SlideShare uma empresa Scribd logo
1 de 1
Baixar para ler offline
Vulnerability Analysis of the Parker and Mystic  
Watersheds in Massachusetts 
        Slope            Hydrologic Soil Data        Industrial Land Use       Agricultural Land Use       Major Roadways      Oil and Hazardous Waste     Solid Waste Disposal 
Mystic Watershed: 
Final Weighted Vulnerability 
Parker Watershed: 
Final Weighted Vulnerability 
Introduction  Results 
Mystic Watershed 
Parker Watershed 
Before beginning the analysis, the study areas needed to be chosen. Two 
factors were used when making that decision: the area of water per area of 
watershed and the population density of that area. The two watersheds that 
had approximately equal water to land ratio and very different population 
densities (a low and high value) were the Parker and the Mystic Watersheds 
(see Table 1).  
 
 
  
Watershed  Water to Land ratio  Population density (per km2
) 
Parker   82.3   341 
Mystic   87.2   2861 
 
 
   Table 2. Reclassification categories for each factor. 
Factors  1= Low 
Risk 
2= Low­
Med 
3= Medium  4= Med­
High 
5= High 
Risk 
Slope (% Rise)  0­3  3­8  8­15  15­25  25­35 
Hydrologic Soil Groups  A  B  C  C/D  D 
Agricultural Land Use (m)  >2000  2000  1000  500  200 
Industrial Land Use (m)  >2000  2000  1000  500  200 
Major Roads (m)  >2000  2000  1000  500  200 
Oil and Hazardous Material 
Sites (m) 
>2000  2000  1000  500  200 
Solid Waste Land Disposal (m)  >2000  2000  1000  500  200 
As seen in the pie charts above, high risk, medium­high risk, and medium risk areas make up 78% of both watersheds. 
Each watershed has the same percentage of high risk areas. The Parker Watershed has slightly more medium­risk areas, 
while the Mystic has more medium risk areas. The Mystic Watershed has highest percent of low risk areas.  
As the demand for clean water grows, so does the concern about 
the amount of pollution affecting our water bodies. Known 
sources of pollution are controlled with permits; however, not all 
causes of pollution are accounted for. Runoff is defined as the 
amount of precipitation that does not evaporate or infiltrate into 
the soil; the precipitation travels over the surface of the land until 
it reaches a water body. Non­point source pollution occurs when 
runoff picks up pollutants, from a variety of causes, and deposits 
them in a water body. It is one of the main contributors to water 
quality degradation in the United States. Current research is en­
deavoring to attribute the pollution to their origins and quantify 
the amount and damage from each source. 
 
Non­point source pollution frequently enters the ecosystem 
through storm runoff. The amount of runoff that will likely make 
it into a body of water depends on factors such as the slope and 
soil type of the surrounding area. A steep gradient has a much 
higher likelihood of runoff, whereas a flat surface is much more 
likely to filter the water into the ground. The hydrologic soil 
group also aids with the amount of absorption that takes place. 
Type A soils are the most permeable to water while Type D soils 
are the least permeable, and therefore contribute the most to run­
off.  
 
Common non­point sources of pollution are agriculture, indus­
tries, waste sites, and roadways. Excess nutrients from farms can 
cause algal blooms in water ecosystems that prevent all other or­
ganisms from living in the area. Pesticides can wash off crops and 
make their way through food webs, like DDT. Metals, chemicals 
compounds, and hazardous materials from industries and landfills 
are commonly not disposed of properly, or unintentionally leak 
from waste sites into water bodies. For example, mercury is 
known to bio­accumulate and biomagnify through the food chain. 
Runoff from roadways is another concern. Gasoline and other 
chemicals used by vehicles spill onto the pavement and are 
washed into water bodies during periods of precipitation. 
 
