SlideShare uma empresa Scribd logo
1 de 32
SCALE UP OF INDUSTRIAL MICROBIAL
PROCESSES (IM 601)
SUBMITTED TO
JANE CLARYN BENJAMIN MA’AM
SUBMITTED BY (GROUP IV)
SHUBHAM RANJAN 18BTFT034
KULDEEP GEHLOT 18BTFT035
ADITI PATIDAR 18BTFT036
SMRITI SINGH 18BTFT038
MANISHA SALONI 18BTFT041
PRASHANT SAINI 18BTFT042
SMITA KUMARI 18BTFT043
KAKUMANU SANJYOPTHA 18BTFT045
TANYA VATS 18BTFT048
TABLE OF CONTETS
1. INTRODUCTION
2. WHAT IS SCALE UP AND WHY DOES IT MATTER
3. STAGES OF SCALE UP FERMENTATION
4.KEY CONSIDERATION FOR FERMENTATION SCALE UP
5. ROAD MAP FOR SUCCESSFUL SCALE-UP
6.KEY CHALLENGES AND IMPROVEMENT IN MICROBIAL SCALE UP PROCESSES
7. FERMENTATION PROCESS SCALE-UP INCLUDE
8.WHAT ARE THE OPPORTUNITIES IN SCALE UP OF INDUSTRIAL MICROBIAL PROCESS CONCLUSION
1. INTRODUCTION
 The importance of biotechnological production is increasing all over the world. It’s importance increases as
it is connected with health and food industry directly or indirectly. So overall it is a billion dollar industry.
 The way these impressive economic biotech figures can be achieved is either to develop completely new
bioproducts and to successfully launch them on the market or to expand existing production capacities
against the competition of market forces.
 The concerted approach of metabolic engineering, synthetic biology and systems biology is promising to
develop optimized processes in lab-scale, they still need to be transferred into large-scale without reduction
of sensitive performance parameters.
 Notably, large-scale performance losses are not unusual. The explanation of scale-up mechanisms for
preventing unwanted performance losses is not only an academic goal but also an economic necessity.
 Microbial fermentation processes play a critical role in many important industrial applications. In various
applications, fermentation processes are utilized to produce final product, convert substrates, catalyze
reactions or simply make mass biological materials.
 This project covers a lot of information related to scale up industrial microbial processes like principles
for process scale up, key considerations for fermentation scale up, road map, challenges, improvements
and opportunities.
2. WHAT IS SCALE UP AND WHY DOES IT MATTER
The successful startup and operation of commercial size unit is design and operating procedure are in the
path based upon experimentation and demonstration it is smaller scale.
 Scale-up is increasing something in size, amount, or production. Microbial processes involve cultivation of
microbes in bioreactors (also referred to as fermentors) to produce a product, as well as the subsequent
recovery and purification of the product and disposal of associated wastes.
 Scale-up of microbial processes is undertaken typically for a commercial purpose, specifically to provide
product benefits to customers and to generate a financial return for investors.
 It serves to minimize the risk of a large capital investment in the full-scale manufacturing plant by further
validating the process, the supply chain (from raw materials to commercial product application), and market
demand
 If the degree of novelty is low, then the demonstration plant may be skipped. For the remainder of the
article, we will use ‘pilot’ in reference to both pilot and demo scales.
 The financial investment to scale up a microbial process to manufacturing scale is usually greater than the
cost to develop the production microbe and lab-scale process
 The financial risk is high, so deterioration in process performance during scale-up will be costly and
disruptive, potentially even leading to project failure.
 So, in scaling up microbial processes, it is clearly impactful to get it right and to get it right the first time.
3. STAGES OF SCALE UP FERMENTATION
 Scale-up of large industrial processes is preferably done in two stages if there is a high degree of novelty in
the process and/or the commercial product. The first stage is a pilot plant (pilot scale) with 100–10,000 L
fermenters and matched downstream equipment. Its purpose is to translate the lab-scale process into a
realistic scaled-down version of the manufacturing process.
 In most cases, the process is not fully integrated; i.e. each individual unit operation is operated batch-wise.
 The second stage of scale-up is a demonstration plant (demo scale) with 10 000–100 000 L fermenters and
matched downstream. It serves to minimize the risk of a large capital investment in the full-scale
manufacturing plant by further validating the process, the supply chain and market demand.
3.1 Guiding principles for process scale up
 The authors have contributed to the commercialization of a variety of industrial microbial processes,
including first-of-a-kind projects, from early stage R&D to scale-up to manufacturing support .
 There are three guiding principles that are critical to the successful scale-up of industrial microbial
processes.
1.Begin with the end in mind
 The challenge is having a realistic and accurate view of what the end looks like especially when
it’s a first-of-a-kind process. One cannot simply enlarge lab-scale equipment and duplicate lab
scale conditions at large-scale.
 Without an understanding of large-scale equipment and how scale dependent parameters change, a
project is likely to get into big trouble.
 Instead, beginning with the end in mind, a skilled project team that really understands large scale
processes prepares a detailed conceptual design of the envisioned manufacturing process and plant before
