SlideShare uma empresa Scribd logo
1 de 9
E&C ENGR 5590EN
ENERGY SYSTEM ENGG
Mahbube K. Siddiki, Ph.D.
Project
DESIGNING FUEL CELL BASED
POWER PLANT FOR HOME
Dept. of Electrical Engineering
University of Missouri-Kansas City
By:
Syed Burhan Ali Hashim (16160844)
Syed Mudassir Rehman (16160367)
Mohammad Wasim Akram Khatri (16117249)
1
Abstract- This study represents a
new way for an innovative method of
thermo-mechanical design for all
buildings (new and historical), with
the purpose to assess the feasibility
of innovative plants from a
technical, economic and
environmentally point of view. The
thermal loads, starting from the
analysis of consumers’ parameters,
were calculated via TRNSYS and the
results were processed using
RETScreen. With the latter a
comparison between a conventional
plant and one based on innovative
technologies was carried out.
Keywords: RETScreen, TRNSYS,
Historical Buildings, Energy
Efficiency, Conditioning, CCHP
1. Introduction
In today’s modern world the
basic human need is Electricity.
Moving with a mission of meeting the
World's energy needs today, there is a
competition to provide ultra-clean,
efficient and reliable baseload
distributed generation for electric
utilities, commercial and industrial
companies, universities, municipalities,
government entities and other
customers around the world. We have
come up with different methods to
meet the demands of present day
industry by generating electricity from
different resources.
Electricity generation is the process of
generating electric power from other
sources of primary energy. It is
important to recognize that electricity
is not mined or harvested, it must be
manufactured. And since it's not easily
stored in quantity, it must be
manufactured at time of demand.
Electricity is a form of energy, but not
an energy source. Different generating
plants harness different energy sources
to make electric power. There are a
many ways to produce electricity. One
of the methods is by using a Fuel Cell.
Fuel Cell:
The principle of the fuel cell was
discovered in 1839 by Sir William
Grove. They generate electricity from
the reaction of hydrogen with oxygen
to form water in a process which is the
reverse of electrolysis. A fuel cell is a
device that generates electricity by a
chemical reaction. Every fuel cell has
two electrodes, one positive and one
negative, called, respectively, the
anode and cathode. The reactions that
produce electricity take place at the
electrodes.
The fuel cell relies on a basic
oxidation/reduction reaction, as with a
battery, but the reaction takes place on
the fuel rather than the electrodes. The
fuel cell produces electricity as long as
the cell receives a supply of fuel and
can dispose of the oxidized old fuel. In
a fuel cell, the anode usually is bathed
in the fuel; the cathode collects and
makes available the oxidant (often
atmospheric oxygen). An ion-
conducting membrane separates the
two, allowing the reaction to take place
without affecting the electrodes.
There are six major fuel cell
technologies are currently being
pursued for different applications each
with its own characteristics. Some
operate at high temperatures, some use
exotic electrode materials or catalysts,
all are very complex.
 Alkali (AFCs)
 Phosphoric Acid (PAFCs)
 Solid Oxide (SOFC)
 Molten Carbonate (MCFCs)
 Proton Exchange Membrane
PEMFCs
 Direct Methanol DMFCs
2
2. Working Principle
When fuel in this case, natural
gas passes through the cells, it triggers
electrochemical reactions that produce
electricity, heat, and water. It’s a quiet,
environmentally friendly process. It
produces only the tiniest trace amounts
of nitrogen oxide and sulfur oxides.
When hydrogen is used as the fuel, it
generates almost no carbon dioxide.
Fuel cell plants that use natural gas, as
this one does, produce about 60
percent fewer emissions than coal-
powered plants.
3. Key Benefits of Fuel Cell
Fuel Cell today is the leading authority
on information relating to the fuel cell
and hydrogen industries
 Fuel cells are highly reliable,
with minimal downtime &
maintenance, and can ensure a
consistent electricity supply.
 They operate with low noise
and much less pollution than
fossil-fuel power stations,
especially if run on hydrogen.
This means they can be sited
close to population centers,
which minimizes transmission
losses.
 Even when fuelled with natural
gas, the higher efficiency of
fuel cells means the amount of
carbon dioxide emitted per
kilowatt-hour generated is
significantly lower than
conventional power generation.
As such, fuel cells are eligible
for government incentives in a
number of countries.
4. Approach
The classical approach
involves an energy loads analysis of
the structures under steady
conditions, and a consequent
planning of energy requalification
project of the building according to
technicians’ experience.
Very often, the design choices have to
take into account different kind of
restrictions and requirements that do
not allow achieving the best solution.
This is because of the lack of a
prospective analysis of feasibility
which allows a comparison between
different design and plant assumptions
by means of energy, environmental
and financial data analysis.
In this study, it has been propose a new
procedure which allows reaching the
optimal plant configuration for the
building. This new approach is
schematized in Fig. 1 where we
considered an integrated use in series
of two scientifically validated
calculation methods TRNSYS and
RETScreen. These facts allow carrying
out a prospective analysis of
feasibility. This methodology has been
tested on a case study to evaluate the
best plant configuration to be installed
in a historic building compound that
will be the subject of restoration and
3
preservative renovation. The building
is divided into a basement and three
floors with a total area of 3000 square
meters.
This new approach starts with the
determination of the energy demands
of the structure in dynamic conditions
through the TRNSYS, in order to
simulate the real needs of the structure,
in function of its use. Traditional
methodologies, today considered valid,
cannot faithfully reproduce the
variation of climatic conditions and
inertial properties of the structures, due
to the calculation runs under steady
conditions. Through TRNSYS is
possible to obtain more accurate results
that allows to achieve a correct
coupling Building-Plant.
Fig 1. Logic of the new design technology.
Thus, output data obtained are used as
an input in the calculation model
RETScreen that allows to compare a
