3
σ1
σ1
Fractures and bedding perpendicular
to σ1
are kept closed, preventing
exploitation and promoting stepping.
Vertical bedding
plane/ fracture
Sub-vertical
Moine host rock
B
B
A
Inflation
Increased shear stress at
sill tips on discontinuity
plane
σ1σ1
σ3
σ2
Steping
direction
Step
trend
A
Stepping
Model
Segment Linkage Model
(a’’)
breached
relay
abandoned tip
(b) (b’’)
flow
breached
relay
inflation
flow
(b’)
relay zone
(a) (a’)
relay zone
σ1
σ1
σ3
σ1
σ1
σ3
1
Department of Geology, University of Leicester, Leicester, UK.
2
School of Geosciences, King’s College, University of Aberdeen, Aberdeen, AB24 3UE, UK
3
Department of Earth Science, Durham University, Durham, UK.TLS15@le.ac.uk
Sill emplacement controlled by regional stress state rather than host layering
Tara Stephens*1
; Richard Walker1
; Richard England1
; David Healy2
; Ken McCaffrey3
N
Bedding
Sill - Host rock
contact
References
GUDMUNDSSON, A. 2011. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 50-64.
SCHOFIELD, N. J., BROWN, D. J., MAGEE, C. & STEVENSON, C. T. 2012. Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. Journal of the Geological Society, 169, 127-141.
WALKER, R. J. 2016. Growth of a transgressive sill in mechanically layered media. Geology.
(a) (c)
Thrust Fault (Hybrid Mode I - III)
Propagation in σ2
orientation
B B’
σ1
σ1
σ3
σ2
σ3
σ1
B B’
Influence of fluid pressureIncipient shear zone, prior to
through-going thrust fault
σ2
σ3
σ1
A A’
A A’
σ1
σ1
σ3
τ
(MPa)
σn
(MPa)
reactivation possible
θ ≈ 10-50°
2θ
Pf
reactivation
envelope
intact
rock
σ3
σ1
σ1
σ3
σ1
σ1
Pf
(b)
σ1
σ2
σ3
σ1σ2σ3
σT (Intrusion tip)
σT (Discontinuity)
σT (I)
> σT (D)
(1a) (1b)
1) Cook-Gordon Mechanism
(a) Tensile stress ahead of the dyke tip
causes opening of a discontinuity above the
dyke.
(b) If the dyke reaches the crack it will
propagate as a sill.
Dyke - Sill Transition Models
(Gudmundsson, 2011)
2) Stress Barriers
(a) Magma chamber pressure causes local rota-
tions in the regional stress field at mechanical
layer boundaries(dashes indicate σ1
trajectory).
(b) Dykes follow σ1
. If the trajectory changes
abruptly the dyke will terminate.
~10 m
3) Material Toughness
(a) Dyke propagates through a‘soft’material
towards a‘stiff’material.
(b) Dyke terminates or rotates to exploit the
contact. (E = Young’s Modulus, v = Poisson’s Ratio)
• All require mechanical layering, which causes
rotation of the σ1
-σ2
plane from vertical (dykes)
to horizontal (sills).
σ1
Pf
(b)
(a)
σ1
σ1
(2)
E & v
E & v
Tuff
Lava
(a)
(b)
(3)
Introduction
Igneous sill complexes represent a significant volumetric
contribution to upper crustal magma systems, and can play
an important role in petroleum system maturation and gas
generation in sedimentary basins. Despite their signifi-
cance, the causes of sill formation, particularly in terms of
the transition from dikes to sills, remains ambiguous. Host
rock mechanical layering is typically accepted as controling
this transition and promoting sill emplacement.
The purpose of this poster is to highlight the exem-
plary Loch Scridain Sill Complex (Isle of Mull, Scotland,
UK) where sills are emplaced into sub-vertical inter-
bedded metasedimentary Moine host rock. Sills show
a consistent ~26° dip to the NNW and SSE, despite cut-
ting horizontal strata, sub-vertical strata, and sub-
vertical pre-existing host rock fractures. Here, host rock
mechanical layering is not the primary control on sill
emplacement.
Conclusions & Further Work
• Sills in Mull show a thrust-type geometry within vari-
ably layered host rocks. Exploitation of shallow fractures
suggests a sub-horizontal σ1
-σ2
plane.
• NW-SE dipping sills suggests an acute angle about the
σ1
axis; they are not parallel to the σ1
-σ2
plane. Can sills
be treated as magma-filled faults, hence as a record of
the stress state?
• Future work will continue to constrain the timing and
stress state during sill emplacement elsewhere, and aims
to consider the distribution of sills as a record of
horizontal shortening.
• Future work will include:
- Fieldwork in Mull, Skye & Northumberland
- Mechanical modelling
- Analogue modelling
Case Study Sites: Isle of Mull, UK
6°0'0"W
6°0'0"W
6°4'0"W
6°4'0"W
6°8'0"W
6°8'0"W
6°12'0"W
6°12'0"W
6°16'0"W
6°16'0"W
6°20'0"W
6°20'0"W
6°24'0"W
6°24'0"W6°26'0"W6°28'0"W
56°26'0"N
56°24'0"N
56°24'0"N
56°22'0"N
56°22'0"N
56°20'0"N
56°20'0"N
56°18'0"N
56°18'0"N
56°16'0"N
Ross of Mull
Pluton
L4
L1-3
L5
Iona
Bunessan
Loch Scridain
Carsaig
Mull Lavas
Loch Scridain Sill Complex
Moine Supergroup
Assapol Fault
Thrust Fault
50 km
N
Scotland
Isle of
Mull
76
Moine
foliation
21
Lava
units
Bedding/ Foliation
average strike.dip
76
Horizontal Fracture Modes
• Sills and dykes are generally considered as forming in
the σ1-σ2 plane, as hydrofractures (Mode I).
• Fractures and faults represent a record of the stress
state: σ1
≥ σ2
≥ σ3
.
• Dykes are used to infer regional tectonic extension,
whereas, sills are thought to represent a local 'layer-
controlled' stress state.
Mode I
(opening)
σ3
σ3
σ1
σ2
Mode II
(in-plane shear)
Mode III
(out-of-plane
shear)
σ1
σ3
σ1
σ2
σ2
σ3
σ1
σ3
σ1
σ3
σ2
Dyke
Sill
Mode I
(opening)
Sill
DykeSub-horizontal
Palaeogene lavas
Sill
Location 5
Facing ENE
Sills climb at a shallow angle through sub-horizontal lavas
Sill
(Sills & dyke highlighted for clarity)
Sills climb at a shallow angle through sub-vertical Moine host rock - arrows indicate sill top & base
Location 3
Facing E
3 m
Facing ENE
Sill (highlighted red for clarity) SSE dip
NW dip
Sill
Moine host rock
3B
3A
(Sill highlighted red for clarity)
Sill - Host Rock Relationships

