SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
The Astrophysical Journal, 689:371Y376, 2008 December 10                                                                                                       A
# 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.




                           NEUTRINO MASS SPECTRUM FROM GRAVITATIONAL WAVES GENERATED
                                    BY DOUBLE NEUTRINO SPIN-FLIP IN SUPERNOVAE
                                                        Herman J. Mosquera Cuesta1 and Gaetano Lambiase 2
                                                                    Received 2008 May 28; accepted 2008 August 4


                                                                  ABSTRACT
                The supernova (SN ) neutronization phase produces mainly electron (e ) neutrinos, the oscillations of which must
             take place within a few mean free paths of their resonance surface located nearby their neutrinosphere. The latest
             research on the SN dynamics suggests that a significant part of these e can convert into right-handed neutrinos by
             virtue of the interaction of the electrons and the protons flowing with the SN outgoing plasma, whenever the Dirac
             neutrino magnetic moment is of strength   10À11 B , with B being the Bohr magneton. In the SN envelope, some
             of these neutrinos can flip back to the left-handed flavors due to the interaction of the neutrino magnetic moment with
             the magnetic field in the SN expanding plasma (see the work by Kuznetsov  Mikheev; Kuznetsov, Mikheev, 
             Okrugin; Akhmedov  Khlopov; Itoh  Tsuneto; and Itoh et al.), a region where the field strength is currently
             accepted to be B k1013 G. This type of  oscillation was shown to generate powerful gravitational wave (GW )
             bursts (see the work by Mosquera Cuesta; Mosquera Cuesta  Fiuza; and Loveridge). If such a double spin-flip mech-
             anism does run into action inside the SN core, then the release of both the oscillation-produced  and  particles and
                                                                                                            emi
             the GW pulse generated by the coherent  spin-flips provides a unique emission offset ÁTGW$ ¼ 0 for measuring
             the  travel time to Earth. As massive  particles get noticeably delayed on their journey to Earth with respect to the
             Einstein GW they generated during the reconversion transient, then the accurate measurement of this time-of-flight
             delay by SNEWS + LIGO, VIRGO, BBO, DECIGO, etc., might readily assess the absolute  mass spectrum.
             Subject headingg: elementary particles — gravitational waves — methods: data analysis — neutrinos —
                               s
                                 stars: magnetic fields — supernovae: general
             Online material: color figure


                              1. INTRODUCTION                                                electrons and the protons in the SN outflowing plasma. Specifi-
   The determination of the absolute values of neutrino masses is                            cally, the neutrino chirality flip is caused by the scattering via the
                                                                                             intermediate photon (plasmon) off the plasma electromagnetic cur-
certainly one of the most difficult problems from the experimental
                                                                                             rent presented by electrons, L eÀ À R eÀ ; protons, L pþ À R pþ ;
                                                                                                                                 !                      !
point of view (Bilenky et al. 2003). One of the main difficulties of
the issue of determining the  masses from solar or atmospheric                             etc. (2) A second signal exists by virtue of the reconversion pro-
                                                                                             cess of these sterile  particles back into actives some time later,
experiments concerns the ability of  detectors to be sensitive to
                                                                                             at lower density, via the interaction of the neutrino magnetic mo-
the species mass square difference instead of being sensitive to
                                                                                             ment with the magnetic field in the SN envelope (SNE). The GW
the  mass itself. In this paper we introduce a model-independent
                                                                                             characteristic amplitude, which depends directly on the luminosity
novel nonpareil method to achieve this goal. We argue that a highly
                                                                                             and the mass square difference of the  species partaking in the
accurate and largely improved assessment of the  mass scale can
                                                                                             coherent transition (Pantaleone 1992), and the GW frequency of
be directly achieved by measurements of the delay in time of flight
                                                                                             each of the bursts are computed. Finally, the time-of-flight delay
between the  particles themselves and the gravitational wave
                                                                                              $ GW that can be measured upon the arrival of both signals to
(GW) burst generated by the asymmetric flux of neutrinos under-
                                                                                             Earth observatories is then estimated, and the prospective of ob-
going coherent (Pantaleone 1992) helicity (spin-flip) transitions
during either the neutronization phase or the relaxation (diffusion)                         taining the  mass spectrum from such measurements is discussed.
phase in the core of a Type II supernova (SN) explosion. Because
                                                                                                        2. DOUBLE RESONANT CONVERSION
special relativistic effects do preclude massive particles from trav-
                                                                                                           OF NEUTRINOS IN SUPERNOVAE
eling at the speed of light, while massless particles are not (the
graviton in this case), the measurement of this  time lag leads to                                   2.1. Interaction of L Dirac Magnetic Moment
a direct accounting of its mass. We posit from the start that two                                                with SN Virtual Plasmon
bursts of GWs can be generated during the protoYneutron star                                    The neutrino chirality conversion process L $ R in a SN has
(PNS) neutronization phase through spin-flip oscillations: (1) one                            been investigated in many papers (see, for instance, Voloshin 1988;
signal from the early conversion of active  particles into right-                           Peltoniemi 1992; Akhmedov et al. 1993; Dighe  Smirnov 2000).
handed partners, at density  $ few ; 1012 g cmÀ3, via the inter-                            Next, we follow the reanalysis of the double  spin-flip in SNe
action of the Dirac neutrino magnetic moment [of strength                                 recently revisited by Kuznetsov  Mikheev (2007) and Kuznetsov
(0:7Y1:5) ; 10À12 B , with B being the Bohr magneton] with the                             et al. (2008), who obtained a more stringent limit on the neutrino
                                                                                             magnetic moment,  , after demanding compatibility with the
   1
     Instituto de Cosmologia, Relatividade e Astrof ´sica ( ICRA-BR), Centro
                                                      ı                                      SN 1987A  luminosity. The process becomes feasible in virtue
Brasileiro de Pesquisas Fısicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180,
                          ´                                                                  of the interaction of the Dirac  magnetic moment with a virtual
Rio de Janeiro, Brazil; and ICRANet Coordinating Centre, Piazzalle della
Repubblica 10, 065100, Pescara, Italy.                                                       plasmon, which can be produced, L À R þ 
 ? , and absorbed,
                                                                                                                                     !
   2
                                                           ´
     Dipartimento di Fisica ‘‘E. R. Caianiello,’’ Universita di Salerno, 84081               L þ 
 ? À R , inside a SN. Our main goal here is to estimate the
                                                                                                       !
Baronissi (Sa), Italy; and INFN, Sezione di Napoli, Italy.                                   R luminosity after the first resonant conversion inside the SN.
                                                                                       371
372                                                         MOSQUERA CUESTA  LAMBIASE                                                                         Vol. 689