This analysis will integrate some of the components that cause 
runoff with potential pollution factors in an attempt to assess the 
vulnerability risk to nonpoint source pollution in two local water­
sheds. The watersheds examined will be from different communi­
ties, an urban area versus a more rural area. The investigation will 
strive to determine which area, urban or rural, is most at­risk and 
suggest which areas need to implement stricter water pollution 
regulations. 
Each layer was first clipped to the study area to limit the area of analysis. 
The main tools used in this investigation included Euclidean Distance, 
Reclassify, and the Raster Calculator. Each layer was reclassified on a 
risk of runoff or risk of pollution scale from 1 to 5, with 1 being the low­
est at­risk area and 5 being the highest (see Table 2). 
 
The final risk of runoff pollution was calculated using the raster calcula­
tor after all of the factors were reclassified. None of the factors were 
weighted. The raster scale was then re­grouped into 5 categories: 6­10 
was given a value of low, 11­15 was given a value of low­medium, 16­20 
was given a value of medium, 21­25 was given a value of medium­high, 
and 26­31 was given a value of high risk. The area made up by each cate­
gory was calculated and presented as a percentage of total area. 
Methods 
Conclusion 
Sources 
The Mystic and Parker Watersheds appear to have equal percent­
ages of vulnerable areas. The quantity of high, medium­high, and 
medium risk pollution areas are all approximately equal. This can 
be explained by the factors that contributed to the analysis. 
 
The Parker Watershed is situated in a more rural area. As expected, 
it has a much larger agricultural area that is over 12 times that of 
the Mystic Watershed. It contains fewer major roads, a smaller in­
dustrial area, and less oil and hazardous material sites. The Parker 
Watershed also consists of more D and C/D type soil, the types that 
are least permeable and support the most runoff.  
 
The Mystic Watershed is located in a very urban, densely populated 
area that includes the capital of Massachusetts. As anticipated, it 
contains approximately 4 times the amount of industrial land use, 
almost 38 times the amount of oil and hazardous waste sites, and 
many more major roads. There are far fewer agricultural land use 
areas and more areas that have type A and B soil which the most 
permeable to water. 
 
Both the Parker and Mystic Watersheds had similar numbers of sol­
id waste land disposal sites (9 and 13, respectively). The variation 
in slope was also assessed to be about equal for both locations. 
 
It is recommended that both watersheds focus on combatting the 
problem of nonpoint source pollution. Due to the nature of the 
communities in each watershed, different approaches should be 
used. The Parker Watershed should aim to limit the amount of run­
off that originates from agricultural land. They should concentrate 
on the farms located on the least permeable soils and conduct fre­
quent water quality testing to test the levels of nitrogen, phospho­
rus, and pesticides. On the other hand, the Mystic Watershed should 
direct their attention to the industrial sites, oil and hazardous waste 
sites, and roadways. They should ensure that all industries are dis­
posing of their waste properly and can account for the life cycle of 
all chemicals. The areas around the oil and hazardous material sites 
should be examined for leaks and water­quality testing should be 
performed regularly near major roads. These are just a few sugges­
tions about what can be done to decrease the levels of nonpoint 
source pollution in the Parker and Mystic Watersheds. 
Bhaduri, Budhendra, Harbor, Jon, Engel, Bernie, & Grove, Matt (2000). Assessing Watershed­Scale, Long­Term Hydrologic Impacts of Land­Use Change Using a GIS­
NPS Model. Environmental Management, 26(6), 643­658. doi: 10.1007/s002670010122 
Hamlett, J.M., Miller, D.A., Day, R.L., Peterson, G.W., Baumer, G.M., & Russo, J. (1992). Statewide GIS­based ranking of watersheds for agricultural pollution preven­
tion. Journal of Soil and Water Conservation, 47(5), 399­404. (no doi available). 
Heller, T. (2011). Hydrologic Soil Groups. Purdue University. Retrieved from https://engineering.purdue.edu/mapserve/LTHIA7/documentation/hsg.html. 
Stuebe, Miki M. & Johnston, Douglas M. (1990). Runoff Volume Estimation Using GIS Technique. Journal of the American Water Resources Association, 26(4), 611­
620. doi: 10.1111/j.1752­1688.1990.tb01398.x 
Weng, Qihao (2001). Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environmental Management, 28(6), 737­748. 
doi: 10.1007/s002670010258 
U.S. Environmental Protection Agency. (2014). Polluted Runoff: Nonpoint Source Pollution. Retrieved from http://water.epa.gov/polwaste/nps/index.cfm. 
Cartography by Stephanie Clarke 
Intro to GIS, Fall 2014 
Map Data Sources: MassGIS, 2014, U.S. Census 2010 
Projection: 
NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001  