Mais conteúdo relacionado

Mais procurados

Slope stabilty
Slope stabiltySlope stabilty
Slope stabiltyRiyaz Bhat
 
Slope stability question answers
Slope stability question answersSlope stability question answers
Slope stability question answersJyoti Khatiwada
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
2.pressure arch theory (longwall) copy
2.pressure arch theory (longwall)  copy2.pressure arch theory (longwall)  copy
2.pressure arch theory (longwall) copyVinay Chary
 
3z03 lec7(1)
3z03 lec7(1)3z03 lec7(1)
3z03 lec7(1)izwarjhe
 
R16 41013.2 stability analysis of slopes
R16 41013.2 stability analysis of slopesR16 41013.2 stability analysis of slopes
R16 41013.2 stability analysis of slopesPoorna Nagidi
 
Final Year Dissertation
Final Year DissertationFinal Year Dissertation
Final Year DissertationDaniel Cox
 
Types of slope failures
Types of slope failuresTypes of slope failures
Types of slope failuresshaxee ali
 
sill emplacement mechanism model
sill emplacement mechanism modelsill emplacement mechanism model
sill emplacement mechanism modelSachin Yadav
 
Mohr circle mohr circle anaysisand application
Mohr circle     mohr circle anaysisand applicationMohr circle     mohr circle anaysisand application
Mohr circle mohr circle anaysisand applicationShivam Jain
 