This quantity is one of the important parameters for estimating                       form Ye ¼ 1/3. ( Typical values of Ye in SNE are Ye $ 0:4Y0:5,
the GW amplitude of the signal generated at the transition (see x 3                   which are rather similar to those of the collapsing matter). How-
below). The calculation of the spin-flip rate of creation of the R                    ever, the shock wave causes the nuclei dissociation and makes
in the SN core is given by (Kuznetsov  Mikheev 2007)                                 the SNE material more transparent to  particles. This leads to
                              Z 1                                                     the proliferation of matter deleptonization in this region and, con-
                    dER            dnR 0 0                                          sequently, to the so-called short  outburst. According to the latest
             L R       ¼V              E dE
                     dt         0   dE 0                                              research on SNe, a typical gap appears along the radial distribu-
                                  Z 1                                                 tion of the parameter Ye where it can achieve values as low as
                              V
                         ¼            E 03 ÀðE 0 ÞdE 0 ;       ð1Þ                    Ye $ 0:1 (see Mezzacappa et al. 2001 and also Fig. 2 in Kuznetsov
                             2 2 0
                                                                                      et al. 2008, and references therein). Thus, a transition region un-
where dnR /dE 0 defines the number of right-handed  particles                        avoidably exists where Ye takes the value of 1/3. It is remarkable
emitted in the 1 MeV energy band of the  energy spectrum, and                        that only one such point appears where the Ye radial gradient is
per unit time, À(E 0 ) defines the spectral density of the right-handed                positive, i.e., dYe /dr  0. Nonetheless, the condition Ye ¼ 1/3 is
 luminosity, and V is the plasma volume. Thus, by using the SN                       the necessary but yet not the sufficient one for the resonant con-
core conditions that are currently admitted (see, for instance, Janka                 version R ! L to occur. It is also required to satisfy the so-called
et al. 2007), plasma volume V ’ 4 ; 1018 cm3, temperature                             adiabatic condition. This means that the diagonal element CL in
range T ¼ 30Y60 MeV, electron chemical potential range e ¼       ˜                   equation (3), at least, should not exceed the nondiagonal element
280Y307 MeV, neutrino chemical potential  ¼ 160 MeV,3 one
                                                 ˜                                     B? , when the shift is made from the resonance point at the
obtains                                                                               distance of the order of the oscillation length. This leads to the
                                                                                      condition (Voloshin 1988)
                        2
                                                                                                                                     
               LR ’           (0:4Y2) ; 1077 erg sÀ1 ;             ð2Þ                                       dCL 1=2       3GF  dYe 1=2
                         B                                                                         B? k             ’ pffiffiffi                   :        ð4Þ
                                                                                                               dr             2 mN dr
which for a  ¼ 3 ; 10À12 B compatible with SN 1987A neu-
trino observations and preserving causality with respect to the left-                 And values of these typical parameters inside the considered re-
handed diffusion  luminosity LR  LL P1053 erg sÀ1, renders                        gion are dYe /dr $ 10À8 cmÀ1 and  $ 1010 g cmÀ3 . Therefore,
LR ¼ 4 ; 1053 erg sÀ1. This constraint is on the order of the lu-                    the magnetic field strength that realizes the resonance condition
minosities estimated in our earlier papers (Mosquera Cuesta 2000,                     reads as
2002; Mosquera Cuesta  Fiuza 2004) to compute the GW am-                                                          À12 
                                                                                                                    10 B
plitude from  flavor conversions, which were different from the                                B? k 2:6 ; 1014 G
one estimated by ( Loveridge 2004). More remarkable, this anal-                                                        
ysis means that only $1%Y2% of the total number of L particles                                                      1=2              1=2
                                                                                                                            dYe 8
may resonantly convert into R particles.                                                             ;                          10 cm        :    ð5Þ
                                                                                                          1010 g cmÀ3         dr
       2.2. Conversion of R À L in the SN Magnetic Field
                              !
                                                                                         Thus, one can conclude that the analysis performed above shows
   Kuznetsov et al. (2008) have shown that by taking into account                     that the Dar scenario of the double conversion of the neutrino
the additional energy CL, which the left-handed electron-type neu-                    helicity (Dar 1987), L ! R ! L , can be realized whenever
trino e acquires in the medium, the equation of the helicity evo-                    the neutrino magnetic moment is in the interval 10À13 B   
lution can be written in the form ( Voloshin  Vysotsky 1986;                         10À12 B and when the strength of the magnetic field reaches
Voloshin et al. 1986a, 1986b; Okun 1986, 1988)                                        k1014 G ( Kusenko 2004) in a region R between the neutrino-
                                                                              sphere R and the shock wave stagnation radius Rs , where R 
         @ R                     0        B?       R
       i            ¼ E  ˆ0 þ                              ;                          R  Rs .4 Thus, the L luminosity during this stagnation time,
         @t L                   B?      CL         L                              ÁTs ’ 0:2Y0:4 s, is LL ’ 3 ; 1053 erg sÀ1, as the conservation
                                                         
                               3GF             4       1                             law allows one to expect   10À12 B . Once one has all these pa-
                       *CL ¼ pffiffiffi          Ye þ Ye À      ; ð3Þ                      rameters in hand, one can then proceed to compute the correspond-
                                 2  mN          3       3
                                                                                      ing GW signal from each of the  resonant spin-flip transitions.
where the ratio /mN ¼ nB is the nucleon density, Ye ¼ ne /nB ¼
np /nB , Ye ¼ ne /nB , and ne; p; e are the densities of the electrons,                             3.  OSCILLATIONYDRIVEN GW
protons, and neutrinos, respectively, B? is the transverse compo-                                      DURING SN NEUTRONIZATION
nent of the magnetic field with respect to the  propagation direc-                       The characteristic GW amplitude of the signal produced by the
                     ˆ
tion, and the term E0 is proportional to the unit matrix, however,                     outflow can be estimated by using the general relativistic quad-
it is not crucial for the analysis below.                                             rupole formula (Burrows  Hayes 1996)
    As pointed out by Kuznetsov et al. (2008), the additional en-                                               Z
ergy CL of left-handed  particles deserves a special analysis. It                                           4G t
                                                                                                  hTT (t) ¼ 4
                                                                                                   ij                ðt 0 ÞL ðt 0 Þdt 0 ei  ej
is remarkable that the possibility exists for this value to be zero                                         c D À1
just in the region of the SNE we are interested in. And, in turn,                                                   4G
this is the condition of the resonant transition R ! L . When the                                          À!h ’ 4 Á L ÁTfL !fR ;             ð6Þ
                                                                                                                   c D
 density in the SNE is low enough, one can neglect the value Ye
in the term CL , which gives the condition for the resonance in the
                                                                                         4
                                                                                           These kinds of magnetic field strengths have been extensively said to be
                                                                                      reached after the SN core collapse forms just-born pulsars (magnetars), in the central
   3
     These conditions could exist in the time interval before the first second after   engines of gamma-ray burst outflows, and during the quantum-magnetic collapse
the core bounce.                                                                      of newborn neutron stars, etc.
No. 1, 2008                            NEUTRINO MASS SPECTRUM FROM GRAVITATIONAL WAVES                                                                                373

                                                                                     tion ( Barkovich et al. 2002). As a result, one gets Ájpj/jpj ¼
                                                                                        R              R
                                                                                     6 ( 0 Fs = u dS )/( 0 Fs = n dS ) ’ 2%/9¯ (n is6 a unit vector nor-
                                                                                     1
                                                                                                                              r
                                                                                                                             ˆ ˆ
                                                                                     mal to the resonance surface and u ¼ B/jBj). An anisotropy of
                                                                                     $1% would suffice to account for the observed pulsar kicks
                                                                                                         ´
                                                                                     ( Kusenko  Segre 1996; Loveridge 2004; Mosquera Cuesta
                                                                                     2000, 2002); hence,  ’ 0:045 $ O(0:01)YO(0:1), which is con-
                                                                                     sistent with numerical results ( Burrows  Hayes 1996; Muller ¨
                                                                                      Janka 1997). Finally, the conversion probability is PeL ! R ¼
                                                                                                      ˜      ˜                               ˜
                                                                                     1/2 À 1/2 cos 2i cos 2f (Okun 1986, 1988), where  is defined
                                                                                     as
                                                                                                    tan 2(r) ¼ 2 B? =(B = p þ Ve À 2c2 ):
                                                                                                         ˜                   ˆ                                         ð8Þ
                                                                                                     ˜      ˜          ˜     ˜
                                                                                     The quantities i ¼ (ri ) and f ¼ (rf ) are the values of the mix-
                                                                                     ing angle at the initial point ri and the final point rf of the neutrino
                                                                                     path.7
                                                                                       Meanwhile, the average timescale of this first  spin-flip con-
                                                                                     version is (Dar 1987; Voloshin 1988)
                                                                                                               2               2
                                                                                                                                            