Mais conteúdo relacionado

Mais procurados

Climate change impact assessment on hydrology on river basins
Climate change impact assessment on hydrology on river basinsClimate change impact assessment on hydrology on river basins
Climate change impact assessment on hydrology on river basinsAbhiram Kanigolla
 
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...National Institute of Food and Agriculture
 
Is stationarity dead whither water management
Is stationarity dead whither water managementIs stationarity dead whither water management
Is stationarity dead whither water managementDhiraj Gyawali
 
Methodology of Assessment Vulnerability of Soil Cover in Slovakia
Methodology of Assessment Vulnerability of Soil Cover in SlovakiaMethodology of Assessment Vulnerability of Soil Cover in Slovakia
Methodology of Assessment Vulnerability of Soil Cover in SlovakiaIJRES Journal
 
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...IJERA Editor
 
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...National Institute of Food and Agriculture
 
Ncrcsc fort collins knutson
Ncrcsc fort collins knutsonNcrcsc fort collins knutson
Ncrcsc fort collins knutsonNC_CSC
 
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...National Institute of Food and Agriculture
 
Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...eSAT Publishing House
 
Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...eSAT Journals
 
3. article azojete vol 10 25 39 ismail
3. article azojete vol 10 25 39 ismail3. article azojete vol 10 25 39 ismail
3. article azojete vol 10 25 39 ismailOyeniyi Samuel
 
Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...
	Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...	Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...
Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...inventionjournals
 
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...National Institute of Food and Agriculture
 
GSS_Poster_JFC_rescue
GSS_Poster_JFC_rescueGSS_Poster_JFC_rescue
GSS_Poster_JFC_rescueStenka Vulova
 
IRJET- Valuation of Irrigation Water at Shagordari, Jashore, Bangladesh
IRJET-  	  Valuation of Irrigation Water at Shagordari, Jashore, BangladeshIRJET-  	  Valuation of Irrigation Water at Shagordari, Jashore, Bangladesh
IRJET- Valuation of Irrigation Water at Shagordari, Jashore, BangladeshIRJET Journal
 
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...National Institute of Food and Agriculture
 
Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...IJERA Editor
 

Mais procurados (20)

Climate change impact assessment on hydrology on river basins
Climate change impact assessment on hydrology on river basinsClimate change impact assessment on hydrology on river basins
Climate change impact assessment on hydrology on river basins
 
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...
Managing Critical Source Areas for Enhancing Ecosystem Services in Agricultur...
 
Is stationarity dead whither water management
Is stationarity dead whither water managementIs stationarity dead whither water management
Is stationarity dead whither water management
 
IJG_2016042716323074
IJG_2016042716323074IJG_2016042716323074
IJG_2016042716323074
 
Methodology of Assessment Vulnerability of Soil Cover in Slovakia
Methodology of Assessment Vulnerability of Soil Cover in SlovakiaMethodology of Assessment Vulnerability of Soil Cover in Slovakia
Methodology of Assessment Vulnerability of Soil Cover in Slovakia
 
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...
Effect of Air Relative Humidity Harvest on Soil Moisture Content under Morocc...
 
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
 
Ncrcsc fort collins knutson
Ncrcsc fort collins knutsonNcrcsc fort collins knutson
Ncrcsc fort collins knutson
 
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...
Coupling Solid-Aqueous-Gas Phases of Carbon and Nitrogen Across Topographic G...
 
Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...
 
Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...Water quality modeling of an agricultural watershed with best management prac...
Water quality modeling of an agricultural watershed with best management prac...
 