Fault'classification of fault and mechanism of faulting
Fault'classification of fault  and mechanism of faultingFault'classification of fault  and mechanism of faulting
Fault'classification of fault and mechanism of faultingShivam Jain
 
Structural Geology & Stress
Structural Geology & StressStructural Geology & Stress
Structural Geology & StressM.T.H Group
 
Pages from TMW2016_Proceedings
Pages from TMW2016_ProceedingsPages from TMW2016_Proceedings
Pages from TMW2016_ProceedingsTroy Meyer
 

Mais procurados (20)

Slope stability
Slope stabilitySlope stability
Slope stability
 
Slope stabilty
Slope stabiltySlope stabilty
Slope stabilty
 
Design of openings
Design of openingsDesign of openings
Design of openings
 
Slope stability question answers
Slope stability question answersSlope stability question answers
Slope stability question answers
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
2.pressure arch theory (longwall) copy
2.pressure arch theory (longwall)  copy2.pressure arch theory (longwall)  copy
2.pressure arch theory (longwall) copy
 
3z03 lec7(1)
3z03 lec7(1)3z03 lec7(1)
3z03 lec7(1)
 
Sol53
Sol53Sol53
Sol53
 
Day 2 Presentation: Kinematic Analysis
Day 2 Presentation: Kinematic AnalysisDay 2 Presentation: Kinematic Analysis
Day 2 Presentation: Kinematic Analysis
 
R16 41013.2 stability analysis of slopes
R16 41013.2 stability analysis of slopesR16 41013.2 stability analysis of slopes
R16 41013.2 stability analysis of slopes
 
Final Year Dissertation
Final Year DissertationFinal Year Dissertation
Final Year Dissertation
 
Types of slope failures
Types of slope failuresTypes of slope failures
Types of slope failures
 
sill emplacement mechanism model
sill emplacement mechanism modelsill emplacement mechanism model
sill emplacement mechanism model
 
Mohr circle mohr circle anaysisand application
Mohr circle     mohr circle anaysisand applicationMohr circle     mohr circle anaysisand application
Mohr circle mohr circle anaysisand application
 
FINAL POSTER reduced
FINAL POSTER reducedFINAL POSTER reduced
FINAL POSTER reduced
 
Fault'classification of fault and mechanism of faulting
Fault'classification of fault  and mechanism of faultingFault'classification of fault  and mechanism of faulting
Fault'classification of fault and mechanism of faulting
 
Structural Geology & Stress
Structural Geology & StressStructural Geology & Stress
Structural Geology & Stress
 
Abstract
AbstractAbstract
Abstract
 
Pages from TMW2016_Proceedings
Pages from TMW2016_ProceedingsPages from TMW2016_Proceedings
Pages from TMW2016_Proceedings
 
Joints
JointsJoints
Joints
 

Destaque

HooverCOINTELPRObureaupolit
HooverCOINTELPRObureaupolitHooverCOINTELPRObureaupolit
HooverCOINTELPRObureaupolitSteve Durchin
 
TESTIMONIAL for Paul Gregory
TESTIMONIAL for Paul GregoryTESTIMONIAL for Paul Gregory
TESTIMONIAL for Paul GregoryPaul Gregory
 
Revisión de escritorio o gabinete
Revisión de escritorio o gabineteRevisión de escritorio o gabinete
Revisión de escritorio o gabineteEX ARTHUR MEXICO
 
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.Pierrot Caron
 
paises mas pobres del mundo sfrica
paises mas pobres del mundo sfricapaises mas pobres del mundo sfrica
paises mas pobres del mundo sfricaorlandomoposita
 
Ije sc a template
Ije sc a templateIje sc a template
Ije sc a templatesmpn1tgt
 
Question 7
Question 7Question 7
Question 7amarem9
 
Ra2hauge btb leadmanagement
Ra2hauge btb leadmanagementRa2hauge btb leadmanagement
Ra2hauge btb leadmanagementMichael Raahauge
 
Ontmenselijking in de Vietnamoorlog
Ontmenselijking in de VietnamoorlogOntmenselijking in de Vietnamoorlog
Ontmenselijking in de VietnamoorlogLennart Westeneng
 