the first lab experiments are done.
 Use the conceptual design to provide early guidance to the experimental R&D program on process
viability and key scale and economic parameters. Then regularly update the design as your experimental
program produces new learnings.
2. Be diligent in the details
 Unfortunately, we’ve seen all kinds of oversights and shortcuts during process scale-up, with
consequences ranging from disruptive to catastrophic.
 On the other hand, with close attention given to critical details, microbial processes can be scaled
up with minimal unpleasant surprises.
 Ultimately, this will reward stakeholders with a safe, reliable manufacturing plant that meets or
exceeds its financial objectives.
3. Prepare for the unexpected
 Common examples include utility interruptions, microbial contamination, variable raw material
quality, fouling of process equipment, equipment failure and unexpected poor process
performance at scale.
 Prioritize based on risk magnitude and prepare a detailed risk mitigation plan.
 For high magnitude risks relating to process upsets, design lab/pilot studies to assess the impact
on process performance and develop a detailed process upset response plan to inform the plant
operations team of the proper mode of action if an upset does occur.
4.KEY CONSIDERATION FOR FERMENTATION SCALE UP
 Poor fermentation performance at large-scale is almost always considered a priority scale-up risk. This is
because fermentation is usually the costliest process step, both in terms of variable costs (raw materials
and utilities) and capital investment. Fermentation is also a complex unit operation.
There are many parameters that impact performance, and most of these are subject to change
during scale-up.
A. Preparation of
inoculum
B. Tank/Fermenter
Aspect Ratio
C. Sterilization
and cleaning of
the tank
D. Proper supply
of oxygen and
agitation
E. Control
of foaming
A. Preparation of inoculum – is the first and most important parameter because the inoculum size, density
and the phase in which the inoculum is will determine the yield and productivity.
B. Tank/Fermenter Aspect Ratio – the capacity of the fermenter in the Industries used are large . So the size
and capacity of the fermenter should be kept in mind while applying the other methods and processes.
C. Sterilization and cleaning of the tank – the tank and other equipments should be cleaned and sterilized to
ensure the protection of media inside the fermenter from any contamination
D. Proper supply of oxygen and agitation – The demand for oxygen in SUF is always more and it is
necessary to keep the level of oxygen more than the critical level and the supplied oxygen and air should be
thoroughly mixed inside the fermenter
E. Control of foaming – during the process foams generated might spill out and may contaminate the Product
inside the fermenter so antifoaming agent should be used.
F. Other factors such as pH, removal of heat and pressure
5. ROAD MAP FOR SUCCESSFUL SCALE-UP
 The scale-up journey starts by imagining the desired outcome a robust full-scale manufacturing plant that
meets its commercial objectives (schedule, cost, and quality) begin with the ending mind.
 All of this is remembered at the beginning of a project in the form of a detailed, written charter that is
updated as the program progresses from R&D proof-of-concept through process development and
eventually deployment.
 But in the case of fermentation, large-scale conditions can usually be adequately simulated in stirred lab
fermenters with the implementation of Some custom control hardware and software.
 A fully integrated process, including recycle streams, can be operated for an extended period with fully
representative industrial equipment and materials. Alternative equipment designs and suppliers can be
evaluated.
 The future large-scale plant operating team can be trained; from the team’s pilot experience, they will know
the process works and will log valuable experience in addressing process upsets. Pilot plant data and
operating know-how are used to improve the large-scale plant design.
 Large quantities of product can be produced for customer evaluation in the end-use applications, which
builds customer relationships, confidence and demand for the commercial plant output.
 As a Results, it can be tempting to skip this step or to pilot only selected unit operations for a short time.
Experience has proven this to be unwise; the downside far outweighs the modest upside.
 Design of the large-scale manufacturing plant should be based on data generated in the pilot plant. It is also
important to factor in the outlook for future technology improvements. But avoid the temptation to design
the large-scale plant for a process that has not been validated at pilot scale.
 Whether you intend to build, own and operate your own plant or license your technology, it is crucial to
provide technincal support during all phases of the project, including engineering design, construction,
commissioning and start-up.
6.KEY CHALLENGES AND IMPROVEMENT IN MICROBIAL
SCALE UP PROCESSES
Regardless of how well you prepare, there will be issues that arise during scale-up. Common examples
include utility interruptions, microbial contamination, variable raw material quality, fouling
of process equipment, equipment failure and unexpected poor process performance at scale.
Improvements mean that the focus now is not so much on capacity as on purification. The big challenges