                                                                                                               B               me            mp
                                                                                             ÁTfL !fR ¼                   2 (1 þ hZi)Y
                                                                                                                                                    ;    ð9Þ
                                                                                                                       fsc           e     

                                                                                     where hZi $ O(1Y30) is the average electric charge of the nuclei
                                                                                     and fsc is the fine-structure constant. Using the current bounds
   Fig. 1.— Illustration of the combined effect of the  spin coupling to the star   on the neutrino magnetic moment  P 3 ; 10À12 B , Ye ’ 1/3,
magnetic field and rotation. This figure was taken from Mosquera Cuesta  Fiuza        hZi $ 10,  $ 2 ; 1012 g cmÀ3, and  $ 0:04, it follows that
(2004).                                                                              ÁTf L !f R ’ (1 À 10) ; 10À2 s (parameters have been chosen from
                                                                                     SN simulations evolving the PNS on timescales of $3 ms around
                                                                                     core bounce; Mayle et al. 1987; Walker  Schramm 1987; Burrows
where D is the source distance, L (t) is the total  luminosity,                     Hayes 1996; Mezzacappa et al. 2001; van Putten 2002; Arnaud
ei  ej is the GW polarization tensor, the superscript TT stands                     et al. 2002; Beacom et al. 2001). In such a case, the above time-
for the transverse-traceless part, and finally, (t) is the instan-                   scale suggests that the GW burst would be as long as the expected
taneous quadrupole anisotropy. Above, we estimated the R lu-                        duration of the pure neutronization phase itself, i.e., ÁTneut $
minosity; next, we estimate the degree of asymmetry of the PNS                       10Y100 ms, according to most SN analyses and models ( Mayle
through the anisotropic parameter  and the timescale ÁTfL !fR                     et al. 1987; Walker  Schramm 1987; Burrows  Hayes 1996;
for the resonant transition to take place, as discussed above.                       Mezzacappa et al. 2001; van Putten 2002; Arnaud et al. 2002;
   To estimate the star asymmetry, let us recall that the resonance                  Beacom et al. 2001), with the maximum GW emission taking
condition for the transition eL !  R is given by (at the reso-                                        max
                                                                                     place around ÁTneut $ 3 ms (van Putten 2002; Arnaud et al. 2002;
       ¯
nance r )                                                                            Mosquera Cuesta 2000, 2002; Mosquera Cuesta  Fiuza 2004).
                                                                                     Hence, the outcoming GW signal will be the evolute ( linear
                     Ve ( r ) þ B( r ) = p À 2c2 ¼ 0:
                           ¯        ¯ ˆ                                      ð7Þ     superposition) of all the coherent eL ! ;R oscillations taking
                                                                                     place over the neutronization transient, in analogy with the GW
Thus, the PNS magnetic field vector B in equation (7) distorts the                    signal from the collective motion of neutron matter in a just-born
surface of resonance due to the relative orientation of p with re-                   pulsar. This implies a GW frequency of fGW $ 1/ÁTneut $ 100 Hz,
spect to B (see vector B in Fig. 1). The deformed surface of res-                                                                      max
                                                                                     for the overall GWemission, and fGW $ 1/ÁTneut $ 330 Hz at its
onance can be parameterized as r(
) ¼ r þ % cos
, where % (¯ )
                                        ¯                       r                    peak. Meanwhile, according to our probability discussion above,
is the radial deformation and cos
¼ B = p. The deformation en-
                                       ˆ ˆ
                                                                                     about 1%Y2% of the total  particles released during the SN neu-
forces a nonsymmetrical outgoing neutrino flux, i.e., the net flux                     tronization phase may oscillate (Voloshin 1988; Peltoniemi 1992;
of neutrinos emitted from the upper hemisphere is different from                     Akhmedov et al. 1993; Dighe  Smirnov 2000), carrying away
the one emitted from the lower hemisphere (see Fig. 1). There-                       an effective power L ¼ 3 ; 1054 Y1053 erg sÀ1, i.e., 0:01 ; 3 ;
fore, a geometrical definition of the quadrupole anisotropy can                       1053 erg, emitted during ÁTneut $ 10Y100 ms (this is similar to
be  ¼ (Sþ À SÀ )/(Sþ þ SÀ ), where SÆ is the area of the upper/                     the upper limit computed in Peltoniemi [1992], L ¼ (2/10) ;
lower hemisphere, whence one obtains  ’ %/ r.5 The anisotropy
                                                ¯                                    1053 ½e /(10À12 B )Š erg sÀ1). Moreover, as is evident from equa-
of the outgoing neutrinos is also related to the energy flux Fs                       tion (6), the GW amplitude is a function of the helicity-changing
emitted by the PNS and, in turn, to the fractional momentum                                                       eL !
                                                                                      luminosity, i.e., h ¼ h(Lmax ;R ). The  luminosity itself depends
                                          ´
asymmetry Ájpj/jpj ( Kusenko  Segre 1996; Barkovich et al.
2002; Lambiase 2005a, 2005b; Mosquera Cuesta  Fiuza 2004).                             6
                                                                                           To compute Ájpj/jpj one uses the standard resonance condition V ¼ 2c2
To compute Fs , one has to take into account the structure of the                    (see Barkovich et al. 2002 for details). According to Mezzacappa et al. (2001),
flux at the resonant surface, which acts as an effective emis-                        during the first 10Y200 ms, Ye may assume values ’1/3 so that Ve $ (3Ye À 1)
sion surface, and the  distribution in the diffusive approxima-                     is suppressed by several orders of magnitude. At $10 ms,  $ 1012 g cmÀ3, r $
                                                                                     50 km, and jpj $ 10 MeV, the resonance condition leads to a range for Ám 2 cos 2
                                                                                     consistent with solar (or atmospheric) neutrino data.
   5
     A detailed analysis of the asymmetry parameter  requires one to study its          7
                                                                                           By using the typical values B k1010 G,  P 9 ; 10À11 B , and the profile
time evolution during the SN collapse. Such a task goes beyond the aim of this        ’ core (rc /r) 3 for r k rc (rc $ 10 km is the core radius and core $ 1014 g cmÀ3),
paper. Working in the stationary regime, we may assume  constant (see Burrows       one can easily verify that the adiabatic parameter 
  2(  B? ) 2/ðj 0/jÞ  1 at
 Hayes 1996; Burrows et al. 1995; Zwerger  Muller 1997; van Putten 2002).
                                                   ¨                                 the resonance r. ¯

Mais conteúdo relacionado

Mais procurados

45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...Cristian Randieri PhD
 
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lewis Larsen
 
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Christiaan Roca Catala
 
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2jeksespina
 
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001ig
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001igModulations in the_radio_light_curve_of_the_typeiib_supernova_2001ig
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001igSérgio Sacani
 
The significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedThe significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedSérgio Sacani
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017Son Cao
 
13.30 o8 f natali
13.30 o8 f natali13.30 o8 f natali
13.30 o8 f nataliNZIP
 
Entangled states of trapped atomic ions
Entangled states of trapped atomic ionsEntangled states of trapped atomic ions
Entangled states of trapped atomic ionsGabriel O'Brien
 
LENR Transmutations on Earth vs Nucleosynthesis in Stars
LENR Transmutations on Earth vs Nucleosynthesis in StarsLENR Transmutations on Earth vs Nucleosynthesis in Stars
LENR Transmutations on Earth vs Nucleosynthesis in StarsLewis Larsen
 
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Dhanesh Rajan
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Rings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeRings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeSérgio Sacani
 
What about your first Nuclear power plant?
What about your first Nuclear power plant?What about your first Nuclear power plant?
What about your first Nuclear power plant?Hossam Alhelaly
 
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03Sérgio Sacani
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 

Mais procurados (20)

45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
 
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
 
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
 
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
 
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001ig
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001igModulations in the_radio_light_curve_of_the_typeiib_supernova_2001ig
Modulations in the_radio_light_curve_of_the_typeiib_supernova_2001ig
 
The significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedThe significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisited
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017
 
Teachers colloquium
Teachers colloquiumTeachers colloquium
Teachers colloquium
 
13.30 o8 f natali
13.30 o8 f natali13.30 o8 f natali
13.30 o8 f natali
 
apj_782_2_102
apj_782_2_102apj_782_2_102
apj_782_2_102
 
Pwapr03webb
Pwapr03webbPwapr03webb
Pwapr03webb
 
Entangled states of trapped atomic ions
Entangled states of trapped atomic ionsEntangled states of trapped atomic ions
Entangled states of trapped atomic ions
 
LENR Transmutations on Earth vs Nucleosynthesis in Stars
LENR Transmutations on Earth vs Nucleosynthesis in StarsLENR Transmutations on Earth vs Nucleosynthesis in Stars
LENR Transmutations on Earth vs Nucleosynthesis in Stars
 
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Neutral Atom Quantum Memories
Neutral Atom Quantum MemoriesNeutral Atom Quantum Memories
Neutral Atom Quantum Memories
 
Rings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeRings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulae
 
What about your first Nuclear power plant?
What about your first Nuclear power plant?What about your first Nuclear power plant?
What about your first Nuclear power plant?
 
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 

Semelhante a Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino mass spectrum from gravitational waves generated by double neutrino spin flip in supernovae

NNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALNNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALJoshua Barrow
 
The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle PhysicsSSA KPI
 
Too much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downToo much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downSérgio Sacani
 
Neutrondetailspdf
NeutrondetailspdfNeutrondetailspdf
NeutrondetailspdfNanda Gopal
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Lewis Larsen
 
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Sérgio Sacani
 
Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Sérgio Sacani
 
Gamma-ray bursts
Gamma-ray burstsGamma-ray bursts
Gamma-ray burstsvolodymyrs
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaSérgio Sacani
 
Gravitational waves and kilonova event gw170817
Gravitational waves and kilonova event gw170817Gravitational waves and kilonova event gw170817
Gravitational waves and kilonova event gw170817Jay Vora
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysicAtner Yegorov
 
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PC Cluster Consortium
 
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...Lewis Larsen
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimernirupam12
 

Semelhante a Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino mass spectrum from gravitational waves generated by double neutrino spin flip in supernovae (20)

Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 
NNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALNNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINAL
 
The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle Physics
 
Too much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downToo much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_down
 
NEUTRINO
NEUTRINONEUTRINO
NEUTRINO
 
Neutrondetailspdf
NeutrondetailspdfNeutrondetailspdf
Neutrondetailspdf
 
Eps hep2015 014 (1)
Eps hep2015 014 (1)Eps hep2015 014 (1)
Eps hep2015 014 (1)
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
 
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
Morphological evidence for_azimuthal_variations_of_the_cosmic_ray_ion_acceler...
 
poster
posterposter
poster
 
Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...
 
Gamma-ray bursts
Gamma-ray burstsGamma-ray bursts
Gamma-ray bursts
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
Gravitational waves and kilonova event gw170817
Gravitational waves and kilonova event gw170817Gravitational waves and kilonova event gw170817
Gravitational waves and kilonova event gw170817
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
 
Newly born pulsars
Newly born pulsarsNewly born pulsars
Newly born pulsars
 
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...
Lattice Energy LLC- Electroweak Neutron Production and Capture During Lightni...
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 

Mais de SOCIEDAD JULIO GARAVITO

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...SOCIEDAD JULIO GARAVITO
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasSOCIEDAD JULIO GARAVITO
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...SOCIEDAD JULIO GARAVITO
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfSOCIEDAD JULIO GARAVITO
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfSOCIEDAD JULIO GARAVITO
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comSOCIEDAD JULIO GARAVITO
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSOCIEDAD JULIO GARAVITO
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603SOCIEDAD JULIO GARAVITO
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024SOCIEDAD JULIO GARAVITO
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024SOCIEDAD JULIO GARAVITO
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024SOCIEDAD JULIO GARAVITO
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...SOCIEDAD JULIO GARAVITO
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdfSOCIEDAD JULIO GARAVITO
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfSOCIEDAD JULIO GARAVITO
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfSOCIEDAD JULIO GARAVITO
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfSOCIEDAD JULIO GARAVITO
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...SOCIEDAD JULIO GARAVITO
 

Mais de SOCIEDAD JULIO GARAVITO (20)

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de Galaxias
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdf
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
 
WWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdfWWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdf
 
ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.
 
POSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdf
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
 

Último

Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 

Último (20)

Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino mass spectrum from gravitational waves generated by double neutrino spin flip in supernovae