traditional model of subservience and
different new concept systems
configurations from the energy,
environmental and financial point of
view, with an analysis of investment,
operation and maintenance costs that
allows to determine the economic
benefit of intervention and then the
feasibility of the investment. the
traditional methodology often leads to
choose a conventional plant while
RETScreen allows to get a financial-
economic assessment for innovative
energy systems and low environmental
impact.
5. Calculation of thermal loads with
TRNSYS
To achieve the technical and
economic convenience of a plant
requires a specific and accurate
analysis of the electrical, heating and
cooling loads needed by the user. This
involves the evaluation of the
maximum power demand and daily,
monthly and seasonal load curves.
To assess the requirement of thermal
power by the building, it is necessary
to estimate the building’s total heat
loss during the year.
In first step, the procedure adopted was
an analysis of the structural and heat
engineering features of the building
such as the geographical position, the
solar exposure, the climate zone, the
outdoor temperature.
The design conditions adopted in this
study are as follows: external
conditions are in summer 34 °C with
50% RH and in winter 0 °C with 80%
RH; internal project condition are in
summer 26 °C and in winter 20 °C.
In order to evaluate the need of
electrical power of the building were
considered optimal levels required in
each room and the loads required by
each utility. Furthermore, appropriate
coefficients of simultaneity and
utilization have been taken into
account. The total electric power
installed is 340144 W.
In Fig. 2 are reported the peak powers
during the year of heating, cooling and
electrical power for the examined
building. In this graph we can see that
the peak powers required for heating in
winter and cooling in summer of the
4
building are respectively 294.9 kW and
317.4 kW.
Knowing the volumes and heated
surfaces, it was possible to estimate the
required heat power compared to the
square meters of useful surface:
heating power to useful surface are
70.2 W/m2; cooling power to useful
surface are 75.6 W/m2.
The annual energy loads are
respectively: 422991 kWh/year for
heating annual load; 287141 kWh/year
for cooling annual load; 84 kWh/year
m2 for heating annual load to useful
surface; 57 kWh/year m2 for cooling
annual load to useful surface.
Fig 2: Required power trend by the user.
6. Feasibility study with RETScreen
The RETScreen Clean Energy
Project Analysis Software (so called
RETScreen) is composed by software
used to determine the feasibility of
energy models (including renewable
energy systems or high performance)
and tools to assess energy efficiency.
The software allows the modelling of
any power plant for real estate
providing output data useful to a
technical, economical and
environmental analysis in order to
make an investment in a 'clean energy'
project or cogeneration, as in this case
study. The calculation model has been
developed by the Canadian
Government in collaboration with
other governments and with the
technical support of several industries,
institutions and experts.
The traditional methodology often
leads to choose a conventional plant
system whereas the features of the
RETScreen make possible to assess the
feasibility of building, innovative and
low environmental impact systems
such as trigeneration, which requires
an energy diagnosis deepened. The
software performs a comparison
between a base case, typically the
conventional technology or measure,
and a proposed case considering not
only the economic impact of the
choice, but also the consequent
reduction of greenhouse gas emissions
associated with the change of
technology from the base case to the
proposed case.
The output data obtained from the
TRNSYS become the input data for the
RETScreen that allow us to model
various plant configurations suitable to
the case study. In the first step we
improve in RETScreen the
conventional scenario of enslavement
of a residential or school users which
became the reference case that will be
used such as a parameter to define the
validity of our new innovative
configurations.
The reference case considering
electricity taken from the electrical
grid, thermal energy for heating is
produced via gas boiler and the
thermal energy for cooling is produced
through a compressor system powered
by electricity. In Table 1-2 are shown
the reference data used in the
conventional scenario for the
exanimated building.
5
Table 1. Conventional plant data as
reference of a residential or school
users for heating project.
Table2. Conventional plant data takes
as reference of a residential or school
users for cooling project
Once modelled thermal, electrical and
cooling production plant through
conventional configurations, it was
made a comparison with alternative
energy systems for the case study that
use innovative technologies in order to
obtain a low energy impact. This has
been aimed to reach an energy saving
and a consequent reduction of
greenhouse gases emissions. For the
case study, the Trigeneration with Fuel
Cells is considered.
Once implemented the energy model
all cost items have been introduced,
such as initial, management and annual
maintenance costs. Starting from these
specifications, it was possible to
evaluate year to year savings
attributable to each type of plant
compared to the reference, also taking
into account the incentives imposed by
law.
The financial plan is rated for a project
life 15 years long, taking into account
the current financial parameters
(inflation rate, discount rate and rate of
indexation of fuel). The financial
incentives which can used for this kind
of cogeneration plant (> 200 kW) are
White Certificates and Credit for
reduction of greenhouse gases.
It is important to remind that in Italy
all cogeneration plants with an "high
efficiency" for electric power up to 200
kW, can take advantage of the service
“Net metering”. Plants characterized
by a capacity greater than 200 kW can
still sell electricity to the grid at
favorable conditions laid down under
the “Withdrawal dedicated”.
7. Analyzed configurations
The scenario considers the use
of a fuel cell with a total recovery,
which concerns the exhaust gas,
recovered heat from the coolant and
the recovery of the lubricating oil.
Fig 3. Diagram of trigeneration.
To satisfy the hygrometric comfort of
the building through a "Low-Impact"
configuration, it is possible to
introduce a fuel cell at high
temperature in the trigeneration plant.