now lie in downstream processing. “There are lots of ideas out there,”. In both downstream processing and in
other stages of manufacture, scale up can present a challenge but one that can be met by employing the right
technologies.
 Scale up generally involves taking a lab-scale procedure and replicating it as closely as possible to get larger
amounts of product as specified either by a client or the regulatory authorities typically in a fermenter.
6.1 SOME OF THE ISSUSES OFFERMENTATION SCALE UP PROCESSES
CHROMATOGRAPHY
 The use of chromatography in purification can lead to some challenges in scale up, which may be solved by
new approaches.
 Mixed-mode Hypercell media can exploit different mechanisms of interaction with a target protein.
FILTRATION
 Filtration is necessary at many stages of a manufacturing process, so an understanding of
filterability the filtration behavior of a solution is crucial.
 Filterability testing can be used to determine the capacity of a filter system with the aim of
determining the filter area that would be needed to process a batch without blocking the filter
upon scale up.
HYDROCYCLONE
 Many industries have been looking at a new cell separation technology based upon the
Hydrocyclone, which can be used as a perfusion system in large-scale animal cell culture.
 The hydrocyclone works like an inverted fixed-wall centrifuge without a rotating shaft.
7. FERMENTATION PROCESS SCALE-UP INCLUDE
7.1 Seed train sale-up strategy
 The purpose of a seed train is to propagate cells to a desired mass for inoculation into the production
bioreactor.
 The traditional seed train includes thawing a vial and inoculating into shaker flasks for a certain number of
stages with increasing flask size, and may include stainless steel reactors.
 The guiding principle for a seed train scale up is to minimize the number of stages for entire seed train,
maintain robust growth and finally prevent any negative impact of extended generations to productivity and
quality.
Typical studies of seed train scale-up may include:-
1.Vial thaw conditions: this may include temperature and time between thaw and inoculation
2.Inoculation ratio: for microbes,0.1to 5% is commonly used. However, overall process robustness needs to
be demonstrated with the inoculation ratios.
3.Seed train media: Usually, seed train media are optimized to support growth, rather than product
expression, in a batch mode.
4.Genetic stability and production stability during the seed train process: This requires studies with an
extended duration, beyond that estimated to be required for generation at the production scale.
7.2 Production fermentation scale-up
 The essence of scale-up of a fermentation process is to demonstrate fermentation production at large scale
resulting in the same productivity and quality as that developed at small scale.
 One of the outcomes of a process scale-up is to finalize a detailed large scale process description with
settings of all operational parameters and their ranges at scale.
 The scaled-up fermentation has to be demonstrated with a certain number of runs for consistency and
statistical significance. To achieve these goals, one have to take the following steps
 Identify linear scale-up parameters
 Temperature
 Ph
 Pressure
 Dissolved oxygen(DO)
 Air flow rate
8.WHAT ARE THE OPPORTUNITIES IN SCALE UP OF
INDUSTRIAL MICROBIAL PROCESS
Opportunities in scale up of Industrial microbial process
 Many researches were done and the analysis showed potential target genes associated with increased ATP
demand for metabolic engineering. Such approach was previously used by the same research team for
re‐designing an E. coli strain with increased glucose uptake capacity to cope with nutrient‐limiting
conditions typically found in industrial fed‐batch bioprocess .
 These new findings point out that predicting microbial physiological responses to environmental
fluctuations remains a challenge but also that there are vast potential applications.
 This then is a good opportunity for presenting a modernized version of the scale‐down approach, i.e. an
outlook on the different items that have to be considered for a better understanding of bioprocess scale‐up
and the behaviour of cell populations under industrial process‐related conditions .
 The bioprocess industry more than ever needs new, efficient and sustainable routes to manufacture
bio‐products. Bioprocesses use the power and versatility of nature via microorganisms that make the
bio‐products from renewable feedstocks. These microorganisms today can be extensively re‐programmed
into efficient cell factories.
CONCLUSION
Scaling up industrial microbial processes for commercial production is a high stakes endeavor ,requiring time
and investment often exceeding that for laboratory microbe and process development.
The bio‐economy is in transit from innovation to commercialization. The bioprocess industry is expected to
increasingly deliver bio‐products to the market, in large amounts, at high quality and at competitive cost
levels. This requires flawless start‐up of new large‐scale bioprocesses and continuous improvement of
running processes.
Process scale up ,in a broad sense, is a critical activity that enables a fermentation process achieved in
research and development to operate at a commercially viable scale for manufacturing .A successful scale up
involves many aspects of successful preparation and planning beyond pure process scale up technology.