  • 1. The Astrophysical Journal, 689:371Y376, 2008 December 10 A # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEUTRINO MASS SPECTRUM FROM GRAVITATIONAL WAVES GENERATED BY DOUBLE NEUTRINO SPIN-FLIP IN SUPERNOVAE Herman J. Mosquera Cuesta1 and Gaetano Lambiase 2 Received 2008 May 28; accepted 2008 August 4 ABSTRACT The supernova (SN ) neutronization phase produces mainly electron (e ) neutrinos, the oscillations of which must take place within a few mean free paths of their resonance surface located nearby their neutrinosphere. The latest research on the SN dynamics suggests that a significant part of these e can convert into right-handed neutrinos by virtue of the interaction of the electrons and the protons flowing with the SN outgoing plasma, whenever the Dirac neutrino magnetic moment is of strength 10À11 B , with B being the Bohr magneton. In the SN envelope, some of these neutrinos can flip back to the left-handed flavors due to the interaction of the neutrino magnetic moment with the magnetic field in the SN expanding plasma (see the work by Kuznetsov Mikheev; Kuznetsov, Mikheev, Okrugin; Akhmedov Khlopov; Itoh Tsuneto; and Itoh et al.), a region where the field strength is currently accepted to be B k1013 G. This type of oscillation was shown to generate powerful gravitational wave (GW ) bursts (see the work by Mosquera Cuesta; Mosquera Cuesta Fiuza; and Loveridge). If such a double spin-flip mech- anism does run into action inside the SN core, then the release of both the oscillation-produced and particles and emi the GW pulse generated by the coherent spin-flips provides a unique emission offset ÁTGW$ ¼ 0 for measuring the travel time to Earth. As massive particles get noticeably delayed on their journey to Earth with respect to the Einstein GW they generated during the reconversion transient, then the accurate measurement of this time-of-flight delay by SNEWS + LIGO, VIRGO, BBO, DECIGO, etc., might readily assess the absolute mass spectrum. Subject headingg: elementary particles — gravitational waves — methods: data analysis — neutrinos — s stars: magnetic fields — supernovae: general Online material: color figure 1. INTRODUCTION electrons and the protons in the SN outflowing plasma. Specifi- The determination of the absolute values of neutrino masses is cally, the neutrino chirality flip is caused by the scattering via the intermediate photon (plasmon) off the plasma electromagnetic cur- certainly one of the most difficult problems from the experimental rent presented by electrons, L eÀ À R eÀ ; protons, L pþ À R pþ ; ! ! point of view (Bilenky et al. 2003). One of the main difficulties of the issue of determining the masses from solar or atmospheric etc. (2) A second signal exists by virtue of the reconversion pro- cess of these sterile particles back into actives some time later, experiments concerns the ability of detectors to be sensitive to at lower density, via the interaction of the neutrino magnetic mo- the species mass square difference instead of being sensitive to ment with the magnetic field in the SN envelope (SNE). The GW the mass itself. In this paper we introduce a model-independent characteristic amplitude, which depends directly on the luminosity novel nonpareil method to achieve this goal. We argue that a highly and the mass square difference of the species partaking in the accurate and largely improved assessment of the mass scale can coherent transition (Pantaleone 1992), and the GW frequency of be directly achieved by measurements of the delay in time of flight each of the bursts are computed. Finally, the time-of-flight delay between the particles themselves and the gravitational wave $ GW that can be measured upon the arrival of both signals to (GW) burst generated by the asymmetric flux of neutrinos under- Earth observatories is then estimated, and the prospective of ob- going coherent (Pantaleone 1992) helicity (spin-flip) transitions during either the neutronization phase or the relaxation (diffusion) taining the mass spectrum from such measurements is discussed. phase in the core of a Type II supernova (SN) explosion. Because 2. DOUBLE RESONANT CONVERSION special relativistic effects do preclude massive particles from trav- OF NEUTRINOS IN SUPERNOVAE eling at the speed of light, while massless particles are not (the graviton in this case), the measurement of this time lag leads to 2.1. Interaction of L Dirac Magnetic Moment a direct accounting of its mass. We posit from the start that two with SN Virtual Plasmon bursts of GWs can be generated during the protoYneutron star The neutrino chirality conversion process L $ R in a SN has (PNS) neutronization phase through spin-flip oscillations: (1) one been investigated in many papers (see, for instance, Voloshin 1988; signal from the early conversion of active particles into right- Peltoniemi 1992; Akhmedov et al. 1993; Dighe Smirnov 2000). handed partners, at density $ few ; 1012 g cmÀ3, via the inter- Next, we follow the reanalysis of the double spin-flip in SNe action of the Dirac neutrino magnetic moment [of strength recently revisited by Kuznetsov Mikheev (2007) and Kuznetsov (0:7Y1:5) ; 10À12 B , with B being the Bohr magneton] with the et al. (2008), who obtained a more stringent limit on the neutrino magnetic moment, , after demanding compatibility with the 1 Instituto de Cosmologia, Relatividade e Astrof ´sica ( ICRA-BR), Centro ı SN 1987A luminosity. The process becomes feasible in virtue Brasileiro de Pesquisas Fısicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180, ´ of the interaction of the Dirac magnetic moment with a virtual Rio de Janeiro, Brazil; and ICRANet Coordinating Centre, Piazzalle della Repubblica 10, 065100, Pescara, Italy. plasmon, which can be produced, L À R þ ? , and absorbed, ! 2 ´ Dipartimento di Fisica ‘‘E. R. Caianiello,’’ Universita di Salerno, 84081 L þ ? À R , inside a SN. Our main goal here is to estimate the ! Baronissi (Sa), Italy; and INFN, Sezione di Napoli, Italy. R luminosity after the first resonant conversion inside the SN. 371
  • 2. 372 MOSQUERA CUESTA LAMBIASE Vol. 689 This quantity is one of the important parameters for estimating form Ye ¼ 1/3. ( Typical values of Ye in SNE are Ye $ 0:4Y0:5, the GW amplitude of the signal generated at the transition (see x 3 which are rather similar to those of the collapsing matter). How- below). The calculation of the spin-flip rate of creation of the R ever, the shock wave causes the nuclei dissociation and makes in the SN core is given by (Kuznetsov Mikheev 2007) the SNE material more transparent to particles. This leads to Z 1 the proliferation of matter deleptonization in this region and, con- dER dnR 0 0 sequently, to the so-called short outburst. According to the latest L R ¼V E dE dt 0 dE 0 research on SNe, a typical gap appears along the radial distribu- Z 1 tion of the parameter Ye where it can achieve values as low as V ¼ E 03 ÀðE 0 ÞdE 0 ; ð1Þ Ye $ 0:1 (see Mezzacappa et al. 2001 and also Fig. 2 in Kuznetsov 2 2 0 et al. 2008, and references therein). Thus, a transition region un- where dnR /dE 0 defines the number of right-handed particles avoidably exists where Ye takes the value of 1/3. It is remarkable emitted in the 1 MeV energy band of the energy spectrum, and that only one such point appears where the Ye radial gradient is per unit time, À(E 0 ) defines the spectral density of the right-handed positive, i.e., dYe /dr 0. Nonetheless, the condition Ye ¼ 1/3 is luminosity, and V is the plasma volume. Thus, by using the SN the necessary but yet not the sufficient one for the resonant con- core conditions that are currently admitted (see, for instance, Janka version R ! L to occur. It is also required to satisfy the so-called et al. 2007), plasma volume V ’ 4 ; 1018 