In this case, the aim is to increase the
overall efficiency to reduce the
consumption of fuel and greenhouse
gases. The FuelCell Energy (FCE)
operates in the field of Molten-
Carbonate Fuel Cells (MCFC) and has
developed a technology known as
DFC, Direct Fuel Cells, in which the
process of reforming the fuel (natural
6
gas, biogas, coal gas) occurs within the
cell. The program of the FCE is based
on products development for the
distributed power generation market
for applications below 40 MW. In the
case of cogeneration applications total
efficiencies that can exceed 80% are
achieved. The fuel used in this case
study is the methane gas. Using these
high-temperature cells, the initial and
annual costs will be increased
compared to the other configurations,
there is a need to replace the stack after
only four or five years of operation
[22]; this issue is caused the corrosion
and the high thermal stress the stack is
subjected to. The installed capacity is
equal to 1064 kW, the electricity is
equal to 500 kW while the recoverable
downstream of the electrolytic process
is 423 kW. With this configuration an
overall trigeneration efficiency of 87%
is reached.
8. Results
The analysis made have been
considered the energy, economic and
environmental parameters. The fuel
cell plant were found to produce an
efficiency of 87% which is
praiseworthy and works better in a
long run.
The use of an innovative model with
respect to the use of traditional model,
brings to an energy saving as shown in
Fig. 4.
Fig 4. Energy saving from the
traditional to the innovative model.
Considering some financial parameters
obtained with a marketing research,
and considering the technical ones
about the different trigeneration plants
taken into account, for a design life of
15 years the return on investments are
shown in Fig. 5
Fig.5. Cash flows trend of the
trigeneration plant with fuel cells.
7
Afterwards, the reduction of annual
greenhouse gases emissions have been
evaluated. The results were
Annual green house
gases reduction
Tonnes of CO2
Fuel cells 378
In the residential scope, these
requirements are difficult to meet
because the thermal and electrical
energy for each building are satisfied
in a single and separate approach. If it
is considered the possibility to meet
the hygrometric comfort of each
building with a medium power plant,
the situation changes. In the near
future, it will be possible to size a
single heating and electric production
for a residential area, neighborhood or
group of buildings. This new concept
could lead to several advantages:
higher efficiency than any other
heating plant; specific fuel
consumption reduced; significant
environmental benefits due to the
urban context; greater environmental
benefits with a renewable fuel such as
biogas instead natural gas (and so
consequently there is the possibility of
access to the Green Certificates);
operating and maintenance costs are
shared with many users.
9. Conclusions
The study undertaken, as well
as the optimal plant configuration for
the complex and mainly problematic
structure as historical buildings, has
allowed to apply a new method for
sizing and design thermo-mechanical
systems that have a low impact energy,
such as trigeneration plants or other
innovative systems with a lacking
know- how. Indeed, the software
TRNSYS allows to perform a dynamic
and accurate analysis of the thermal
loads dispersed by the user during the
course of the year, whereas the
software RETScreen permits an energy
and environmental assessment and
preliminary design rather flexible and
accurate.
Thanks to the two software used in
series (TRNSYS and RETScreen), it
was possible to obtain the following
results:
 New method to estimate the
economic and environmental
feasibility of a power plant.
 Preparation and study of
building and newly developed
plants through a graphical
interface.
 Evaluation of the economic and
financial prevision with an
immediate feedback in
numerical software.
 Economic and financial plan at
different levels of accuracy
depending on the number of the
input data (all types of costs or
credits acquired).
The future development of this study
leads to the improvement of other
important parameters such as the
energy system reliability in order to
plan the maintenance.
10. References
1. Fabio Armanasco (2009)
Sperimentazione sul sistema
trigenerativo con microturbina
a gas e frigorifero ad
assorbimento. CESI Ricerca
2. Ing. Bruno Frinzi (2009) Studio
di fattibilità tecnico-economica
di un impianto di rigenerazione
in abbinamento ad un impianto
fotovoltaico di uno stabilimento
industriale. Protecnos
3. A. Simonetti, G. Corallo, R.
Caria, L. Cipolletta (2010)
Realizzazione dell’impianto di
solar cooling dell’ edificio F51
8
del centro ENEA della
Casaccia - Monitoraggio
dell’Impianto. Enea
4. Analisi del potenziale della
microgenerazione in Italia.
Federazione Italiana per l’uso
razionale dell’Energia (FIRE
2008)
5. Macchi E. , Campanari S. ,
Silvia P. (2006) La micro
generazione a gas naturale.
Polipress
6. Tomassetti G. (2003)
Generazione distribuita e
cogenerazione. Le barriere alla
diffusione – La termotecnica
7. Belvedere C. (2007) Unità di
micro generazione e piccola –
Installazione ed esercizio –
Procedure autorizzative
semplificate. Documento di
proprosta. Cogena
8. Di Santo D. (2006) Gli
incentivi per l’efficienza
energetica. Corso Enea/FIRE
per Energy Manager
9. Grecchi M. (2006). Fiscalità e
incentivi sulla micro
generazione. Senertec Gmbh -
gruppo CTI
10. Nikmat Ecopower (2005) Unità
di cogenerazione e
rigenerazione a gas naturale e
biogas. Divisione di DSF
Tecnologia
11. F. Bonfà, G. Caruso, I. De
Santoli, G Lo Basso (2010)
Studio di un esempio
dimostrativo di impiego di
tecnologie energeticamente
efficienti. Enea, Citera
12. Michele Bianchi, Pier Ruggero
Spina (2010). Integrazione di
sistemi cogenerativi innovativi
di piccolissima taglia nelle reti
di distribuzione dell’energia
elettrica, termica e frigorifera.
Enea, Università di Ferrara
13. John A. Jacobs III, Martin
Schneider (2009) Cogeneration
Application Considerations. GE
Energy
14. Ennio Macchi, Giovanni Lozza
(2007) Cogenerazione
industriale. Dipartimento di
Energetica Politecnico di
Milano
15. Boyce M.P. (2002) Handbook
for cogeneration and combined
cycle power plants. New York,
ASME
16. Consonni S. (1989)
Optimization of cogeneration
systems operation. Part A:
Prime movers modelization, in:
Proceedings of the American
Society of Mechanical
Engineers Cogen-Turbo
international symposium on
turbomachinery, combined-
cycle technologies and
cogeneration.