Mais conteúdo relacionado

Mais procurados

Organic acid production
Organic acid productionOrganic acid production
Organic acid productionRavi Raj
 
Biosurfactants production and applications.
Biosurfactants production and applications.Biosurfactants production and applications.
Biosurfactants production and applications.Arjun Kumar
 
Inocula development for yeast processes
Inocula development for yeast processesInocula development for yeast processes
Inocula development for yeast processesRipuDas
 
Isolation of industrial microorganisms
Isolation of industrial microorganismsIsolation of industrial microorganisms
Isolation of industrial microorganismsNithyaNandapal
 
Modes of fermentation
Modes of fermentationModes of fermentation
Modes of fermentationManish Arora
 
shotgun sequncing
 shotgun sequncing shotgun sequncing
shotgun sequncingSAIFALI444
 
immobilized cell reactor
immobilized cell reactorimmobilized cell reactor
immobilized cell reactormanalrazick
 
BIOREACTORS OR FERMENTERS
BIOREACTORS OR FERMENTERSBIOREACTORS OR FERMENTERS
BIOREACTORS OR FERMENTERSArchana Shaw
 
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...Dr. Pavan Kundur
 
Downstream processing - industrial microbiology
Downstream processing - industrial microbiology Downstream processing - industrial microbiology
Downstream processing - industrial microbiology Kiran Kumar
 
Inoculum development.pptx
Inoculum development.pptxInoculum development.pptx
Inoculum development.pptxVel Kumar
 
Microbial growth kinetcs
Microbial growth kinetcsMicrobial growth kinetcs
Microbial growth kinetcsavinash tiwari
 
Production of alcohol
Production of alcoholProduction of alcohol
Production of alcoholEstherShoba1
 

Mais procurados (20)

MEDIA FORMULATION
MEDIA FORMULATIONMEDIA FORMULATION
MEDIA FORMULATION
 
Organic acid production
Organic acid productionOrganic acid production
Organic acid production
 
Biosurfactants production and applications.
Biosurfactants production and applications.Biosurfactants production and applications.
Biosurfactants production and applications.
 
Airlift fermenter
Airlift fermenterAirlift fermenter
Airlift fermenter
 
Inocula development for yeast processes
Inocula development for yeast processesInocula development for yeast processes
Inocula development for yeast processes
 
Methods of strain improvement
Methods of strain improvementMethods of strain improvement
Methods of strain improvement
 
Lactic acid production
Lactic acid productionLactic acid production
Lactic acid production
 
Isolation of industrial microorganisms
Isolation of industrial microorganismsIsolation of industrial microorganisms
Isolation of industrial microorganisms
 
Modes of fermentation
Modes of fermentationModes of fermentation
Modes of fermentation
 
shotgun sequncing
 shotgun sequncing shotgun sequncing
shotgun sequncing
 
Industrial production of important amino acids
Industrial production of important amino acidsIndustrial production of important amino acids
Industrial production of important amino acids
 
Fermentation media
Fermentation mediaFermentation media
Fermentation media
 
immobilized cell reactor
immobilized cell reactorimmobilized cell reactor
immobilized cell reactor
 
BIOREACTORS OR FERMENTERS
BIOREACTORS OR FERMENTERSBIOREACTORS OR FERMENTERS
BIOREACTORS OR FERMENTERS
 
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...
Anti-foaming agents, inducers, precursors and inhibitors in Fermentation tech...
 
Downstream processing - industrial microbiology
Downstream processing - industrial microbiology Downstream processing - industrial microbiology
Downstream processing - industrial microbiology
 
Purification product
Purification product Purification product
Purification product
 
Inoculum development.pptx
Inoculum development.pptxInoculum development.pptx
Inoculum development.pptx
 
Microbial growth kinetcs
Microbial growth kinetcsMicrobial growth kinetcs
Microbial growth kinetcs
 
Production of alcohol
Production of alcoholProduction of alcohol
Production of alcohol
 

Semelhante a Scale up of industrial microbial processes

industrial microbial culture (1).pdf
industrial microbial culture (1).pdfindustrial microbial culture (1).pdf
industrial microbial culture (1).pdfRupajitBhattacharjee1
 
Pilot Plant Scale up Technique Ppt.pdf
Pilot Plant Scale up Technique Ppt.pdfPilot Plant Scale up Technique Ppt.pdf
Pilot Plant Scale up Technique Ppt.pdfSatyendraMishra77
 
Industrial pharmacy-UNIT-I.pdf.pdf
Industrial pharmacy-UNIT-I.pdf.pdfIndustrial pharmacy-UNIT-I.pdf.pdf
Industrial pharmacy-UNIT-I.pdf.pdfSatyendraMishra79
 
Pilot plant scale up techniques
Pilot plant scale up techniquesPilot plant scale up techniques
Pilot plant scale up techniquesANKUSH JADHAV
 
Pilot plant scaleuptechnique
Pilot plant scaleuptechniquePilot plant scaleuptechnique
Pilot plant scaleuptechniquejiten patel
 
Pilot scaleuptechnique
Pilot scaleuptechniquePilot scaleuptechnique
Pilot scaleuptechniquejiten patel
 
Pilot scaleuptechnique
Pilot scaleuptechniquePilot scaleuptechnique
Pilot scaleuptechniquejiten patel
 