Flash informativo - Golden Globes Awards 2.016
Flash informativo - Golden Globes Awards 2.016Flash informativo - Golden Globes Awards 2.016
Flash informativo - Golden Globes Awards 2.0166 Grados
 

Destaque (20)

HooverCOINTELPRObureaupolit
HooverCOINTELPRObureaupolitHooverCOINTELPRObureaupolit
HooverCOINTELPRObureaupolit
 
TESTIMONIAL for Paul Gregory
TESTIMONIAL for Paul GregoryTESTIMONIAL for Paul Gregory
TESTIMONIAL for Paul Gregory
 
martinhansen 1.2.2016 vita
martinhansen 1.2.2016  vitamartinhansen 1.2.2016  vita
martinhansen 1.2.2016 vita
 
Anih Resume v16.01
Anih Resume v16.01Anih Resume v16.01
Anih Resume v16.01
 
Revisión de escritorio o gabinete
Revisión de escritorio o gabineteRevisión de escritorio o gabinete
Revisión de escritorio o gabinete
 
Trabjo de entalpia clase 1
Trabjo de entalpia clase 1Trabjo de entalpia clase 1
Trabjo de entalpia clase 1
 
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.
LEÇON 12 – Je suis contrarié parce que je vois un monde in-signifiant.
 
CV
CVCV
CV
 
Sm chapter3
Sm chapter3Sm chapter3
Sm chapter3
 
paises mas pobres del mundo sfrica
paises mas pobres del mundo sfricapaises mas pobres del mundo sfrica
paises mas pobres del mundo sfrica
 
Timeline
TimelineTimeline
Timeline
 
Ije sc a template
Ije sc a templateIje sc a template
Ije sc a template
 
El Jute
El JuteEl Jute
El Jute
 
Question 7
Question 7Question 7
Question 7
 
Ra2hauge btb leadmanagement
Ra2hauge btb leadmanagementRa2hauge btb leadmanagement
Ra2hauge btb leadmanagement
 
Ontmenselijking in de Vietnamoorlog
Ontmenselijking in de VietnamoorlogOntmenselijking in de Vietnamoorlog
Ontmenselijking in de Vietnamoorlog
 
Systems se
Systems seSystems se
Systems se
 
Salads1
Salads1Salads1
Salads1
 
Flash informativo - Golden Globes Awards 2.016
Flash informativo - Golden Globes Awards 2.016Flash informativo - Golden Globes Awards 2.016
Flash informativo - Golden Globes Awards 2.016
 
Tix
TixTix
Tix
 

Semelhante a TSG_2016_Poster_7a

Slope stabilitty analysis
Slope stabilitty analysisSlope stabilitty analysis
Slope stabilitty analysisSafdar Ali
 
Chapter 13 Of Rock Engineering
Chapter 13 Of  Rock  EngineeringChapter 13 Of  Rock  Engineering
Chapter 13 Of Rock EngineeringNgo Hung Long
 
Rock mechanics uses of rocks in different condition.
Rock mechanics uses of rocks in different condition.Rock mechanics uses of rocks in different condition.
Rock mechanics uses of rocks in different condition.tkrishna078
 
CEN530_SlopeStability_Chapter1_Introduction.pdf
CEN530_SlopeStability_Chapter1_Introduction.pdfCEN530_SlopeStability_Chapter1_Introduction.pdf
CEN530_SlopeStability_Chapter1_Introduction.pdfDaliaAbdelMassih1
 
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...IOSRJMCE
 
Circular Failure-Hoek&Bray.pptx
Circular Failure-Hoek&Bray.pptxCircular Failure-Hoek&Bray.pptx
Circular Failure-Hoek&Bray.pptxChunaramChoudhary1
 
Coastal questions
Coastal questionsCoastal questions
Coastal questionstudorgeog
 
The Geology of South Raasay Dissertation
The Geology of South Raasay DissertationThe Geology of South Raasay Dissertation
The Geology of South Raasay DissertationJonathan Edwards
 
LPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkLPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkNicholas Kelly
 
Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...
	Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...	Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...
Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...inventionjournals
 
Evaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarEvaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarIJERD Editor
 