Mais conteúdo relacionado

Mais procurados

Experimental study of the impact of dust on azimuth tracking solar PV in Shar...
Experimental study of the impact of dust on azimuth tracking solar PV in Shar...Experimental study of the impact of dust on azimuth tracking solar PV in Shar...
Experimental study of the impact of dust on azimuth tracking solar PV in Shar...IJECEIAES
 
(27 33) sridharan sidhu
(27 33) sridharan sidhu(27 33) sridharan sidhu
(27 33) sridharan sidhuIISRTJournals
 
The usage of thermoelectric generator as a renewable energy source
The usage of thermoelectric generator as a renewable energy sourceThe usage of thermoelectric generator as a renewable energy source
The usage of thermoelectric generator as a renewable energy sourceTELKOMNIKA JOURNAL
 
Photovoltaic thermal hybrid solar system for residential applications
Photovoltaic thermal hybrid solar system for residential applicationsPhotovoltaic thermal hybrid solar system for residential applications
Photovoltaic thermal hybrid solar system for residential applicationseSAT Journals
 
IJSRED-V2I2P6
IJSRED-V2I2P6IJSRED-V2I2P6
IJSRED-V2I2P6IJSRED
 
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...Ozyegin University
 
Integrated solar photovoltaic and thermal system for enhanced energy efficiency
Integrated solar photovoltaic and thermal system for enhanced energy efficiencyIntegrated solar photovoltaic and thermal system for enhanced energy efficiency
Integrated solar photovoltaic and thermal system for enhanced energy efficiencylenses
 
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...IJMER
 
Form jurnal international 5814 24797-1-pb
Form jurnal international 5814 24797-1-pbForm jurnal international 5814 24797-1-pb
Form jurnal international 5814 24797-1-pbSttind Padang
 
Novel technique for maximizing the thermal efficiency of a hybrid pv
Novel technique for maximizing the thermal efficiency of a hybrid pvNovel technique for maximizing the thermal efficiency of a hybrid pv
Novel technique for maximizing the thermal efficiency of a hybrid pveSAT Journals
 
PV/T Systems for Renewable Energy Storage: A Review
PV/T Systems for Renewable Energy Storage: A ReviewPV/T Systems for Renewable Energy Storage: A Review
PV/T Systems for Renewable Energy Storage: A ReviewBRNSS Publication Hub
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Ali Al-Waeli
 
Green building design
Green building designGreen building design
Green building designChandan
 
009 jgc2016 energy transmission & storage_Schmitz
009 jgc2016   energy transmission & storage_Schmitz 009 jgc2016   energy transmission & storage_Schmitz
009 jgc2016 energy transmission & storage_Schmitz senicsummerschool
 
An Optimization Model for A Proposed Trigeneration System
An Optimization Model for A Proposed Trigeneration System An Optimization Model for A Proposed Trigeneration System
An Optimization Model for A Proposed Trigeneration System IJERA Editor
 

Mais procurados (20)

20320130406012
2032013040601220320130406012
20320130406012
 
Experimental study of the impact of dust on azimuth tracking solar PV in Shar...
Experimental study of the impact of dust on azimuth tracking solar PV in Shar...Experimental study of the impact of dust on azimuth tracking solar PV in Shar...
Experimental study of the impact of dust on azimuth tracking solar PV in Shar...
 
(27 33) sridharan sidhu
(27 33) sridharan sidhu(27 33) sridharan sidhu
(27 33) sridharan sidhu
 
The usage of thermoelectric generator as a renewable energy source
The usage of thermoelectric generator as a renewable energy sourceThe usage of thermoelectric generator as a renewable energy source
The usage of thermoelectric generator as a renewable energy source
 
Photovoltaic thermal hybrid solar system for residential applications
Photovoltaic thermal hybrid solar system for residential applicationsPhotovoltaic thermal hybrid solar system for residential applications
Photovoltaic thermal hybrid solar system for residential applications
 
IJSRED-V2I2P6
IJSRED-V2I2P6IJSRED-V2I2P6
IJSRED-V2I2P6
 
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...
Cascaded Thermodynamic and Environmental Analyses of Energy Generation Modali...
 
E05813034
E05813034E05813034
E05813034
 
Integrated solar photovoltaic and thermal system for enhanced energy efficiency
Integrated solar photovoltaic and thermal system for enhanced energy efficiencyIntegrated solar photovoltaic and thermal system for enhanced energy efficiency
Integrated solar photovoltaic and thermal system for enhanced energy efficiency
 
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
 
Form jurnal international 5814 24797-1-pb
Form jurnal international 5814 24797-1-pbForm jurnal international 5814 24797-1-pb
Form jurnal international 5814 24797-1-pb
 
Novel technique for maximizing the thermal efficiency of a hybrid pv
Novel technique for maximizing the thermal efficiency of a hybrid pvNovel technique for maximizing the thermal efficiency of a hybrid pv
Novel technique for maximizing the thermal efficiency of a hybrid pv
 
PV/T Systems for Renewable Energy Storage: A Review
PV/T Systems for Renewable Energy Storage: A ReviewPV/T Systems for Renewable Energy Storage: A Review
PV/T Systems for Renewable Energy Storage: A Review
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
 
Modeling Solar Modules Performance Under Temperature and Solar Radiation of W...
Modeling Solar Modules Performance Under Temperature and Solar Radiation of W...Modeling Solar Modules Performance Under Temperature and Solar Radiation of W...
Modeling Solar Modules Performance Under Temperature and Solar Radiation of W...
 