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptx
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptxPILOT PLANT SCALE-UP TECHNIQUES ppt.pptx
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptxAbhishek Borkar15
 
Pilot plant scaleup techniques used in pharmaceutical manufacturing
Pilot plant scaleup techniques used in pharmaceutical manufacturingPilot plant scaleup techniques used in pharmaceutical manufacturing
Pilot plant scaleup techniques used in pharmaceutical manufacturingSunil Boreddy Rx
 
Pilot plant scale up techniques
Pilot plant scale up techniquesPilot plant scale up techniques
Pilot plant scale up techniquesDr Gajanan Sanap
 
Unit 1 chapter 1 final ppt for pilot plant scale up techniques
Unit 1 chapter 1 final ppt for pilot plant scale up techniquesUnit 1 chapter 1 final ppt for pilot plant scale up techniques
Unit 1 chapter 1 final ppt for pilot plant scale up techniquesAudumbar Mali
 
Pilot plant scale up techniques - industrial pharmacy II
Pilot plant scale up techniques - industrial pharmacy II Pilot plant scale up techniques - industrial pharmacy II
Pilot plant scale up techniques - industrial pharmacy II Jafarali Masi
 
Anthony crasto scaleup techniques & pilot plant
Anthony crasto scaleup techniques & pilot plantAnthony crasto scaleup techniques & pilot plant
Anthony crasto scaleup techniques & pilot plantAnthony Melvin Crasto Ph.D
 
Pilot plant Scale up techniques
Pilot plant Scale up techniquesPilot plant Scale up techniques
Pilot plant Scale up techniquesROHIT
 
Scale up & Pilot plant concept.pptx
Scale up & Pilot plant concept.pptxScale up & Pilot plant concept.pptx
Scale up & Pilot plant concept.pptxlaxmidharsahoo7
 

Semelhante a Scale up of industrial microbial processes (20)

industrial microbial culture (1).pdf
industrial microbial culture (1).pdfindustrial microbial culture (1).pdf
industrial microbial culture (1).pdf
 
Pilot Plant Scale up Technique Ppt.pdf
Pilot Plant Scale up Technique Ppt.pdfPilot Plant Scale up Technique Ppt.pdf
Pilot Plant Scale up Technique Ppt.pdf
 
Industrial pharmacy-UNIT-I.pdf.pdf
Industrial pharmacy-UNIT-I.pdf.pdfIndustrial pharmacy-UNIT-I.pdf.pdf
Industrial pharmacy-UNIT-I.pdf.pdf
 
Pilot plant scale up techniques
Pilot plant scale up techniquesPilot plant scale up techniques
Pilot plant scale up techniques
 
Pilot plant scaleuptechnique
Pilot plant scaleuptechniquePilot plant scaleuptechnique
Pilot plant scaleuptechnique
 
Pilot scaleuptechnique
Pilot scaleuptechniquePilot scaleuptechnique
Pilot scaleuptechnique
 
Pilot scaleuptechnique
Pilot scaleuptechniquePilot scaleuptechnique
Pilot scaleuptechnique
 
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptx
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptxPILOT PLANT SCALE-UP TECHNIQUES ppt.pptx
PILOT PLANT SCALE-UP TECHNIQUES ppt.pptx
 
Pilot plant scaleup techniques used in pharmaceutical manufacturing
Pilot plant scaleup techniques used in pharmaceutical manufacturingPilot plant scaleup techniques used in pharmaceutical manufacturing
Pilot plant scaleup techniques used in pharmaceutical manufacturing
 
Pilot plant scale up technique
Pilot plant scale up techniquePilot plant scale up technique
Pilot plant scale up technique
 
Pilot plant scale up techniques
Pilot plant scale up techniquesPilot plant scale up techniques
Pilot plant scale up techniques
 
Unit 1 chapter 1 final ppt for pilot plant scale up techniques
Unit 1 chapter 1 final ppt for pilot plant scale up techniquesUnit 1 chapter 1 final ppt for pilot plant scale up techniques
Unit 1 chapter 1 final ppt for pilot plant scale up techniques
 
Pilot plant scale up techniques - industrial pharmacy II
Pilot plant scale up techniques - industrial pharmacy II Pilot plant scale up techniques - industrial pharmacy II
Pilot plant scale up techniques - industrial pharmacy II
 
Anthony crasto scaleup techniques & pilot plant
Anthony crasto scaleup techniques & pilot plantAnthony crasto scaleup techniques & pilot plant
Anthony crasto scaleup techniques & pilot plant
 
Pilot plant part1
Pilot plant part1Pilot plant part1
Pilot plant part1
 
Pilot plant
Pilot plantPilot plant
Pilot plant
 
Pilot plant Scale up techniques
Pilot plant Scale up techniquesPilot plant Scale up techniques
Pilot plant Scale up techniques
 