3. article azojete vol 10 25 39 ismail
3. article azojete vol 10 25 39 ismail3. article azojete vol 10 25 39 ismail
3. article azojete vol 10 25 39 ismail
 
Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...
	Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...	Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...
Integrated application of HEC-RAS and GIS and RS for flood risk assessment i...
 
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...
Impacts of On-site Wastewater Treatment Systems on Water Quality and Quantity...
 
GSS_Poster_JFC_rescue
GSS_Poster_JFC_rescueGSS_Poster_JFC_rescue
GSS_Poster_JFC_rescue
 
Earthzine-sreedhar
Earthzine-sreedharEarthzine-sreedhar
Earthzine-sreedhar
 
IRJET- Valuation of Irrigation Water at Shagordari, Jashore, Bangladesh
IRJET-  	  Valuation of Irrigation Water at Shagordari, Jashore, BangladeshIRJET-  	  Valuation of Irrigation Water at Shagordari, Jashore, Bangladesh
IRJET- Valuation of Irrigation Water at Shagordari, Jashore, Bangladesh
 
10.5923.j.ijhe.20150401.03
10.5923.j.ijhe.20150401.0310.5923.j.ijhe.20150401.03
10.5923.j.ijhe.20150401.03
 
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...
Fate of Chemicals of Emerging Concern in Agroecosystems Amended with Animal M...
 
Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...
 

Destaque

Senior Project write up
Senior Project write upSenior Project write up
Senior Project write upCarl Holt
 
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...Janeen Kim Cayetano
 
UP424 GIS Final KJC (editted)
UP424 GIS Final KJC (editted)UP424 GIS Final KJC (editted)
UP424 GIS Final KJC (editted)Kevin Choi
 
Optimización del proyecto multipropósito tahuin
Optimización del proyecto multipropósito tahuinOptimización del proyecto multipropósito tahuin
Optimización del proyecto multipropósito tahuinAriana Montaño
 
REPRESA DE TAHUIN
REPRESA DE TAHUINREPRESA DE TAHUIN
REPRESA DE TAHUINjakeline
 
Human Rights & Technology
Human Rights & TechnologyHuman Rights & Technology
Human Rights & TechnologyMathias Klang
 
Open source health gis presentation final
Open source health gis  presentation finalOpen source health gis  presentation final
Open source health gis presentation finalJISC GECO
 
Gis project final_presentation
Gis project final_presentationGis project final_presentation
Gis project final_presentationoloofrank
 

Destaque (10)

2016 ICT4D - Presentation FINAL
2016 ICT4D - Presentation FINAL2016 ICT4D - Presentation FINAL
2016 ICT4D - Presentation FINAL
 
Tahuin
TahuinTahuin
Tahuin
 
Senior Project write up
Senior Project write upSenior Project write up
Senior Project write up
 
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...
ICT4D 2015 - GIS-attributed Data Collection and Spatial Analysis for Improved...
 
UP424 GIS Final KJC (editted)
UP424 GIS Final KJC (editted)UP424 GIS Final KJC (editted)
UP424 GIS Final KJC (editted)
 
Optimización del proyecto multipropósito tahuin
Optimización del proyecto multipropósito tahuinOptimización del proyecto multipropósito tahuin
Optimización del proyecto multipropósito tahuin
 
REPRESA DE TAHUIN
REPRESA DE TAHUINREPRESA DE TAHUIN
REPRESA DE TAHUIN
 
Human Rights & Technology
Human Rights & TechnologyHuman Rights & Technology
Human Rights & Technology
 
Open source health gis presentation final
Open source health gis  presentation finalOpen source health gis  presentation final
Open source health gis presentation final
 
Gis project final_presentation
Gis project final_presentationGis project final_presentation
Gis project final_presentation
 

Semelhante a Introduction to GIS Final Poster

dustin major paper-final version
dustin major paper-final versiondustin major paper-final version
dustin major paper-final versionDustin Weisel
 
dustin major paper-final version
dustin major paper-final versiondustin major paper-final version
dustin major paper-final versionDustin Weisel
 
usos del suelo NABS Vordonez
usos del suelo NABS Vordonezusos del suelo NABS Vordonez
usos del suelo NABS VordonezRios Altoandinos
 