Green building design
Green building designGreen building design
Green building design
 
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
 
009 jgc2016 energy transmission & storage_Schmitz
009 jgc2016   energy transmission & storage_Schmitz 009 jgc2016   energy transmission & storage_Schmitz
009 jgc2016 energy transmission & storage_Schmitz
 
Symposium Poster
Symposium PosterSymposium Poster
Symposium Poster
 
An Optimization Model for A Proposed Trigeneration System
An Optimization Model for A Proposed Trigeneration System An Optimization Model for A Proposed Trigeneration System
An Optimization Model for A Proposed Trigeneration System
 

Destaque

Concept of Microgrid and CHP system
Concept of Microgrid and CHP systemConcept of Microgrid and CHP system
Concept of Microgrid and CHP systemVipin Pandey
 
power generation using cell
power generation using cell power generation using cell
power generation using cell viv4meena
 
Hydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureHydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureGavin Harper
 
Fuel cells presentation
Fuel cells presentationFuel cells presentation
Fuel cells presentationVaibhav Chavan
 
Best ppt on thermal power station working
Best ppt on thermal power station workingBest ppt on thermal power station working
Best ppt on thermal power station workingRonak Thakare
 

Destaque (8)

Concept of Microgrid and CHP system
Concept of Microgrid and CHP systemConcept of Microgrid and CHP system
Concept of Microgrid and CHP system
 
power generation using cell
power generation using cell power generation using cell
power generation using cell
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Hydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureHydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable Future
 
Fuel Cells
Fuel CellsFuel Cells
Fuel Cells
 
Fuel cells presentation
Fuel cells presentationFuel cells presentation
Fuel cells presentation
 
Best ppt on thermal power station working
Best ppt on thermal power station workingBest ppt on thermal power station working
Best ppt on thermal power station working
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 

Semelhante a energyproject

Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationIJERA Editor
 
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLS
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLSGENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLS
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLSinventy
 
SOLAR POWERED AIR COOLER
SOLAR POWERED AIR COOLERSOLAR POWERED AIR COOLER
SOLAR POWERED AIR COOLERIRJET Journal
 
Sizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag citySizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag cityiosrjce
 
Analysis and Design of a Hybrid Renewable Energy System – Lebanon Case
Analysis and Design of a Hybrid Renewable Energy System – Lebanon CaseAnalysis and Design of a Hybrid Renewable Energy System – Lebanon Case
Analysis and Design of a Hybrid Renewable Energy System – Lebanon CaseIJERA Editor
 
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...paperpublications3
 
Renewable Energy Technologies for sustainable Development of Energy Effective...
Renewable Energy Technologies for sustainable Development of Energy Effective...Renewable Energy Technologies for sustainable Development of Energy Effective...
Renewable Energy Technologies for sustainable Development of Energy Effective...IRJET Journal
 
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...Kashif Mehmood
 
Center For Community Renewal Hybrid Alternative Energy System
Center For Community Renewal Hybrid Alternative Energy SystemCenter For Community Renewal Hybrid Alternative Energy System
Center For Community Renewal Hybrid Alternative Energy SystemKim Mitchell
 
Statistical modeling and optimal energy distribution of cogeneration units b...
Statistical modeling and optimal energy distribution of  cogeneration units b...Statistical modeling and optimal energy distribution of  cogeneration units b...
Statistical modeling and optimal energy distribution of cogeneration units b...IJECEIAES
 
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...IRJET Journal
 
The Development of an Application Conceived for the Design, Feasibility Study...
The Development of an Application Conceived for the Design, Feasibility Study...The Development of an Application Conceived for the Design, Feasibility Study...
The Development of an Application Conceived for the Design, Feasibility Study...IJECEIAES
 
Modeling of electric water heater and air conditioner for residential demand ...
Modeling of electric water heater and air conditioner for residential demand ...Modeling of electric water heater and air conditioner for residential demand ...
Modeling of electric water heater and air conditioner for residential demand ...Basrah University for Oil and Gas
 
Hydrogen storage for micro-grid application: a framework for ranking fuel ce...
Hydrogen storage for micro-grid application: a framework for  ranking fuel ce...Hydrogen storage for micro-grid application: a framework for  ranking fuel ce...
Hydrogen storage for micro-grid application: a framework for ranking fuel ce...IJECEIAES
 
Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...TELKOMNIKA JOURNAL
 
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMAL
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMALELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMAL
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMALJournal For Research
 
IRJET- A Review on Hybrid Wind and Fuel Cell System
IRJET-   	  A Review on Hybrid Wind and Fuel Cell SystemIRJET-   	  A Review on Hybrid Wind and Fuel Cell System
IRJET- A Review on Hybrid Wind and Fuel Cell SystemIRJET Journal
 

Semelhante a energyproject (20)

Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
 
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLS
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLSGENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLS
GENERATION OF POWER THROUGH HYDROGEN – OXYGEN FUEL CELLS
 
SOLAR POWERED AIR COOLER
SOLAR POWERED AIR COOLERSOLAR POWERED AIR COOLER
SOLAR POWERED AIR COOLER
 
I010626370
I010626370I010626370
I010626370
 
Sizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag citySizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag city
 
Analysis and Design of a Hybrid Renewable Energy System – Lebanon Case
Analysis and Design of a Hybrid Renewable Energy System – Lebanon CaseAnalysis and Design of a Hybrid Renewable Energy System – Lebanon Case
Analysis and Design of a Hybrid Renewable Energy System – Lebanon Case
 
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...
INTEGRATION OF SOLAR THERMAL COLLECTORS ON FACADES: A REVIEW OF INSTITUTIONAL...
 
Renewable Energy Technologies for sustainable Development of Energy Effective...
Renewable Energy Technologies for sustainable Development of Energy Effective...Renewable Energy Technologies for sustainable Development of Energy Effective...
Renewable Energy Technologies for sustainable Development of Energy Effective...
 
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...
Integrated Energy System Modeling of China for 2020 by Incorporating Demand R...
 
Noaman_MasterThesis_Abstract
Noaman_MasterThesis_AbstractNoaman_MasterThesis_Abstract
Noaman_MasterThesis_Abstract
 
Center For Community Renewal Hybrid Alternative Energy System
Center For Community Renewal Hybrid Alternative Energy SystemCenter For Community Renewal Hybrid Alternative Energy System
Center For Community Renewal Hybrid Alternative Energy System
 
Statistical modeling and optimal energy distribution of cogeneration units b...
Statistical modeling and optimal energy distribution of  cogeneration units b...Statistical modeling and optimal energy distribution of  cogeneration units b...
Statistical modeling and optimal energy distribution of cogeneration units b...
 