Pilot Plant Scale Up Techniques.pdf
Pilot Plant Scale Up Techniques.pdfPilot Plant Scale Up Techniques.pdf
Pilot Plant Scale Up Techniques.pdf
 
Scale up & Pilot plant concept.pptx
Scale up & Pilot plant concept.pptxScale up & Pilot plant concept.pptx
Scale up & Pilot plant concept.pptx
 
scale up methods
scale up methodsscale up methods
scale up methods
 

Último

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 

Último (20)

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 

Scale up of industrial microbial processes

  • 1. SCALE UP OF INDUSTRIAL MICROBIAL PROCESSES (IM 601) SUBMITTED TO JANE CLARYN BENJAMIN MA’AM SUBMITTED BY (GROUP IV) SHUBHAM RANJAN 18BTFT034 KULDEEP GEHLOT 18BTFT035 ADITI PATIDAR 18BTFT036 SMRITI SINGH 18BTFT038 MANISHA SALONI 18BTFT041 PRASHANT SAINI 18BTFT042 SMITA KUMARI 18BTFT043 KAKUMANU SANJYOPTHA 18BTFT045 TANYA VATS 18BTFT048
  • 2. TABLE OF CONTETS 1. INTRODUCTION 2. WHAT IS SCALE UP AND WHY DOES IT MATTER 3. STAGES OF SCALE UP FERMENTATION 4.KEY CONSIDERATION FOR FERMENTATION SCALE UP 5. ROAD MAP FOR SUCCESSFUL SCALE-UP 6.KEY CHALLENGES AND IMPROVEMENT IN MICROBIAL SCALE UP PROCESSES 7. FERMENTATION PROCESS SCALE-UP INCLUDE 8.WHAT ARE THE OPPORTUNITIES IN SCALE UP OF INDUSTRIAL MICROBIAL PROCESS CONCLUSION
  • 3. 1. INTRODUCTION  The importance of biotechnological production is increasing all over the world. It’s importance increases as it is connected with health and food industry directly or indirectly. So overall it is a billion dollar industry.  The way these impressive economic biotech figures can be achieved is either to develop completely new bioproducts and to successfully launch them on the market or to expand existing production capacities against the competition of market forces.  The concerted approach of metabolic engineering, synthetic biology and systems biology is promising to develop optimized processes in lab-scale, they still need to be transferred into large-scale without reduction of sensitive performance parameters.
  • 4.  Notably, large-scale performance losses are not unusual. The explanation of scale-up mechanisms for preventing unwanted performance losses is not only an academic goal but also an economic necessity.  Microbial fermentation processes play a critical role in many important industrial applications. In various applications, fermentation processes are utilized to produce final product, convert substrates, catalyze reactions or simply make mass biological materials.  This project covers a lot of information related to scale up industrial microbial processes like principles for process scale up, key considerations for fermentation scale up, road map, challenges, improvements and opportunities.
  • 5. 2. WHAT IS SCALE UP AND WHY DOES IT MATTER The successful startup and operation of commercial size unit is design and operating procedure are in the path based upon experimentation and demonstration it is smaller scale.  Scale-up is increasing something in size, amount, or production. Microbial processes involve cultivation of microbes in bioreactors (also referred to as fermentors) to produce a product, as well as the subsequent recovery and purification of the product and disposal of associated wastes.  Scale-up of microbial processes is undertaken typically for a commercial purpose, specifically to provide product benefits to customers and to generate a financial return for investors.
  • 6.  It serves to minimize the risk of a large capital investment in the full-scale manufacturing plant by further validating the process, the supply chain (from raw materials to commercial product application), and market demand  If the degree of novelty is low, then the demonstration plant may be skipped. For the remainder of the article, we will use ‘pilot’ in reference to both pilot and demo scales.  The financial investment to scale up a microbial process to manufacturing scale is usually greater than the cost to develop the production microbe and lab-scale process  The financial risk is high, so deterioration in process performance during scale-up will be costly and disruptive, potentially even leading to project failure.  So, in scaling up microbial processes, it is clearly impactful to get it right and to get it right the first time.
  • 7. 3. STAGES OF SCALE UP FERMENTATION  Scale-up of large industrial processes is preferably done in two stages if there is a high degree of novelty in the process and/or the commercial product. The first stage is a pilot plant (pilot scale) with 100–10,000 L fermenters and matched downstream equipment. Its purpose is to translate the lab-scale process into a realistic scaled-down version of the manufacturing process.  In most cases, the process is not fully integrated; i.e. each individual unit operation is operated batch-wise.  The second stage of scale-up is a demonstration plant (demo scale) with 10 000–100 000 L fermenters and matched downstream. It serves to minimize the risk of a large capital investment in the full-scale manufacturing plant by further validating the process, the supply chain and market demand.
  • 8. 3.1 Guiding principles for process scale up  The authors have contributed to the commercialization of a variety of industrial microbial processes, including first-of-a-kind projects, from early stage R&D to scale-up to manufacturing support .  There are three guiding principles that are critical to the successful scale-up of industrial microbial processes. 1.Begin with the end in mind  The challenge is having a realistic and accurate view of what the end looks like especially when it’s a first-of-a-kind process. One cannot simply enlarge lab-scale equipment and duplicate lab scale conditions at large-scale.