Mulla - Precision Conservation
Mulla - Precision ConservationMulla - Precision Conservation
Mulla - Precision ConservationJose A. Hernandez
 
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geology
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geologyIntegrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geology
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geologyMaryam Izadifar
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Alireza Babaee
 
Birr - Identifying Critical Portions of the Landscape
Birr - Identifying Critical Portions of the LandscapeBirr - Identifying Critical Portions of the Landscape
Birr - Identifying Critical Portions of the LandscapeJose A. Hernandez
 
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...Courtney Miller
 
McNairn soil moisture IGARSS 2011 v2.ppt
McNairn soil moisture IGARSS 2011 v2.pptMcNairn soil moisture IGARSS 2011 v2.ppt
McNairn soil moisture IGARSS 2011 v2.pptgrssieee
 
Soil Erosion for Vishwamitri River watershed using RS and GIS
Soil Erosion for Vishwamitri River watershed using RS and GISSoil Erosion for Vishwamitri River watershed using RS and GIS
Soil Erosion for Vishwamitri River watershed using RS and GISvishvam Pancholi
 

Semelhante a Introduction to GIS Final Poster (20)

dustin major paper-final version
dustin major paper-final versiondustin major paper-final version
dustin major paper-final version
 
dustin major paper-final version
dustin major paper-final versiondustin major paper-final version
dustin major paper-final version
 
Poster Template 24x18
Poster Template 24x18Poster Template 24x18
Poster Template 24x18
 
11. Further Catchment Characterisation
11. Further Catchment Characterisation 11. Further Catchment Characterisation
11. Further Catchment Characterisation
 
2003_NEXRAD_Negley
2003_NEXRAD_Negley2003_NEXRAD_Negley
2003_NEXRAD_Negley
 
usos del suelo NABS Vordonez
usos del suelo NABS Vordonezusos del suelo NABS Vordonez
usos del suelo NABS Vordonez
 
Mulla - Precision Conservation
Mulla - Precision ConservationMulla - Precision Conservation
Mulla - Precision Conservation
 
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geology
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geologyIntegrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geology
Integrated hydro-geological risk for Mallero (Alpine Italy) – part 1: geology
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
 
finalturnin
finalturninfinalturnin
finalturnin
 
Birr - Identifying Critical Portions of the Landscape
Birr - Identifying Critical Portions of the LandscapeBirr - Identifying Critical Portions of the Landscape
Birr - Identifying Critical Portions of the Landscape
 
Developing a Web-based Forecasting Tool for Nutrient Management
Developing a Web-based Forecasting Tool for Nutrient ManagementDeveloping a Web-based Forecasting Tool for Nutrient Management
Developing a Web-based Forecasting Tool for Nutrient Management
 
brauckmann_project
brauckmann_projectbrauckmann_project
brauckmann_project
 
Bd26359376
Bd26359376Bd26359376
Bd26359376
 
Evaluating wetland impacts on nutrient loads
Evaluating wetland impacts on nutrient loadsEvaluating wetland impacts on nutrient loads
Evaluating wetland impacts on nutrient loads
 
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
 
Poster Presentations
Poster PresentationsPoster Presentations
Poster Presentations
 
McNairn soil moisture IGARSS 2011 v2.ppt
McNairn soil moisture IGARSS 2011 v2.pptMcNairn soil moisture IGARSS 2011 v2.ppt
McNairn soil moisture IGARSS 2011 v2.ppt
 
Soil Erosion for Vishwamitri River watershed using RS and GIS
Soil Erosion for Vishwamitri River watershed using RS and GISSoil Erosion for Vishwamitri River watershed using RS and GIS
Soil Erosion for Vishwamitri River watershed using RS and GIS
 