cm3, temperature adiabatic condition. This means that the diagonal element CL in range T ¼ 30Y60 MeV, electron chemical potential range e ¼ ˜ equation (3), at least, should not exceed the nondiagonal element 280Y307 MeV, neutrino chemical potential ¼ 160 MeV,3 one ˜ B? , when the shift is made from the resonance point at the obtains distance of the order of the oscillation length. This leads to the condition (Voloshin 1988) 2 LR ’ (0:4Y2) ; 1077 erg sÀ1 ; ð2Þ dCL 1=2 3GF dYe 1=2 B B? k ’ pffiffiffi : ð4Þ dr 2 mN dr which for a ¼ 3 ; 10À12 B compatible with SN 1987A neu- trino observations and preserving causality with respect to the left- And values of these typical parameters inside the considered re- handed diffusion luminosity LR LL P1053 erg sÀ1, renders gion are dYe /dr $ 10À8 cmÀ1 and $ 1010 g cmÀ3 . Therefore, LR ¼ 4 ; 1053 erg sÀ1. This constraint is on the order of the lu- the magnetic field strength that realizes the resonance condition minosities estimated in our earlier papers (Mosquera Cuesta 2000, reads as 2002; Mosquera Cuesta Fiuza 2004) to compute the GW am- À12 10 B plitude from flavor conversions, which were different from the B? k 2:6 ; 1014 G one estimated by ( Loveridge 2004). More remarkable, this anal- ysis means that only $1%Y2% of the total number of L particles 1=2 1=2 dYe 8 may resonantly convert into R particles. ; 10 cm : ð5Þ 1010 g cmÀ3 dr 2.2. Conversion of R À L in the SN Magnetic Field ! Thus, one can conclude that the analysis performed above shows Kuznetsov et al. (2008) have shown that by taking into account that the Dar scenario of the double conversion of the neutrino the additional energy CL, which the left-handed electron-type neu- helicity (Dar 1987), L ! R ! L , can be realized whenever trino e acquires in the medium, the equation of the helicity evo- the neutrino magnetic moment is in the interval 10À13 B lution can be written in the form ( Voloshin Vysotsky 1986; 10À12 B and when the strength of the magnetic field reaches Voloshin et al. 1986a, 1986b; Okun 1986, 1988) k1014 G ( Kusenko 2004) in a region R between the neutrino- sphere R and the shock wave stagnation radius Rs , where R @ R 0 B? R i ¼ E ˆ0 þ ; R Rs .4 Thus, the L luminosity during this stagnation time, @t L B? CL L ÁTs ’ 0:2Y0:4 s, is LL ’ 3 ; 1053 erg sÀ1, as the conservation 3GF 4 1 law allows one to expect 10À12 B . Once one has all these pa- *CL ¼ pffiffiffi Ye þ Ye À ; ð3Þ rameters in hand, one can then proceed to compute the correspond- 2 mN 3 3 ing GW signal from each of the resonant spin-flip transitions. where the ratio /mN ¼ nB is the nucleon density, Ye ¼ ne /nB ¼ np /nB , Ye ¼ ne /nB , and ne; p; e are the densities of the electrons, 3. OSCILLATIONYDRIVEN GW protons, and neutrinos, respectively, B? is the transverse compo- DURING SN NEUTRONIZATION nent of the magnetic field with respect to the propagation direc- The characteristic GW amplitude of the signal produced by the ˆ tion, and the term E0 is proportional to the unit matrix, however, outflow can be estimated by using the general relativistic quad- it is not crucial for the analysis below. rupole formula (Burrows Hayes 1996) As pointed out by Kuznetsov et al. (2008), the additional en- Z ergy CL of left-handed particles deserves a special analysis. It 4G t hTT (t) ¼ 4 ij ðt 0 ÞL ðt 0 Þdt 0 ei ej is remarkable that the possibility exists for this value to be zero c D À1 just in the region of the SNE we are interested in. And, in turn, 4G this is the condition of the resonant transition R ! L . When the À!h ’ 4 Á L ÁTfL !fR ; ð6Þ c D density in the SNE is low enough, one can neglect the value Ye in the term CL , which gives the condition for the resonance in the 4 These kinds of magnetic field strengths have been extensively said to be reached after the SN core collapse forms just-born pulsars (magnetars), in the central 3 These conditions could exist in the time interval before the first second after engines of gamma-ray burst outflows, and during the quantum-magnetic collapse the core bounce. of newborn neutron stars, etc.
  • 3. No. 1, 2008 NEUTRINO MASS SPECTRUM FROM GRAVITATIONAL WAVES 373 tion ( Barkovich et al. 2002). As a result, one gets Ájpj/jpj ¼ R R 6 ( 0 Fs = u dS )/( 0 Fs = n dS ) ’ 2%/9¯ (n is6 a unit vector nor- 1 r ˆ ˆ mal to the resonance surface and u ¼ B/jBj). An anisotropy of $1% would suffice to account for the observed pulsar kicks ´ ( Kusenko Segre 1996; Loveridge 2004; Mosquera Cuesta 2000, 2002); hence, ’ 0:045 $ O(0:01)YO(0:1), which is con- sistent with numerical results ( Burrows Hayes 1996; Muller ¨ Janka 1997). Finally, the conversion probability is PeL ! R ¼ ˜ ˜ ˜ 1/2 À 1/2 cos 2i cos 2f (Okun 1986, 1988), where is defined as tan 2(r) ¼ 2 B? =(B = p þ Ve À 2c2 ): ˜ ˆ ð8Þ ˜ ˜ ˜ ˜ The quantities i ¼ (ri ) and f ¼ (rf ) are the values of the mix- ing angle at the initial point ri and the final point rf of the neutrino path.7 Meanwhile, the average timescale of this first spin-flip con- version is (Dar 1987; Voloshin 1988) 2 2 B me mp ÁTfL !fR ¼ 2 (1 þ hZi)Y ; ð9Þ fsc e where hZi $ O(1Y30) is the average electric charge of the nuclei and fsc is the fine-structure constant. Using the current bounds Fig. 1.— Illustration of the combined effect of the spin coupling to the star on the neutrino magnetic moment P 3 ; 10À12 B , Ye ’ 1/3, magnetic field and rotation. This figure was taken from Mosquera Cuesta Fiuza hZi $ 10, $ 2 ; 1012 g cmÀ3, and $ 0:04, it follows that (2004). ÁTf L !f R ’ (1 À 10) ; 10À2 s (parameters have been chosen from SN simulations evolving the PNS on timescales of $3 ms around core bounce; Mayle et al. 1987; Walker Schramm 1987; Burrows where D is the source distance, L (t) is the total luminosity, Hayes 1996; Mezzacappa et al. 2001; van Putten 2002; Arnaud ei ej is the GW polarization tensor, the superscript TT stands et al. 2002; Beacom et al. 2001). In such a case, the above time- for the transverse-traceless part, and finally, (t) is the instan- scale suggests that the GW burst would be as long as the expected taneous quadrupole anisotropy. Above, we estimated the R lu- duration of the pure neutronization phase itself, i.e., ÁTneut $ minosity; next, we estimate the degree of asymmetry of the PNS 10Y100 ms, according to most SN analyses and models ( Mayle through the anisotropic parameter and the timescale ÁTfL !fR et al. 1987; Walker Schramm 1987; Burrows Hayes 1996; for the resonant transition to take place, as discussed above. Mezzacappa et al. 2001; van Putten 2002; Arnaud et al. 2002; To estimate the star asymmetry, let us recall that the resonance Beacom et al. 2001), with the maximum GW emission taking condition for the transition eL ! R is given by (at the reso- max place around ÁTneut $ 3 ms (van Putten 2002; Arnaud et al. 2002; ¯ nance r ) Mosquera Cuesta 2000, 2002; Mosquera Cuesta Fiuza 2004). Hence, the outcoming GW signal will be the evolute ( linear Ve ( r ) þ B( r ) = p À 2c2 ¼ 0: ¯ ¯ ˆ ð7Þ superposition) of all the coherent eL ! ;R oscillations taking place over the neutronization transient, in analogy with the GW Thus, the PNS magnetic field vector B in equation (7) distorts the signal from the collective motion of neutron matter in a just-born surface of resonance due to the relative orientation of p with re- pulsar. This implies a GW frequency of fGW $ 1/ÁTneut $ 100 Hz, spect to B (see vector B in Fig. 1). The deformed surface of res- max for the overall GWemission, and fGW $ 1/ÁTneut $ 330 Hz at its onance can be parameterized as r(
  • 4. ) ¼ r þ % cos
  • 5. , where % (¯ ) ¯ r peak. Meanwhile, according to our probability discussion above, is the radial deformation and cos
