SlideShare uma empresa Scribd logo
1 de 92
Baixar para ler offline
Preface
“ ”
’
Table of Contents
’
’
’
List of Figures
List of Tables
Definitions
Summary
“ ”
“ ”
“ ” “ ” “
” “
” “ ” “ ”
“ ”
1. Introduction
1.1 Design Motivation
ç
ç
’
1.2 Design Goal
1.3 Problem Statement
’
1.4 Sub-problems




1.5 Research Methodology
“
”,
“
”,
“
”
“
”,
“
”
1.6 Outline
2. Communication
2.1 Wired- or wireless connection
2.2 Selecting the wireless module
2.2.1 HM-TRP
’
2.2.2 XBee-PRO DigiMesh 2.4
“ ”
Parameter Condition Min Typical Max Unit
Power Supply 2.4 3.3 3.6 V
Operating Temperature -40 85 ℃
Operating Frequency 413 433 453 MHz
Transmit Power Range 1 20 dBm
Receive Sensitivity FSK, Fdev=35K, DR=9.6Kbps -114 -112 dBm
FSK, Fdev=35K, DR=100Kbps -104 -102
Tx Current 20 dBm output power 100 120 mA
UART Data Rate 1.2 115.2 Kbps
’
’
2.3 Networking Infrastructure
’
NI CH ID SH SL DH DL BD
MetPak Transmitter E EEFF 13A200 40C5CB58 13A200 40C4B9D2 57600
WindGen Transceiver E EEFF 13A200 40C4B9D2 13A200 40C4B9DA 115200
Porter Transceiver E EEFF 13A200 40C4B9DB 0 FFFF 115200
H-Building Transceiver E EEFF 13A200 40C4B9EE 0 FFFF 115200
SolPanel Transceiver E EEFF 13A200 40C4B9DA 13A200 40C4B9D6 115200
PC Receiver E EEFF 13A200 40C4B9D6 0 FFFF 115200
2.4 Materials Used
Parameter Name Description
CH Channel Channel number used for transmitting and receiving data
(Uses 802.15.4 protocol channel numbers).
ID Network ID User network identifier. Nodes must have the same network
identifier to communicate.
SH Serial Number High The high 32 bits of the RF module’s unique IEEE 64-bit address.
(Read-only)
SL Serial Number Low The low 32 bits of the RF module’s unique IEEE 64-bit address.
(Read only)
DH Destination Address High Upper 32 bit of the 64-bit destination address. When combined
with DL, it defines the destination address used for transmission.
DL Destination Address Low Lower 32 bit of the 64-bit destination address. When combined
with DH, it defines the destination address used for transmission.
NI Node Identifier A string identifier for the module. (Up to 20 byte ASCII string).
BD Baud rate Serial interface rate (speed for data transfer between radio
modem and host).
2.4.1 The Antenna
2.4.2 Signal Amplifier
2.4.3 XBee Explorer Board
Operating Frequency 2400 ~ 2500 MHz
Operation Mode Bi-directional, half-duplex
Output Power 2000 mW (33dBm)
Input Power 0 ~ 20 dBm
Transmit gain 13 ~ 16 dB
Receiver gain ≤ 12 dB
Power Adapter 6V/ 2A DC, 100 ~ 240 VAC
2.4.4 DC Power Supply
2.4.5 Antennae pole
Input voltage 90 ~ 240 VAC 50/60 Hz
Input current 54 mA (110V); 27 mA (220 V)
Output voltage 5 VDC ± 0.2V
Output current 0-800mA, 1A(peak)
Output power 4W, Max. 5W
Output ripple 60mV
Q Name Description Location
6 XBee-PRO DigiMesh 2.4 See section 2.2.2 All nodes, see Figure 2.4
6 2.4 GHz Omni Antenna See section 2.4.2 MetPak, Rutland 913,
Bridges
6 XBee Explorer Board See section 2.4.4 All nodes, see Figure 2.4
2 Electrical Box Box for fitting electrical components. Bridges
2 Junction Box Box where safety fuse is installed Bridges
2 Wi-Fi Signal Booster Sunhans 2W amplifier for boosting
received and transmitted signals.