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...
Review of Enhancements in Absorber Plate Geometry for Solar Desalination: Key...
 
The Development of an Application Conceived for the Design, Feasibility Study...
The Development of an Application Conceived for the Design, Feasibility Study...The Development of an Application Conceived for the Design, Feasibility Study...
The Development of an Application Conceived for the Design, Feasibility Study...
 
C02011218
C02011218C02011218
C02011218
 
Modeling of electric water heater and air conditioner for residential demand ...
Modeling of electric water heater and air conditioner for residential demand ...Modeling of electric water heater and air conditioner for residential demand ...
Modeling of electric water heater and air conditioner for residential demand ...
 
Hydrogen storage for micro-grid application: a framework for ranking fuel ce...
Hydrogen storage for micro-grid application: a framework for  ranking fuel ce...Hydrogen storage for micro-grid application: a framework for  ranking fuel ce...
Hydrogen storage for micro-grid application: a framework for ranking fuel ce...
 
Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...
 
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMAL
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMALELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMAL
ELECTRICAL POWER GENERATION BY NON CONVENTIONAL ENERGY-GEOTHERMAL
 
IRJET- A Review on Hybrid Wind and Fuel Cell System
IRJET-   	  A Review on Hybrid Wind and Fuel Cell SystemIRJET-   	  A Review on Hybrid Wind and Fuel Cell System
IRJET- A Review on Hybrid Wind and Fuel Cell System
 