  • 9.  Without an understanding of large-scale equipment and how scale dependent parameters change, a project is likely to get into big trouble.  Instead, beginning with the end in mind, a skilled project team that really understands large scale processes prepares a detailed conceptual design of the envisioned manufacturing process and plant before the first lab experiments are done.  Use the conceptual design to provide early guidance to the experimental R&D program on process viability and key scale and economic parameters. Then regularly update the design as your experimental program produces new learnings.
  • 10. 2. Be diligent in the details  Unfortunately, we’ve seen all kinds of oversights and shortcuts during process scale-up, with consequences ranging from disruptive to catastrophic.  On the other hand, with close attention given to critical details, microbial processes can be scaled up with minimal unpleasant surprises.  Ultimately, this will reward stakeholders with a safe, reliable manufacturing plant that meets or exceeds its financial objectives.
  • 11. 3. Prepare for the unexpected  Common examples include utility interruptions, microbial contamination, variable raw material quality, fouling of process equipment, equipment failure and unexpected poor process performance at scale.  Prioritize based on risk magnitude and prepare a detailed risk mitigation plan.  For high magnitude risks relating to process upsets, design lab/pilot studies to assess the impact on process performance and develop a detailed process upset response plan to inform the plant operations team of the proper mode of action if an upset does occur.
  • 12. 4.KEY CONSIDERATION FOR FERMENTATION SCALE UP  Poor fermentation performance at large-scale is almost always considered a priority scale-up risk. This is because fermentation is usually the costliest process step, both in terms of variable costs (raw materials and utilities) and capital investment. Fermentation is also a complex unit operation. There are many parameters that impact performance, and most of these are subject to change during scale-up. A. Preparation of inoculum B. Tank/Fermenter Aspect Ratio C. Sterilization and cleaning of the tank D. Proper supply of oxygen and agitation E. Control of foaming
  • 13. A. Preparation of inoculum – is the first and most important parameter because the inoculum size, density and the phase in which the inoculum is will determine the yield and productivity.
  • 14. B. Tank/Fermenter Aspect Ratio – the capacity of the fermenter in the Industries used are large . So the size and capacity of the fermenter should be kept in mind while applying the other methods and processes.
  • 15. C. Sterilization and cleaning of the tank – the tank and other equipments should be cleaned and sterilized to ensure the protection of media inside the fermenter from any contamination D. Proper supply of oxygen and agitation – The demand for oxygen in SUF is always more and it is necessary to keep the level of oxygen more than the critical level and the supplied oxygen and air should be thoroughly mixed inside the fermenter E. Control of foaming – during the process foams generated might spill out and may contaminate the Product inside the fermenter so antifoaming agent should be used. F. Other factors such as pH, removal of heat and pressure
  • 16. 5. ROAD MAP FOR SUCCESSFUL SCALE-UP  The scale-up journey starts by imagining the desired outcome a robust full-scale manufacturing plant that meets its commercial objectives (schedule, cost, and quality) begin with the ending mind.  All of this is remembered at the beginning of a project in the form of a detailed, written charter that is updated as the program progresses from R&D proof-of-concept through process development and eventually deployment.  But in the case of fermentation, large-scale conditions can usually be adequately simulated in stirred lab fermenters with the implementation of Some custom control hardware and software.
  • 17.  A fully integrated process, including recycle streams, can be operated for an extended period with fully representative industrial equipment and materials. Alternative equipment designs and suppliers can be evaluated.  The future large-scale plant operating team can be trained; from the team’s pilot experience, they will know the process works and will log valuable experience in addressing process upsets. Pilot plant data and operating know-how are used to improve the large-scale plant design.  Large quantities of product can be produced for customer evaluation in the end-use applications, which builds customer relationships, confidence and demand for the commercial plant output.
  • 18.  As a Results, it can be tempting to skip this step or to pilot only selected unit operations for a short time. Experience has proven this to be unwise; the downside far outweighs the modest upside.  Design of the large-scale manufacturing plant should be based on data generated in the pilot plant. It is also important to factor in the outlook for future technology improvements. But avoid the temptation to design the large-scale plant for a process that has not been validated at pilot scale.  Whether you intend to build, own and operate your own plant or license your technology, it is crucial to provide technincal support during all phases of the project, including engineering design, construction, commissioning and start-up.
  • 19.