Bridges
2 Antennae Pole 8 feet, galvanized steel, Ø 47mm,
2.7mm thickness
Bridges
4 M6 Bolts & Nuts Used for fastening the two antennae
poles at the bridges
Bridges
2 600mA Fuses Fuse for protecting components at
the bridges (630mA)
Bridges
2 Small Breadboard For mounting XBee module Rutland 913, PV-panels
2.5 Installation
2.5.1 Porter House Bridge
2.5.2 H-building Bridge
2.6 Network Benchmark
3. MetPak Pro Weather Station
3.1 MetPak Pro specifications
3.2 MetSet
Comms PRT
Interface RS232 PRT Sensor OFF
Baud Rate 57600 PRT Units C
Node ID Q
Output Rate 1/4HZ AN1
Message Mode CONT AN1 Sensor OFF
Sensor Type SOLAR
ASCII_Setup Units WM2
Termination CRLF Analog Input Type VOLTAGE
Echo ON Substitute Name AN01
High 99999
Wind Low 99998
North Alignment 0
Sensor Wind speed ON AN2
Wind speed Units MS AN1 Sensor OFF
No-Direction Wind Speed 0.50 Sensor Type TEMP
Units C
Temperature Analog Input Type VOLTAGE
Temperature Sensor ON Substitute Name AN02
Temperature Units C High 99999
Dew point Sensor ON1
Low 99998
Dew point units C
DIG1
Pressure DIG1 Sensor OFF
Pressure Sensor ON Sensor Type RAIN
Pressure Units HPA Units MM
Count 10.0
Humidity Substitute Name DIG01
Humidity Sensor ON
Humidity Units % Power Up
Status Message Output ON
Reporting Report Message
Output
ON
NODE,DIR,SPEED,PRESS,RH,TEMP,DEWPOINT,VOLT,STATUS Unit Message Output ON
Inputs Message Output ON
3.3 Data Output
<STX>NODE, DIR, SPEED, PRESS, RH, TEMP, DEWPOINT, VOLT, STATUS2
<ETX>CHECKSUM
3.4 Materials Used
3.4.1 Buck Converter
3.4.2 RSLink2
Q Name Description
1 XBee-Pro DigiMesh
2.4
Node: MetPak Transmitter. Wireless module for communication,
see Chapter 2.2.2
1 2.4 GHz Omni
Antenna
Antenna connected to XBee-Pro DigiMesh 2.4 module, see Chapter
2.4.2
1 Buck Converter For voltage stabilization and overvoltage protection, see section
3.3.1
1 XBee Explorer Board Interface Board for XBee module, see Chapter 2.4.4
1 RSLink2 board RS-232 to UART converter
1 Electrical Box 190 x 140 x 70 mm IP55
1 B2 Circuit Breaker Located at Rutland 913 sub-station.
3.5 Installation
4. Rutland 913 Wind Turbine
4.1 Initial System’s Shortcomings
’
’
“ ’
”
4.1.1 No over-discharge Protection
’
4.1.2 No over-charge Protection
4.1.3 No Thermal Overload Protection
4.2 Redesigned System
4.3 Shortcoming’s Solutions
4.3.1 Over-charge Protection
4.3.2 Dynamic Dump Load
’
4.3.3 I2T Protection
4.4 The Arduino Code
“ ”
’
“ ”
’
void loop()
{
readSensors();
handleBatteryVoltage();
handleI2T();
displaySerial();
if (Serial1.available() > 0)
{
receivedBytes = Serial1.readBytesUntil(0x0A, inData,
55);
previousDataMicros = micros();
while (Serial1.available() > 0)
{
Serial1.read();
}
processSerial();
}
else
{
fictionalData();
}
}
4.4.1 readSensors()
4.4.2 handleBatteryVoltage()
4.4.3 handleI2T()
4.4.4 displaySerial()
’
processSerial()
fictionalData()
4.4.5 processSerial()
" "
4.5.6 fictionalData()
4.4.7 The CustomError Alarming Byte
’
’
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP
4.5 Data output
<STX>NODE, , , , , , WPOW, , 00 , CUSTOMERROR<ETX>CHECKSUM