Lulc dynamics
Lulc dynamicsLulc dynamics
Lulc dynamics
 

Introduction to GIS Final Poster

  • 1. Vulnerability Analysis of the Parker and Mystic   Watersheds in Massachusetts          Slope            Hydrologic Soil Data        Industrial Land Use       Agricultural Land Use       Major Roadways      Oil and Hazardous Waste     Solid Waste Disposal  Mystic Watershed:  Final Weighted Vulnerability  Parker Watershed:  Final Weighted Vulnerability  Introduction  Results  Mystic Watershed  Parker Watershed  Before beginning the analysis, the study areas needed to be chosen. Two  factors were used when making that decision: the area of water per area of  watershed and the population density of that area. The two watersheds that  had approximately equal water to land ratio and very different population  densities (a low and high value) were the Parker and the Mystic Watersheds  (see Table 1).          Watershed  Water to Land ratio  Population density (per km2 )  Parker   82.3   341  Mystic   87.2   2861         Table 2. Reclassification categories for each factor.  Factors  1= Low  Risk  2= Low­ Med  3= Medium  4= Med­ High  5= High  Risk  Slope (% Rise)  0­3  3­8  8­15  15­25  25­35  Hydrologic Soil Groups  A  B  C  C/D  D  Agricultural Land Use (m)  >2000  2000  1000  500  200  Industrial Land Use (m)  >2000  2000  1000  500  200  Major Roads (m)  >2000  2000  1000  500  200  Oil and Hazardous Material  Sites (m)  >2000  2000  1000  500  200  Solid Waste Land Disposal (m)  >2000  2000  1000  500  200  As seen in the pie charts above, high risk, medium­high risk, and medium risk areas make up 78% of both watersheds.  Each watershed has the same percentage of high risk areas. The Parker Watershed has slightly more medium­risk areas,  while the Mystic has more medium risk areas. The Mystic Watershed has highest percent of low risk areas.   As the demand for clean water grows, so does the concern about  the amount of pollution affecting our water bodies. Known  sources of pollution are controlled with permits; however, not all  causes of pollution are accounted for. Runoff is defined as the  amount of precipitation that does not evaporate or infiltrate into  the soil; the precipitation travels over the surface of the land until  it reaches a water body. Non­point source pollution occurs when  runoff picks up pollutants, from a variety of causes, and deposits  them in a water body. It is one of the main contributors to water  quality degradation in the United States. Current research is en­ deavoring to attribute the pollution to their origins and quantify  the amount and damage from each source.    Non­point source pollution frequently enters the ecosystem  through storm runoff. The amount of runoff that will likely make  it into a body of water depends on factors such as the slope and  soil type of the surrounding area. A steep gradient has a much  higher likelihood of runoff, whereas a flat surface is much more  likely to filter the water into the ground. The hydrologic soil  group also aids with the amount of absorption that takes place.  Type A soils are the most permeable to water while Type D soils  are the least permeable, and therefore contribute the most to run­ off.     Common non­point sources of pollution are agriculture, indus­ tries, waste sites, and roadways. Excess nutrients from farms can  cause algal blooms in water ecosystems that prevent all other or­ ganisms from living in the area. Pesticides can wash off crops and  make their way through food webs, like DDT. Metals, chemicals  compounds, and hazardous materials from industries and landfills  are commonly not disposed of properly, or unintentionally leak  from waste sites into water bodies. For example, mercury is  known to bio­accumulate and biomagnify through the food chain.  Runoff from roadways is another concern. Gasoline and other  chemicals used by vehicles spill onto the pavement and are  washed into water bodies during periods of precipitation.    This analysis will integrate some of the components that cause  runoff with potential pollution factors in an attempt to assess the  vulnerability risk to nonpoint source pollution in two local water­ sheds. The watersheds examined will be from different communi­ ties, an urban area versus a more rural area. The investigation will  strive to determine which area, urban or rural, is most at­risk and  suggest which areas need to implement stricter water pollution  regulations.  Each layer was first clipped to the study area to limit the area of analysis.  