  • 20. 6.KEY CHALLENGES AND IMPROVEMENT IN MICROBIAL SCALE UP PROCESSES Regardless of how well you prepare, there will be issues that arise during scale-up. Common examples include utility interruptions, microbial contamination, variable raw material quality, fouling of process equipment, equipment failure and unexpected poor process performance at scale. Improvements mean that the focus now is not so much on capacity as on purification. The big challenges now lie in downstream processing. “There are lots of ideas out there,”. In both downstream processing and in other stages of manufacture, scale up can present a challenge but one that can be met by employing the right technologies.
  • 21.  Scale up generally involves taking a lab-scale procedure and replicating it as closely as possible to get larger amounts of product as specified either by a client or the regulatory authorities typically in a fermenter.
  • 22. 6.1 SOME OF THE ISSUSES OFFERMENTATION SCALE UP PROCESSES CHROMATOGRAPHY  The use of chromatography in purification can lead to some challenges in scale up, which may be solved by new approaches.  Mixed-mode Hypercell media can exploit different mechanisms of interaction with a target protein. FILTRATION  Filtration is necessary at many stages of a manufacturing process, so an understanding of filterability the filtration behavior of a solution is crucial.  Filterability testing can be used to determine the capacity of a filter system with the aim of determining the filter area that would be needed to process a batch without blocking the filter upon scale up.
  • 23. HYDROCYCLONE  Many industries have been looking at a new cell separation technology based upon the Hydrocyclone, which can be used as a perfusion system in large-scale animal cell culture.  The hydrocyclone works like an inverted fixed-wall centrifuge without a rotating shaft.
  • 24. 7. FERMENTATION PROCESS SCALE-UP INCLUDE 7.1 Seed train sale-up strategy  The purpose of a seed train is to propagate cells to a desired mass for inoculation into the production bioreactor.  The traditional seed train includes thawing a vial and inoculating into shaker flasks for a certain number of stages with increasing flask size, and may include stainless steel reactors.  The guiding principle for a seed train scale up is to minimize the number of stages for entire seed train, maintain robust growth and finally prevent any negative impact of extended generations to productivity and quality.
  • 25. Typical studies of seed train scale-up may include:- 1.Vial thaw conditions: this may include temperature and time between thaw and inoculation 2.Inoculation ratio: for microbes,0.1to 5% is commonly used. However, overall process robustness needs to be demonstrated with the inoculation ratios. 3.Seed train media: Usually, seed train media are optimized to support growth, rather than product expression, in a batch mode. 4.Genetic stability and production stability during the seed train process: This requires studies with an extended duration, beyond that estimated to be required for generation at the production scale.
  • 26.
  • 27. 7.2 Production fermentation scale-up  The essence of scale-up of a fermentation process is to demonstrate fermentation production at large scale resulting in the same productivity and quality as that developed at small scale.  One of the outcomes of a process scale-up is to finalize a detailed large scale process description with settings of all operational parameters and their ranges at scale.  The scaled-up fermentation has to be demonstrated with a certain number of runs for consistency and statistical significance. To achieve these goals, one have to take the following steps  Identify linear scale-up parameters  Temperature  Ph  Pressure  Dissolved oxygen(DO)  Air flow rate
  • 28. 8.WHAT ARE THE OPPORTUNITIES IN SCALE UP OF INDUSTRIAL MICROBIAL PROCESS Opportunities in scale up of Industrial microbial process  Many researches were done and the analysis showed potential target genes associated with increased ATP demand for metabolic engineering. Such approach was previously used by the same research team for re‐designing an E. coli strain with increased glucose uptake capacity to cope with nutrient‐limiting conditions typically found in industrial fed‐batch bioprocess .  These new findings point out that predicting microbial physiological responses to environmental fluctuations remains a challenge but also that there are vast potential applications.
  • 29.  This then is a good opportunity for presenting a modernized version of the scale‐down approach, i.e. an outlook on the different items that have to be considered for a better understanding of bioprocess scale‐up and the behaviour of cell populations under industrial process‐related conditions .  The bioprocess industry more than ever needs new, efficient and sustainable routes to manufacture bio‐products. Bioprocesses use the power and versatility of nature via microorganisms that make the bio‐products from renewable feedstocks. These microorganisms today can be extensively re‐programmed into efficient cell factories.
  • 30.
  • 31. CONCLUSION Scaling up industrial microbial processes for commercial production is a high stakes endeavor ,requiring time and investment often exceeding that for laboratory microbe and process development. The bio‐economy is in transit from innovation to commercialization. The bioprocess industry is expected to increasingly deliver bio‐products to the market, in large amounts, at high quality and at competitive cost levels. This requires flawless start‐up of new large‐scale bioprocesses and continuous improvement of running processes.
  • 32. Process scale up ,in a broad sense, is a critical activity that enables a fermentation process achieved in research and development to operate at a commercially viable scale for manufacturing .A successful scale up involves many aspects of successful preparation and planning beyond pure process scale up technology.