4.6 Materials Used
4.6.1 Arduino DUE
’
4.6.2 ACS 712 Current Sensor
Microcontroller AT91SAM3X8E
Operating Voltage 3.3V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-16V
Digital I/O Pins 54 (of which 12 provide PWM output)
Analog Input Pins 12 (up to 12-bit)
Analog Output Pins (DAC) 2
Hardware UART 4
Total DC Output Current on all I/O lines 130 mA
DC Current for 3.3V Pin 800 mA
DC Current for 5V Pin 800 mA
Flash Memory 512 KB
SRAM 96 KB
Clock Speed 84 MHz
Characteristic Symbol Test Conditions Min Typ Max Units
Supply Voltage VCC 4.5 5.0 5.5 V
Supply Current ICC VCC = 5.0, output open 10 13 mA
Zero Current Output Voltage VOUT Bidirectional; IP = 0A, TA = 25°C 0.5
x
VCC
Output Resistive Load RLoad VOUT to GND 4.7 kΩ
Optimized Accuracy Range IP -20 - 20 A
Sensitivity Sens Over full range of IP, TA = 25°C 96 100 104 mV/A
Noise VNOISE TA = 25°C, 185 mV/A,
CF = 47 nF, COUT = open, 2 kHz
bandwidth
11 mV
4.6.3 ProtoShield with Breadboard
4.6.4 2 Channel SPDT Relay Board
4.6.5 IRFZ44N MOSFET
4.6.6 2N2222 Transistor
Q Name Description
1 Arduino DUE MCU See section 4.6.1
1 ACS 712 Current Sensor 20A version, see section 4.6.2
1 ProtoShield with
Breadboard
See section 4.6.3
1 XBee-PRO DigiMesh 2.4 RF-module for wireless communication, see Chapter 2.2.2
1 XBee Explorer Board Interface Board for XBee module, see Chapter 2.4.4
1 Mini Breadboard Used for mounting XBee Explorer Board
1 2.4 GHz Omni Antenna Antenna connected to XBee-Pro DigiMesh 2.4 module, see
Chapter 2.4.2
1 2 Channel SPDT Relay Board Used for (dis)connecting the wind turbine. See section 4.6.4
1 IRFZ44N MOSFET MOSFET for switching dump load. See section 4.6.5
1 Heat sink for MOSFET Used for dissipating heat from MOSFET
1 2N2222 Transistor Used for MOSFET Driver, see section 4.6.6
6 0.25W 1% Resistors Used for various parts of the electrical circuit.
2 Electrical Box 1 Small where 2x B2 Breakers are installed, 1 Medium where
electronics are installed.
1 B2 Circuit Breaker Used for connecting or disconnecting power from MCU and
components. Installed next to breaker used for MetPak Pro.
1 Variable Power Resistor
(8Ω)
Used as dump load
4.7 Installation
5. Solar sub-system
’ ’
5.1 Specifications
Power Supply 9-12 VDC, 1A
Measured Parameters: Power W
Temperature °C
Solar irradiance Wm-2
System Inputs 3 x PV-panels
5 x TMP36 temperature sensor
1 x GS-WV Pyranometer
Range Optimal 6
PV Voltage 0 – 48 5 – 40 VDC
PV Current 0 – 10 0.5 – 8 ADC
Solar Irradiance 0 – 1000 20 – 1000 Wm-2
Temperature -40 – 1257
25 – 50 °C
PV MPPT Method Sweeping, takes approximately 2 seconds.
Resolution
Power 0.1 W
Solar Irradiance 1 Wm-2
Temperature 0.1 °C
Tolerance Typ Max
Power ±0.7 ±1.7 %
Solar Irradiance - - -
Temperature ±0.5 ±1.1 °C
Switching
Dump Load MOSFET 20.5 kHz
Cooling Fans 18.0 kHz
Duty Cycle Resolution 8 bit -
Alarm: Heat sink Temperature High, Solar Power Abnormality and No Data from Rutland 913.
Additional Features: Temperature depended cooling fan speed, high temperature shut off.