  • 6. ¼ B = p. The deformation en- ˆ ˆ about 1%Y2% of the total particles released during the SN neu- forces a nonsymmetrical outgoing neutrino flux, i.e., the net flux tronization phase may oscillate (Voloshin 1988; Peltoniemi 1992; of neutrinos emitted from the upper hemisphere is different from Akhmedov et al. 1993; Dighe Smirnov 2000), carrying away the one emitted from the lower hemisphere (see Fig. 1). There- an effective power L ¼ 3 ; 1054 Y1053 erg sÀ1, i.e., 0:01 ; 3 ; fore, a geometrical definition of the quadrupole anisotropy can 1053 erg, emitted during ÁTneut $ 10Y100 ms (this is similar to be ¼ (Sþ À SÀ )/(Sþ þ SÀ ), where SÆ is the area of the upper/ the upper limit computed in Peltoniemi [1992], L ¼ (2/10) ; lower hemisphere, whence one obtains ’ %/ r.5 The anisotropy ¯ 1053 ½e /(10À12 B )Š erg sÀ1). Moreover, as is evident from equa- of the outgoing neutrinos is also related to the energy flux Fs tion (6), the GW amplitude is a function of the helicity-changing emitted by the PNS and, in turn, to the fractional momentum eL ! luminosity, i.e., h ¼ h(Lmax ;R ). The luminosity itself depends ´ asymmetry Ájpj/jpj ( Kusenko Segre 1996; Barkovich et al. 2002; Lambiase 2005a, 2005b; Mosquera Cuesta Fiuza 2004). 6 To compute Ájpj/jpj one uses the standard resonance condition V ¼ 2c2 To compute Fs , one has to take into account the structure of the (see Barkovich et al. 2002 for details). According to Mezzacappa et al. (2001), flux at the resonant surface, which acts as an effective emis- during the first 10Y200 ms, Ye may assume values ’1/3 so that Ve $ (3Ye À 1) sion surface, and the distribution in the diffusive approxima- is suppressed by several orders of magnitude. At $10 ms, $ 1012 g cmÀ3, r $ 50 km, and jpj $ 10 MeV, the resonance condition leads to a range for Ám 2 cos 2 consistent with solar (or atmospheric) neutrino data. 5 A detailed analysis of the asymmetry parameter requires one to study its 7 By using the typical values B k1010 G, P 9 ; 10À11 B , and the profile time evolution during the SN collapse. Such a task goes beyond the aim of this ’ core (rc /r) 3 for r k rc (rc $ 10 km is the core radius and core $ 1014 g cmÀ3), paper. Working in the stationary regime, we may assume constant (see Burrows one can easily verify that the adiabatic parameter 2( B? ) 2/ðj 0/jÞ 1 at Hayes 1996; Burrows et al. 1995; Zwerger Muller 1997; van Putten 2002). ¨ the resonance r. ¯
  • 7. 374 MOSQUERA CUESTA LAMBIASE Vol. 689 TABLE 1 Time Delay between GW and (jpj ¼ 10 MeV ) Bursts from a SN Neutronization, as a Function of Mass and Distance arr ÁTGW$ (s) Distance Source ( kpc) 1 2 3 GC ......................... 10 5:15 ; 10À9 5:15 ; 10À3 0.32 LMC...................... 55 2:83 ; 10À8 2:83 ; 10À2 1.7 M31 ....................... 2:2 ; 10 3 1:13 ; 10À6 1.13 68.8 Source.................... 1:1 ; 10 4 5:66 ; 10À6 5.66 344.0 Note.— The masses in eV are 10À3, 1.0, and 2.5, for flavors 1 , 2 , and 3 , respectively. on the probability of conversion ( Peltoniemi 1992; Mosquera Cuesta 2000, 2002; Mosquera Cuesta Fiuza 2004; Loveridge eL ! 2004), i.e., Lmax ;R ¼ (PeL !;R )L . tot The characteristic GW strain [per (Hz)1 2 ] from the outgoing = Fig. 2.— Characteristics (h(fL !f 0 R ) , fGW ) of the GW burst generated via the flux of spin-flipping (first transition) particles is spin-flip oscillation mechanism vs. detector noise spectral density. For sources at either the GC or LMC, the pulses will be detectable by LIGO-I and VIRGO. To P ! 0 distances $10 Mpc (farther out than the Andromeda galaxy), such radiation would be detectable by Advanced LIGO and VIRGO. Resonant GWantennas, tuned at the hf L !f 0 R h ’ 1:1 ; 10À23 HzÀ1=2 fL f R 0:01 frequency interval indicated, could also detect such events. Highlighted is the GW signal of a SN neutronization phase at Andromeda, which would have a frequency Ltot 2:2 Mpc ÁT fGW $ 100 Hz. [See the electronic edition of the Journal for a color version of this ; ; ð10Þ 3 ; 10 54 erg sÀ1 D 10À1 s 0:1 figure.] for a SN exploding at a fiducial distance of 2.2 Mpc, e.g., at the the amplitude of the coherent weak interaction of L with the PNS Andromeda galaxy (see Table 18). The GW strain in this mech- matter (Ve ) can cross smoothly enough to ensure adiabatic res- anism (see Fig. 2) is several orders of magnitude larger than in the onant conversion of f R into f L .9 Following Mezzacappa et al. SN diffusive escape (Burrows Hayes 1996; Muller Janka ¨ (2001), the region where Ve ¼ 0 as Ye ¼ 1/3 corresponds to a 1997; Arnaud et al. 2002; Loveridge 2004) because of the huge postbounce timescale $100 ms and radius $150 km at which luminosity the oscillations provide by virtue of being a highly the luminosity is L $ 3 ; 1052 erg sÀ1, and the matter density coherent process (Pantaleone 1992; Mosquera Cuesta 2000, 2002; is $ 1010 g cmÀ3. There, the adiabaticity condition demands Mosquera Cuesta Fiuza 2004). This makes it detectable from B? k 1010 G for the quoted above (such a field is characteristic very far distances. These GW signals are right in the bandwidth of young pulsars). This reverse transition (rt) should resonantly of the highest sensitivity (10Y300 Hz) of most ground-based produce an important set of ordinary (muon and tau) L particles, interferometers. which could be found far from their own neutrinosphere and, hence, Spin flavor oscillations eL ! R , which according to the latest can stream away from the PNS. Whence a second GW burst with research on SN dynamics do take place during the neutronization the characteristics h ’ 1 ; 10À23 HzÀ1/2 for D ¼ 2:2 Mpc and phase of core-collapse SNe (Mayle et al. 1987; Walker Schramm ÁTrt ’ 1:4 s is released in this region. Notice that this h is 1987; Voloshin 1988; Dighe Smirnov 2000; Kuznetsov similar to the one for the first transition despite the luminosity Mikheev 2007), allow powerful GW bursts to be released from being lower. This feature makes it similar to the GW memory prop- one side (according to eq. [6]) and a stream of R particles to be erty of the -driven signal, i.e., time-dependent strain amplitude generated from the other side, over a timescale given by equation (9). with average value nearly constant ( Burrows Hayes 1996). The latter would in principle escape from the PNS were it not for To obtain this result, equations (9) and (10) were used. Where- the appearance of several resonances that catch up with them fore, the GW frequency fGW $ 1/ÁTrt $ 0:7 Hz falls in the low- (Voloshin 1988; Peltoniemi 1992; Akhmedov et al. 1993). If there frequency band and could be detected by the planned BBO and were no such resonance, the fL ! f 0 R oscillation process would DECIGO GW interferometric observatories. Notice also that the leak away all the binding energy of the star, leaving no energy at time lag for the event at LIGO, VIRGO, etc., and the one at BBO all for the left-handed L particles that are said to drive the actual and DECIGO is then about 100 ms. It is this transition which SN explosion and for us to have observed them during SN 1987A. defines the offset to measure the time-of-flight delay, since both ¯ A new resonance may occur at r k100 km from the center, which ; and GW free-stream away from the PNS at this point. converts $90%Y99% of the spin-flipYproduced R particles back into L ones (Voloshin 1988; Akhmedov 1988; Akhmedov Khlopov 1988a, 1988b; Itoh Tsuneto 1972; Itoh et al. 1996; 4. TIME-OF-FLIGHT DELAY $ GW Peltoniemi 1992; Akhmedov et al. 1993; Athar et al. 1995). As dis- The measurement of the $ GW time delay from oscil- cussed in these papers, in fact, in the outer layer of the SN core lations in SNe promises to be an innovative procedure to obtain the mass spectrum. Provided that Einstein’s GWs do propagate 8 The mass eigenstates listed are masses supposed to be estimated throughout the detection in a future SN event, not the mass constraints already established from solar and atmospheric neutrinos, the expected time delay of which is com- 9 The cross level condition once again involves the terms B = p. Nevertheless, ˆ putable straightaway. If a nonstandard mass eigenstate is detected, then one can at that point the deformation of the resonance surface may be neglected, whence use the seesaw mechanism to infer the remaining part of the spectrum. no relevant GW burst is expected ( yet is quite low).