energyproject

  • 1. E&C ENGR 5590EN ENERGY SYSTEM ENGG Mahbube K. Siddiki, Ph.D. Project DESIGNING FUEL CELL BASED POWER PLANT FOR HOME Dept. of Electrical Engineering University of Missouri-Kansas City By: Syed Burhan Ali Hashim (16160844) Syed Mudassir Rehman (16160367) Mohammad Wasim Akram Khatri (16117249)
  • 2. 1 Abstract- This study represents a new way for an innovative method of thermo-mechanical design for all buildings (new and historical), with the purpose to assess the feasibility of innovative plants from a technical, economic and environmentally point of view. The thermal loads, starting from the analysis of consumers’ parameters, were calculated via TRNSYS and the results were processed using RETScreen. With the latter a comparison between a conventional plant and one based on innovative technologies was carried out. Keywords: RETScreen, TRNSYS, Historical Buildings, Energy Efficiency, Conditioning, CCHP 1. Introduction In today’s modern world the basic human need is Electricity. Moving with a mission of meeting the World's energy needs today, there is a competition to provide ultra-clean, efficient and reliable baseload distributed generation for electric utilities, commercial and industrial companies, universities, municipalities, government entities and other customers around the world. We have come up with different methods to meet the demands of present day industry by generating electricity from different resources. Electricity generation is the process of generating electric power from other sources of primary energy. It is important to recognize that electricity is not mined or harvested, it must be manufactured. And since it's not easily stored in quantity, it must be manufactured at time of demand. Electricity is a form of energy, but not an energy source. Different generating plants harness different energy sources to make electric power. There are a many ways to produce electricity. One of the methods is by using a Fuel Cell. Fuel Cell: The principle of the fuel cell was discovered in 1839 by Sir William Grove. They generate electricity from the reaction of hydrogen with oxygen to form water in a process which is the reverse of electrolysis. A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes. The fuel cell relies on a basic oxidation/reduction reaction, as with a battery, but the reaction takes place on the fuel rather than the electrodes. The fuel cell produces electricity as long as the cell receives a supply of fuel and can dispose of the oxidized old fuel. In a fuel cell, the anode usually is bathed in the fuel; the cathode collects and makes available the oxidant (often atmospheric oxygen). An ion- conducting membrane separates the two, allowing the reaction to take place without affecting the electrodes. There are six major fuel cell technologies are currently being pursued for different applications each with its own characteristics. Some operate at high temperatures, some use exotic electrode materials or catalysts, all are very complex.  Alkali (AFCs)  Phosphoric Acid (PAFCs)  Solid Oxide (SOFC)  Molten Carbonate (MCFCs)  Proton Exchange Membrane PEMFCs  Direct Methanol DMFCs
  • 3. 2 2. Working Principle When fuel in this case, natural gas passes through the cells, it triggers electrochemical reactions that produce electricity, heat, and water. It’s a quiet, environmentally friendly process. It produces only the tiniest trace amounts of nitrogen oxide and sulfur oxides. When hydrogen is used as the fuel, it generates almost no carbon dioxide. Fuel cell plants that use natural gas, as this one does, produce about 60 percent fewer emissions than coal- powered plants. 3. Key Benefits of Fuel Cell Fuel Cell today is the leading authority on information relating to the fuel cell and hydrogen industries  Fuel cells are highly reliable, with minimal downtime & maintenance, and can ensure a consistent electricity supply.  They operate with low noise and much less pollution than fossil-fuel power stations, especially if run on hydrogen. This means they can be sited close to population centers, which minimizes transmission losses.  Even when fuelled with natural gas, the higher efficiency of fuel cells means the amount of carbon dioxide emitted per kilowatt-hour generated is significantly lower than conventional power generation. As such, fuel cells are eligible for government incentives in a number of countries. 4. Approach The classical approach involves an energy loads analysis of the structures under steady conditions, and a consequent planning of energy requalification project of the building according to technicians’ experience. Very often, the design choices have to take into account different kind of restrictions and requirements that do not allow achieving the best solution. This is because of the lack of a prospective analysis of feasibility which allows a comparison between different design and plant assumptions by means of energy, environmental and financial data analysis. In this study, it has been propose a new procedure which allows reaching the optimal plant configuration for the building. This new approach is schematized in Fig. 1 where we considered an integrated use in series of two scientifically validated calculation methods TRNSYS and RETScreen. These facts allow carrying out a prospective analysis of feasibility. This methodology has been tested on a case study to evaluate the best plant configuration to be installed in a historic building compound that will be the subject of restoration and
  • 4. 3 preservative renovation. The building is divided into a basement and three floors with a total area of 3000 square meters. This new approach starts with the determination of the energy demands of the structure in dynamic conditions through the TRNSYS, in order to simulate the real needs of the structure, in function of its use. Traditional methodologies, today considered valid, cannot faithfully reproduce the variation of climatic conditions and inertial properties of the structures, due to the calculation runs under steady conditions. Through TRNSYS is possible to obtain more accurate results that allows to achieve a correct coupling Building-Plant. Fig 1. Logic of the new design technology. Thus, output data obtained are used as an input in the calculation model RETScreen that allows to compare a traditional model of subservience and different new concept systems configurations from the energy, environmental and financial point of view, with an analysis of investment, operation and maintenance costs that allows to determine the economic benefit of intervention and then the feasibility of the investment. the traditional methodology often leads to choose a conventional plant while RETScreen allows to get a financial- economic assessment for innovative energy systems and low environmental impact. 5. Calculation of thermal loads with TRNSYS To achieve the technical and economic convenience of a plant requires a specific and accurate analysis of the electrical, heating and cooling loads needed by the user. This involves the evaluation of the maximum power demand and daily, monthly and seasonal load curves. To assess the requirement of thermal power by the building, it is necessary to estimate the building’s total heat loss during the year. In first step, the procedure adopted was an analysis of the structural and heat engineering features of the building such as the geographical position, the solar exposure, the climate zone, the outdoor temperature. The design conditions adopted in this study are as follows: external conditions are in summer 34 °C with 50% RH and in winter 0 °C with 80% RH; internal project condition are in summer 26 °C and in winter 20 °C. In order to evaluate the need of electrical power of the building were considered optimal levels required in each room and the loads required by each utility. Furthermore, appropriate coefficients of simultaneity and utilization have been taken into account. The total electric power installed is 340144 W. In Fig. 2 are reported the peak powers during the year of heating, cooling and electrical power for the examined building. In this graph we can see that the peak powers required for heating in winter and cooling in summer of the
  • 5. 4 building are respectively 294.9 kW and 317.4 kW. Knowing the volumes and heated surfaces, it was possible to estimate the required heat power compared to the square meters of useful surface: heating power to useful surface are 70.2 W/m2; cooling power to useful surface are 75.6 W/m2. The annual energy loads are respectively: 422991 kWh/year for heating annual load; 287141 kWh/year for cooling annual load; 84 kWh/year m2 for heating annual load to useful surface; 57 kWh/year m2 for cooling annual load to useful surface. Fig 2: Required power trend by the user. 6. Feasibility study with RETScreen The RETScreen Clean Energy Project Analysis Software (so called RETScreen) is composed by software used to determine the feasibility of energy models (including renewable energy systems or high performance) and tools to assess energy efficiency. The software allows the modelling of any power plant for real estate providing output data useful to a technical, economical and environmental analysis in order to make an investment in a 'clean energy' project or cogeneration, as in this case study. The calculation model has been developed by the Canadian Government in collaboration with other governments and with the technical support of several industries, institutions and experts. The traditional methodology often leads to choose a conventional plant system whereas the features of the RETScreen make possible to assess the feasibility of building, innovative and low environmental impact systems such as trigeneration, which requires an energy diagnosis deepened. The software performs a comparison between a base case, typically the conventional technology or measure, and a proposed case considering not only the economic impact of the choice, but also the consequent reduction of greenhouse gas emissions associated with the change of technology from the base case to the proposed case. The output data obtained from the TRNSYS become the input data for the RETScreen that allow us to model various plant configurations suitable to the case study. In the first step we improve in RETScreen the conventional scenario of enslavement of a residential or school users which became the reference case that will be used such as a parameter to define the validity of our new innovative configurations. The reference case considering electricity taken from the electrical grid, thermal energy for heating is produced via gas boiler and the thermal energy for cooling is produced through a compressor system powered by electricity. In Table 1-2 are shown the reference data used in the conventional scenario for the exanimated building.