Lister & snoke 1984 s c mylonites
Lister & snoke 1984 s c mylonitesLister & snoke 1984 s c mylonites
Lister & snoke 1984 s c mylonitesRafael Sanchez
 
Analysis of Splash Failure in Tunnel
Analysis of Splash Failure in TunnelAnalysis of Splash Failure in Tunnel
Analysis of Splash Failure in TunnelHamid Heydari
 

Semelhante a TSG_2016_Poster_7a (20)

Slope stabilitty analysis
Slope stabilitty analysisSlope stabilitty analysis
Slope stabilitty analysis
 
Foliations
FoliationsFoliations
Foliations
 
Chapter 13 Of Rock Engineering
Chapter 13 Of  Rock  EngineeringChapter 13 Of  Rock  Engineering
Chapter 13 Of Rock Engineering
 
Rock mechanics uses of rocks in different condition.
Rock mechanics uses of rocks in different condition.Rock mechanics uses of rocks in different condition.
Rock mechanics uses of rocks in different condition.
 
CEN530_SlopeStability_Chapter1_Introduction.pdf
CEN530_SlopeStability_Chapter1_Introduction.pdfCEN530_SlopeStability_Chapter1_Introduction.pdf
CEN530_SlopeStability_Chapter1_Introduction.pdf
 
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...
Analysis and Design Aspects of Support Measures of Main Caverns of Karuma Hyd...
 
Circular Failure-Hoek&Bray.pptx
Circular Failure-Hoek&Bray.pptxCircular Failure-Hoek&Bray.pptx
Circular Failure-Hoek&Bray.pptx
 
Lund Snee et al 2014
Lund Snee et al 2014Lund Snee et al 2014
Lund Snee et al 2014
 
Coastal questions
Coastal questionsCoastal questions
Coastal questions
 
The Geology of South Raasay Dissertation
The Geology of South Raasay DissertationThe Geology of South Raasay Dissertation
The Geology of South Raasay Dissertation
 
LPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkLPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunk
 
Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...
	Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...	Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...
Structural And Metamorphic Evolution Of The Melur Migmatites, In Melur Regio...
 
Structure
StructureStructure
Structure
 
Rock Drilling and Blasting LECTURES - NN.pdf
Rock Drilling and Blasting LECTURES - NN.pdfRock Drilling and Blasting LECTURES - NN.pdf
Rock Drilling and Blasting LECTURES - NN.pdf
 
Garibaldi et al 2016
Garibaldi et al 2016Garibaldi et al 2016
Garibaldi et al 2016
 
Evaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarEvaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal Omar
 
Lister & snoke 1984 s c mylonites
Lister & snoke 1984 s c mylonitesLister & snoke 1984 s c mylonites
Lister & snoke 1984 s c mylonites
 
Deformation and kink bads
Deformation and kink badsDeformation and kink bads
Deformation and kink bads
 
Geotechnical Aspects of EQ Resistant Design
Geotechnical Aspects of EQ Resistant DesignGeotechnical Aspects of EQ Resistant Design
Geotechnical Aspects of EQ Resistant Design
 
Analysis of Splash Failure in Tunnel
Analysis of Splash Failure in TunnelAnalysis of Splash Failure in Tunnel
Analysis of Splash Failure in Tunnel
 