  • 8. No. 1, 2008 NEUTRINO MASS SPECTRUM FROM GRAVITATIONAL WAVES 375 at the speed of light, the GW burst produced by spin-flip oscilla- with Cash $ (2:3 Æ 0:3) ms and N being the event statistics tions during the neutronization phase will arrive to GW observa- ( proportional to D). This leads to the SN distance-dependent un- tories earlier than its source (the massive particles from the certainty in the mass, m / ÁTmax /D $ 0:5Y0:6 eV 2 (Arnaud 2 second conversion) will get to telescopes. et al. 2002), which implies m $ 7 ; 10À1 eV, which is consistent As pointed out above, the mechanism to generate GWs at the with our previous estimate from equation (12). Hence, those instant at which the second transition f 0 R ! fL takes place can particles and their spin-flip conversion signals must be detected. emi by itself define a unique emission offset, ÁTGW$ ¼ 0, which Therefore, the left-hand side of equation (11), i.e., the time-of- makes possible a cleaner and highly accurate determination of the flight delay ÁTGW$, will be measured with a very high accuracy. mass spectrum by ‘‘following’’ the GW and neutrino propaga- With these quantities, a very precise and stringent assessment of tion to Earth observatories. The time lag in arrival is ( Beacom the absolute mass eigenstate spectrum will be readily set out by et al. 2001) means not explored earlier in astroparticle physics: an innovative technique involving not only particle but also GW astronomy. For arr D m 10 MeV 2 instance, at a 10 kpc distance, e.g., to the Galactic center (GC in ÁTGW$ ’ 0:12 s : ð11Þ Fig. 2), the resulting time delay should approximate ÁTGW ! ¼ 2:2 Mpc 0:2 eV jpj 5:2 ; 10À3 s, for a flavor of mass m 1 eV and jpj $ 10 MeV. A SN event from the GC or Large Magellanic Cloud ( LMC) 5. DISCUSSION would provide enough statistics in SNO, SK, etc., $5000Y8000 In most SN models (Burrows Hayes 1996; Mezzacappa et al. events, so as to allow for the definition of the mass eigenstates 2001; Beacom et al. 2001; van Putten 2002), the neutroniza- ( Beacom et al. 2001). Farther out, events are less promising tion burst is a well-characterized process of intrinsic duration in this perspective, but we stress that one event collected by ÁT ’ 10 ms, with its maximum occurring within 3:5 Æ 0:5 ms the planned megaton detector, from a large-distance source, may after core collapse (Mayle et al. 1987; Walker Schramm 1987; prove sufficient (see further arguments in Ando et al. 2005). van Putten 2002; Burrows Hayes 1996). This timescale relates to the detectors’ approximate sensitivity to masses beyond the 6. SUMMARY mass limit In this paper, it has been emphasized that knowing the ab- solute mass scale with enough accuracy would turn out to be a 2:2 Mpc ÁT 1=2 jpj fundamental test of the physics beyond the standard model of fun- m 6:7 ; 10 eVÀ2 : ð12Þ D 10 ms 10 MeV damental interactions. By virtue of the very important two-step mechanism of spin-flavor conversions in SNe, very recently This threshold is in agreement with the current bounds on masses revisited by Kuznetsov et al. (2008), we suggest that by combining (Fukuda et al. 1998). the detection of the GW signals generated by those oscillations and Nearby SNe will somehow be seen. Apart from GWs and neu- the signals collected by SNEWS from the same SN event, one trinos, -rays, X-rays, visible, infrared, or radio signals will be might conclusively assess the mass spectrum. In particular, sorting detected. Therefore, their position on the sky and distance (D) may out the neutronization phase signal from both the light curve be determined quite accurately, including—if far from the Milky and the second peak in the GW waveform (with its memorylike Way—their host galaxy (Ando et al. 2005). Besides, the Universal feature; Burrows Hayes 1996) might allow one to achieve this Time of arrival of the GW burst to three or more gravitational goal in a nonpareil fashion. radiation interferometric observatories or resonant detectors will be precisely established (Schutz 1986; Arnaud et al. 2002). The uncertainty in the GW timing depends on the signal-to-noise ratio (S/N ) as ÁT (GWjD¼10 kpc ) $ 1:45 /(S/N ) $ 0:15 ms, with $ H. J. M. C. thanks FAPERJ, Brazil for financial support and 1 ms being the rms width of the main GW peak (Arnaud et al. ICRANet Coordinating Centre, Pescara, Italy for hospitality 2002). Meanwhile, the type of and its energy and Universal during the early stages of this work. G. L. acknowledges support Time of arrival to telescopes of the SNEWS network will be to this work provided by MIUR through PRIN Astroparticle highly accurately measured (Antonioli et al. 2004; Beacom ´ Physics 2007 and by research funds of the Universita di Salerno. Vogel 1999). The timing uncertainty is ÁTmax ¼ Cash (N )À1 2 , = He also acknowledges ASI for financial support. REFERENCES Akhmedov, E. Kh. 1988, Kurchatov Inst. Atomic Energy IAE-4568/1 ( Moscow: Fukuda, Y., et al. 1998, Phys. Rev. Lett., 81, 1562 Kurchatov Inst.) Itoh, N., Hayashi, H., Nishikawa, A., Kohyama, Y. 1996, ApJS, 102, 411 Akhmedov, E. K., Khlopov, M. Yu. 1988a, Soviet J. Nucl. Phys., 47, 681 Itoh, N., Tsuneto, T. 1972, Prog. Theor. Phys., 48, 1849 ———. 1988b, Mod. Phys. Lett. A, 3, 451 Jankam H.-Th., Langanke, K., Marek, A., Martinez-Pinedo, G., Muller, B. Akhmedov, E. Kh., et al. 1993, Phys. Rev. D, 48, 2167 2007, Phys. Rep., 442, 38 Ando, S., et al. 2005, Phys. Rev. Lett., 95, 171101 Kusenko, A. 2004, Int. J. Mod. Phys. D, 13, 2065 Antonioli, P., et al. 2004, New J. Phys., 6, 114 ´ Kusenko, A., Segre, G. 1996, Phys. Rev. Lett., 77, 4872 Arnaud, N., et al. 2002, Phys. Rev. D, 65, 033010 Kuznetsov, A. V., Mikheev, N. V. 2007, J. Cosmol. Astropart. Phys., 11, Athar, H., et al. 1995, Phys. Rev. D, 51, 6647 031 Barkovich, M., D’Olivo, J. C., Montemayor, R., Zanella, J. F. 2002, Phys. Kuznetsov, A. V., Mikheev, N. V., Okrugin, A. A. 2008, in Proc. XV Int. Rev. D, 66, 123005 Seminar Quarks, in press (arXiv: 0804.1916) Beacom, J. F., Vogel, P. 1999, Phys. Rev. D, 60, 033007 Lambiase, G. 2005a, MNRAS, 362, 867 Beacom, J. F., et al. 2001, Phys. Rev. D, 63, 073011 ———. 2005b, Brazilian J. Phys., 35, 462 Bilenky, S. M., et al. 2003, Phys. Rep., 379, 69 Loveridge, L. C. 2004, Phys. Rev. D, 69, 024008 Burrows, A., Hayes, J. 1996, Phys. Rev. Lett., 76, 352 Mayle, R., et al. 1987, ApJ, 318, 288 Burrows, A., et al. 1995, ApJ, 450, 830 Mezzacappa, A., et al. 2001, Phys. Rev. Lett., 86, 1935 Dar, A. 1987, Princeton Univ., preprint ( PRINT-87-0178-IAS) Mosquera Cuesta, H. J. 2000, ApJ, 544, L61 Dighe, A. S., Smirnov, A. Yu. 2000, Phys. Rev. D, 62, 033007 ———. 2002, Phys. Rev. D, 65, 061503
  • 9. 376 MOSQUERA CUESTA LAMBIASE Mosquera Cuesta, H. J., Fiuza, K. 2004, European J. Phys. C, 35, 543 Voloshin, M. B. 1988, Phys. Lett. B, 209, 360 Muller, E., Janka, H.-T. 1997, AA, 317, 140 ¨ Voloshin, M. B., Vysotsky, M. I. 1986, Soviet J. Nucl. Phys., 44, 544 Okun, L. B. 1986, Soviet J. Nucl. Phys., 44, 546 Voloshin, M. B., Vysotsky, M. I., Okun, L. B. 1986a, Soviet J. Nucl. Phys., ———. 1988, Soviet J. Nucl. Phys., 48, 967 44, 440 Pantaleone, J. 1992, Phys. Lett. B, 287, 128 ———. 1986b, Soviet Phys.-JETP, 64, 446 (erratum 65, 209 [1987]) Peltoniemi, J. T. 1992, AA, 254, 121 Walker, T. P., Schramm, D. N. 1987, Phys. Lett. B, 195, 331 Schutz, B. F. 1986, Nature, 323, 310 Zwerger, T., Muller, E. 1997, AA, 320, 209 ¨ van Putten, M. H. P. M. 2002, ApJ, 575, L71