The main tools used in this investigation included Euclidean Distance,  Reclassify, and the Raster Calculator. Each layer was reclassified on a  risk of runoff or risk of pollution scale from 1 to 5, with 1 being the low­ est at­risk area and 5 being the highest (see Table 2).    The final risk of runoff pollution was calculated using the raster calcula­ tor after all of the factors were reclassified. None of the factors were  weighted. The raster scale was then re­grouped into 5 categories: 6­10  was given a value of low, 11­15 was given a value of low­medium, 16­20  was given a value of medium, 21­25 was given a value of medium­high,  and 26­31 was given a value of high risk. The area made up by each cate­ gory was calculated and presented as a percentage of total area.  Methods  Conclusion  Sources  The Mystic and Parker Watersheds appear to have equal percent­ ages of vulnerable areas. The quantity of high, medium­high, and  medium risk pollution areas are all approximately equal. This can  be explained by the factors that contributed to the analysis.    The Parker Watershed is situated in a more rural area. As expected,  it has a much larger agricultural area that is over 12 times that of  the Mystic Watershed. It contains fewer major roads, a smaller in­ dustrial area, and less oil and hazardous material sites. The Parker  Watershed also consists of more D and C/D type soil, the types that  are least permeable and support the most runoff.     The Mystic Watershed is located in a very urban, densely populated  area that includes the capital of Massachusetts. As anticipated, it  contains approximately 4 times the amount of industrial land use,  almost 38 times the amount of oil and hazardous waste sites, and  many more major roads. There are far fewer agricultural land use  areas and more areas that have type A and B soil which the most  permeable to water.    Both the Parker and Mystic Watersheds had similar numbers of sol­ id waste land disposal sites (9 and 13, respectively). The variation  in slope was also assessed to be about equal for both locations.    It is recommended that both watersheds focus on combatting the  problem of nonpoint source pollution. Due to the nature of the  communities in each watershed, different approaches should be  used. The Parker Watershed should aim to limit the amount of run­ off that originates from agricultural land. They should concentrate  on the farms located on the least permeable soils and conduct fre­ quent water quality testing to test the levels of nitrogen, phospho­ rus, and pesticides. On the other hand, the Mystic Watershed should  direct their attention to the industrial sites, oil and hazardous waste  sites, and roadways. They should ensure that all industries are dis­ posing of their waste properly and can account for the life cycle of  all chemicals. The areas around the oil and hazardous material sites  should be examined for leaks and water­quality testing should be  performed regularly near major roads. These are just a few sugges­ tions about what can be done to decrease the levels of nonpoint  source pollution in the Parker and Mystic Watersheds.  Bhaduri, Budhendra, Harbor, Jon, Engel, Bernie, & Grove, Matt (2000). Assessing Watershed­Scale, Long­Term Hydrologic Impacts of Land­Use Change Using a GIS­ NPS Model. Environmental Management, 26(6), 643­658. doi: 10.1007/s002670010122  Hamlett, J.M., Miller, D.A., Day, R.L., Peterson, G.W., Baumer, G.M., & Russo, J. (1992). Statewide GIS­based ranking of watersheds for agricultural pollution preven­ tion. Journal of Soil and Water Conservation, 47(5), 399­404. (no doi available).  Heller, T. (2011). Hydrologic Soil Groups. Purdue University. Retrieved from https://engineering.purdue.edu/mapserve/LTHIA7/documentation/hsg.html.  Stuebe, Miki M. & Johnston, Douglas M. (1990). Runoff Volume Estimation Using GIS Technique. Journal of the American Water Resources Association, 26(4), 611­ 620. doi: 10.1111/j.1752­1688.1990.tb01398.x  Weng, Qihao (2001). Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environmental Management, 28(6), 737­748.  doi: 10.1007/s002670010258  U.S. Environmental Protection Agency. (2014). Polluted Runoff: Nonpoint Source Pollution. Retrieved from http://water.epa.gov/polwaste/nps/index.cfm.  Cartography by Stephanie Clarke  Intro to GIS, Fall 2014  Map Data Sources: MassGIS, 2014, U.S. Census 2010  Projection:  NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001