TSG_2016_Poster_7a

  • 1. off-shoot cuts foliation Shallow dipping sill (NW Dip) Shallow dipping sill (SSE Dip) Location 3-A Facing NNE abandoned tip Melted lenses of host rock fractures cut sill and host Sub-vertical foliation (a) Sill contact discordant to foliation Bedding (12) 0 90 Dip angle 0 90 180 270 Strike direction HR-Fractures (53) 0 90 Sill-HR contact (77) 0 90 180 270 Sill-Host Rock Contacts Bedding & Fractures in Host Rock N Sill-Host Rock Contact (Poles) Key Fractures in Host rock (Poles) Bedding (Poles) Sill cuts vertical host rock bedding Magma pressure and σ1 cause opening of favourably orientated fractures fracture opening inflation progressive inflation and opening σ1 σ1 σ2 σ3 Pre-existing fracture, or fracture formed during sill emplacement Exploitation Model 0 90 Stepped Fractures 0 90 180 270 Dip angleStrike direction Exploited Fractures Exploited Fracture (Poles) Stepped Fracture (Poles) Key Fractures in Host rock (Poles) Foliation (Poles) Flow Lineations (T,P) N 20 cm no sill exploiting fractures Arrows indicate amount of rotation/ displacement due to sill inflation in fracture Sill Sill HR Exploitation of shallow fractures B) Sill stepped against steep fractures BA Sill Sub-vertical foliated Moine host rock Location 2-A NNE SSW Facing E Step F Fracture F Fracture Host Rock F 4 cm Facing ENE Sill exploiting shallow fracture F F A) Sill exploiting shallow fractures A B Fractures σ1 σ2 σ1 σ2 1 m Sill (Segment 2) Sill (Segment 1) Facing S Down-Step (to West) Exploitation of shallow fracture No intrusion in fracture Fracture roof‘uplift’ Sub-vertical foliation Segment linkage via step Sill parallels foliation Sill parallels foliation Sill Sill obliquely cuts foliation Location 2-B Facing NW Sill Facing N Down-Step (to West) Sill parallel to foliation 20 cm no instrusion in foliation A B B 232.07 bottom contact top contact Facing WNW Sill A 20 cm 1 m Sub-vertical foliation Sill C C B) Sill stepped against sub-vertical beddingA) Sill cutting through sub-vertical bedding C) Sill segments linked via westward down-step. upper segment exploits a shallow fracture. (Sill highlighted red for clarity) (Sill highlighted red for clarity) (host rock highlighted blue for clarity) Exploitation v.s Stepping Observed Sill Geometries, Isle of Mull, UK: Sill segment linkage 1.5 m abandoned tip (exploitation) Segment 1 abandoned tipLocation 3-B Facing E HR (a) Host rock Segment 2 Sills are discordant to host rock bedding and fabric: Segment Linkage σ3 σ1 σ1 Fractures and bedding perpendicular to σ1 are kept closed, preventing exploitation and promoting stepping. Vertical bedding plane/ fracture Sub-vertical Moine host rock B B A Inflation Increased shear stress at sill tips on discontinuity plane σ1σ1 σ3 σ2 Steping direction Step trend A Stepping Model Segment Linkage Model (a’’) breached relay abandoned tip (b) (b’’) flow breached relay inflation flow (b’) relay zone (a) (a’) relay zone σ1 σ1 σ3 σ1 σ1 σ3 1 Department of Geology, University of Leicester, Leicester, UK. 2 School of Geosciences, King’s College, University of Aberdeen, Aberdeen, AB24 3UE, UK 3 Department of Earth Science, Durham University, Durham, UK.TLS15@le.ac.uk Sill emplacement controlled by regional stress state rather than host layering Tara Stephens*1 ; Richard Walker1 ; Richard England1 ; David Healy2 ; Ken McCaffrey3 N Bedding Sill - Host rock contact References GUDMUNDSSON, A. 2011. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 50-64. SCHOFIELD, N. J., BROWN, D. J., MAGEE, C. & STEVENSON, C. T. 2012. Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. Journal of the Geological Society, 169, 127-141. WALKER, R. J. 2016. Growth of a transgressive sill in mechanically layered media. Geology. (a) (c) Thrust Fault (Hybrid Mode I - III) Propagation in σ2 orientation B B’ σ1 σ1 σ3 σ2 σ3 σ1 B B’ Influence of fluid pressureIncipient shear zone, prior to through-going thrust fault σ2 σ3 σ1 A A’ A A’ σ1 σ1 σ3 τ (MPa) σn (MPa) reactivation possible θ ≈ 10-50° 2θ Pf reactivation envelope intact rock σ3 σ1 σ1 σ3 σ1 σ1 Pf (b) σ1 σ2 σ3 σ1σ2σ3 σT (Intrusion tip) σT (Discontinuity) σT (I) > σT (D) (1a) (1b) 1) Cook-Gordon Mechanism (a) Tensile stress ahead of the dyke tip causes opening of a discontinuity above the dyke. (b) If the dyke reaches the crack it will propagate as a sill. Dyke - Sill Transition Models (Gudmundsson, 2011) 2) Stress Barriers (a) Magma chamber pressure causes local rota- tions in the regional stress field at mechanical layer boundaries(dashes indicate σ1 trajectory). (b) Dykes follow σ1 . If the trajectory changes abruptly the dyke will terminate. ~10 m 3) Material Toughness (a) Dyke propagates through a‘soft’material towards a‘stiff’material. (b) Dyke terminates or rotates to exploit the contact. (E = Young’s Modulus, v = Poisson’s Ratio) • All require mechanical layering, which causes rotation of the σ1 -σ2 plane from vertical (dykes) to horizontal (sills). σ1 Pf (b) (a) σ1 σ1 (2) E & v E & v Tuff Lava (a) (b) (3) Introduction Igneous sill complexes represent a significant volumetric contribution to upper crustal magma systems, and can play an important role in petroleum system maturation and gas generation in sedimentary basins. Despite their signifi- cance, the causes of sill formation, particularly in terms of the transition from dikes to sills, remains ambiguous. Host rock mechanical layering is typically accepted as controling this transition and promoting sill emplacement. The purpose of this poster is to highlight the exem- plary Loch Scridain Sill Complex (Isle of Mull, Scotland, UK) where sills are emplaced into sub-vertical inter- bedded metasedimentary Moine host rock. Sills show a consistent ~26° dip to the NNW and SSE, despite cut- ting horizontal strata, sub-vertical strata, and sub- vertical pre-existing host rock fractures. Here, host rock mechanical layering is not the primary control on sill emplacement. Conclusions & Further Work • Sills in Mull show a thrust-type geometry within vari- ably layered host rocks. Exploitation of shallow fractures suggests a sub-horizontal σ1 -σ2 plane. • NW-SE dipping sills suggests an acute angle about the σ1 axis; they are not parallel to the σ1 -σ2 plane. Can sills be treated as magma-filled faults, hence as a record of the stress state? • Future work will continue to constrain the timing and stress state during sill emplacement elsewhere, and aims to consider the distribution of sills as a record of horizontal shortening. • Future work will include: - Fieldwork in Mull, Skye & Northumberland - Mechanical modelling - Analogue modelling Case Study Sites: Isle of Mull, UK 6°0'0"W 6°0'0"W 6°4'0"W 6°4'0"W 6°8'0"W 6°8'0"W 6°12'0"W 6°12'0"W 6°16'0"W 6°16'0"W 6°20'0"W 6°20'0"W 6°24'0"W 6°24'0"W6°26'0"W6°28'0"W 56°26'0"N 56°24'0"N 56°24'0"N 56°22'0"N 56°22'0"N 56°20'0"N 56°20'0"N 56°18'0"N 56°18'0"N 56°16'0"N Ross of Mull Pluton L4 L1-3 L5 Iona Bunessan Loch Scridain Carsaig Mull Lavas Loch Scridain Sill Complex Moine Supergroup Assapol Fault Thrust Fault 50 km N Scotland Isle of Mull 76 Moine foliation 21 Lava units Bedding/ Foliation average strike.dip 76 Horizontal Fracture Modes • Sills and dykes are generally considered as forming in the σ1-σ2 plane, as hydrofractures (Mode I). • Fractures and faults represent a record of the stress state: σ1 ≥ σ2 ≥ σ3 . • Dykes are used to infer regional tectonic extension, whereas, sills are thought to represent a local 'layer- controlled' stress state. Mode I (opening) σ3 σ3 σ1 σ2 Mode II (in-plane shear) Mode III (out-of-plane shear) σ1 σ3 σ1 σ2 σ2 σ3 σ1 σ3 σ1 σ3 σ2 Dyke Sill Mode I (opening) Sill DykeSub-horizontal Palaeogene lavas Sill Location 5 Facing ENE Sills climb at a shallow angle through sub-horizontal lavas Sill (Sills & dyke highlighted for clarity) Sills climb at a shallow angle through sub-vertical Moine host rock - arrows indicate sill top & base Location 3 Facing E 3 m Facing ENE Sill (highlighted red for clarity) SSE dip NW dip Sill Moine host rock 3B 3A (Sill highlighted red for clarity) Sill - Host Rock Relationships