  • 6. 5 Table 1. Conventional plant data as reference of a residential or school users for heating project. Table2. Conventional plant data takes as reference of a residential or school users for cooling project Once modelled thermal, electrical and cooling production plant through conventional configurations, it was made a comparison with alternative energy systems for the case study that use innovative technologies in order to obtain a low energy impact. This has been aimed to reach an energy saving and a consequent reduction of greenhouse gases emissions. For the case study, the Trigeneration with Fuel Cells is considered. Once implemented the energy model all cost items have been introduced, such as initial, management and annual maintenance costs. Starting from these specifications, it was possible to evaluate year to year savings attributable to each type of plant compared to the reference, also taking into account the incentives imposed by law. The financial plan is rated for a project life 15 years long, taking into account the current financial parameters (inflation rate, discount rate and rate of indexation of fuel). The financial incentives which can used for this kind of cogeneration plant (> 200 kW) are White Certificates and Credit for reduction of greenhouse gases. It is important to remind that in Italy all cogeneration plants with an "high efficiency" for electric power up to 200 kW, can take advantage of the service “Net metering”. Plants characterized by a capacity greater than 200 kW can still sell electricity to the grid at favorable conditions laid down under the “Withdrawal dedicated”. 7. Analyzed configurations The scenario considers the use of a fuel cell with a total recovery, which concerns the exhaust gas, recovered heat from the coolant and the recovery of the lubricating oil. Fig 3. Diagram of trigeneration. To satisfy the hygrometric comfort of the building through a "Low-Impact" configuration, it is possible to introduce a fuel cell at high temperature in the trigeneration plant. In this case, the aim is to increase the overall efficiency to reduce the consumption of fuel and greenhouse gases. The FuelCell Energy (FCE) operates in the field of Molten- Carbonate Fuel Cells (MCFC) and has developed a technology known as DFC, Direct Fuel Cells, in which the process of reforming the fuel (natural
  • 7. 6 gas, biogas, coal gas) occurs within the cell. The program of the FCE is based on products development for the distributed power generation market for applications below 40 MW. In the case of cogeneration applications total efficiencies that can exceed 80% are achieved. The fuel used in this case study is the methane gas. Using these high-temperature cells, the initial and annual costs will be increased compared to the other configurations, there is a need to replace the stack after only four or five years of operation [22]; this issue is caused the corrosion and the high thermal stress the stack is subjected to. The installed capacity is equal to 1064 kW, the electricity is equal to 500 kW while the recoverable downstream of the electrolytic process is 423 kW. With this configuration an overall trigeneration efficiency of 87% is reached. 8. Results The analysis made have been considered the energy, economic and environmental parameters. The fuel cell plant were found to produce an efficiency of 87% which is praiseworthy and works better in a long run. The use of an innovative model with respect to the use of traditional model, brings to an energy saving as shown in Fig. 4. Fig 4. Energy saving from the traditional to the innovative model. Considering some financial parameters obtained with a marketing research, and considering the technical ones about the different trigeneration plants taken into account, for a design life of 15 years the return on investments are shown in Fig. 5 Fig.5. Cash flows trend of the trigeneration plant with fuel cells.
  • 8. 7 Afterwards, the reduction of annual greenhouse gases emissions have been evaluated. The results were Annual green house gases reduction Tonnes of CO2 Fuel cells 378 In the residential scope, these requirements are difficult to meet because the thermal and electrical energy for each building are satisfied in a single and separate approach. If it is considered the possibility to meet the hygrometric comfort of each building with a medium power plant, the situation changes. In the near future, it will be possible to size a single heating and electric production for a residential area, neighborhood or group of buildings. This new concept could lead to several advantages: higher efficiency than any other heating plant; specific fuel consumption reduced; significant environmental benefits due to the urban context; greater environmental benefits with a renewable fuel such as biogas instead natural gas (and so consequently there is the possibility of access to the Green Certificates); operating and maintenance costs are shared with many users. 9. Conclusions The study undertaken, as well as the optimal plant configuration for the complex and mainly problematic structure as historical buildings, has allowed to apply a new method for sizing and design thermo-mechanical systems that have a low impact energy, such as trigeneration plants or other innovative systems with a lacking know- how. Indeed, the software TRNSYS allows to perform a dynamic and accurate analysis of the thermal loads dispersed by the user during the course of the year, whereas the software RETScreen permits an energy and environmental assessment and preliminary design rather flexible and accurate. Thanks to the two software used in series (TRNSYS and RETScreen), it was possible to obtain the following results:  New method to estimate the economic and environmental feasibility of a power plant.  Preparation and study of building and newly developed plants through a graphical interface.  Evaluation of the economic and financial prevision with an immediate feedback in numerical software.  Economic and financial plan at different levels of accuracy depending on the number of the input data (all types of costs or credits acquired). The future development of this study leads to the improvement of other important parameters such as the energy system reliability in order to plan the maintenance. 10. References 1. Fabio Armanasco (2009) Sperimentazione sul sistema trigenerativo con microturbina a gas e frigorifero ad assorbimento. CESI Ricerca 2. Ing. Bruno Frinzi (2009) Studio di fattibilità tecnico-economica di un impianto di rigenerazione in abbinamento ad un impianto fotovoltaico di uno stabilimento industriale. Protecnos 3. A. Simonetti, G. Corallo, R. Caria, L. Cipolletta (2010) Realizzazione dell’impianto di solar cooling dell’ edificio F51
  • 9. 8 del centro ENEA della Casaccia - Monitoraggio dell’Impianto. Enea 4. Analisi del potenziale della microgenerazione in Italia. Federazione Italiana per l’uso razionale dell’Energia (FIRE 2008) 5. Macchi E. , Campanari S. , Silvia P. (2006) La micro generazione a gas naturale. Polipress 6. Tomassetti G. (2003) Generazione distribuita e cogenerazione. Le barriere alla diffusione – La termotecnica 7. Belvedere C. (2007) Unità di micro generazione e piccola – Installazione ed esercizio – Procedure autorizzative semplificate. Documento di proprosta. Cogena 8. Di Santo D. (2006) Gli incentivi per l’efficienza energetica. Corso Enea/FIRE per Energy Manager 9. Grecchi M. (2006). Fiscalità e incentivi sulla micro generazione. Senertec Gmbh - gruppo CTI 10. Nikmat Ecopower (2005) Unità di cogenerazione e rigenerazione a gas naturale e biogas. Divisione di DSF Tecnologia 11. F. Bonfà, G. Caruso, I. De Santoli, G Lo Basso (2010) Studio di un esempio dimostrativo di impiego di tecnologie energeticamente efficienti. Enea, Citera 12. Michele Bianchi, Pier Ruggero Spina (2010). Integrazione di sistemi cogenerativi innovativi di piccolissima taglia nelle reti di distribuzione dell’energia elettrica, termica e frigorifera. Enea, Università di Ferrara 13. John A. Jacobs III, Martin Schneider (2009) Cogeneration Application Considerations. GE Energy 14. Ennio Macchi, Giovanni Lozza (2007) Cogenerazione industriale. Dipartimento di Energetica Politecnico di Milano 15. Boyce M.P. (2002) Handbook for cogeneration and combined cycle power plants. New York, ASME 16. Consonni S. (1989) Optimization of cogeneration systems operation. Part A: Prime movers modelization, in: Proceedings of the American Society of Mechanical Engineers Cogen-Turbo international symposium on turbomachinery, combined- cycle technologies and cogeneration.