5.2 Maximum Power Point Tracking
’
5.2.1 Perturb & Observe
“ ”
’
’
5.2.2 Incremental Conductance
𝑑𝑃
𝑑𝑉
’
𝑑𝑃
𝑑𝑉
𝑑𝑃
𝑑𝑉
5.2.3 Current Sweeping
5.3 Sub-system’s Elements
5.3.1 The PV-panels
PVL-128 STP170S-24/Ab-1 STP205-18/Ud
Cell Technology Amorphous silicon Mono-crystalline Poly-crystalline
Optimum Operating Voltage 33.0 V 35.2 V 26.3 V
Optimum Operating Current 3.88 A 4.95 A 7.80 A
Open – Circuit Voltage 47.6 V 44.2 V 33.5 V
Short – Circuit Current 4.80 A 5.20 A 8.23 A
Maximum Power at STC 128 W 170 W 205 W
Power Tolerance ± 5% ± 3% ± 5%
5.3.2 Dump Resistors
’
𝑈
𝐼
1
tan⁡( 𝜑)
Ω 𝜑
Ω Ω
“ ”
PVL-128 STP170S-24/Ab-1 STP205-18/Ud
Min R-value 8.51 Ω 7.29 Ω 3.37 Ω
5.3.3 MOSFET Switching Boards


 ’



5.3.4 Arduino Connector Shield
5.4 The Arduino Code
void loop()
void loop()
{
readTempSensors();
handleFanSpeed();
readSolarSensor();
displaySerial();
if (Serial1.available() > 0)
{
receivedBytes = Serial1.readBytes(inData, 65 );
previousDataMicros = micros();
while (Serial1.available() > 0)
{
Serial1.read();
}
processSerial();
sweepPanels();
}
else
{
fictionalData();
}
}
5.4.1 sweepPanels()
“ ”
5.4.2 readTempSensors()
5.4.3 handleFanSpeed()
5.4.4 readSolarSensor()
5.4.5 displaySerial()
’
processSerial() sweepPanels()
fictionalData()
5.4.6 processSerial()
“ ”
handleAlarms()
5.4.7 handleAlarms()
“ ”
5.4.8 fictionalData()
5.4.9 CustomError Continued
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP
5.5 Data output
<STX>NODE, DIR, SPEED, PRESS, RH, TEMP, DEWPOINT, WPOW, IRRAD, PVP1, PVP2, PVP3, AT,
PVT1, PVT2, PVT3, HST VOLT, MERPAKERROR, CUSTOMERROR<ETX>CHECKSUM
<STX>NODE, , , , , , , IRRAD, PVP1, PVP2, PVP3, AT, PVT1, PVT2, PVT3, , 00,
CUSTOMERROR<ETX>CHECKSUM
5.6 Materials Used
5.6.1 TMP36 Sensor
−
5.6.2 Pyranometer
𝑉𝐴𝐷𝐶
2 𝑛∗𝑉𝑜
⁡
10-bit ADC 12-bit ADC Sym
3.3V 2.3 0.6 Wm-2
5.0V 3.4 NA Wm-2
5.7 Electrical Installation
µ
’
’
’
Ω
6. DashBRD: ease at your disposal
’
6.1 The purpose
6.2 Making of DashBRD
’
6.3 The DashBRD Logo
6.4 Operating DashBRD
“
”
6.4.1 Interfacing DashBRD to PC
6.4.2 Using DashBRD with MetView
“ ”
6.5 Alarming
“ ”
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP
’
6.6 The Arduino Code
“
”
void loop()
void loop()
{
handleBacklight();
displayCategory(category);
handleIR();
if (Serial1.available() > 0)
{
fictionalMode = false;
receivedBytes = Serial1.readBytes(inData, 129 );
previousDataMicros = millis();
processSerial();
}
else
{
if (millis() - previousDataMicros >=
receivedDataTimeout)
{
strCustomError = "20";
fictionalMode = true;
}
}
handleBuzzer();
}
6.6.1 handleBacklight()
“ ”
6.6.2 displayCategory(category)
’
“ ”
“
”
6.6.3 handleIR()
6.6.4 processSerial()
“ ”
“ ”
6.6.5 handleBuzzer()
6.7 Materials Used
6.7.1 Arduino Leonardo Pro Micro
’
6.7.2 20x4 Character LCD
6.7.3 IR Receiver
7. Data Analysis
’
7.1 What is Data Accuracy
7.2 Efforts for Data Trueness
7.2.1 Voltage Sensor
’
Output = map(input, 0, 1023, 0, 255);
Input Output10
0 0
255 64
512 128
768 191
1023 255
Vin (V) ADC value
0.0 0
5.0 406
10.0 814
20.0 1635
30.0 2465
40.0 3308
float mapFloat(float x, float in_min, float in_max, float out_min, float
out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
if (avg > 2465.0)
avg = mapFloat(avg, 2465.0, 3308.0, 30.0, 40.0);
else if (avg > 1635.0)
avg = mapFloat(avg, 1635.0, 2465.0, 20.0, 30.0);
.
.
else if (avg > 406.0)
avg = mapFloat(avg, 406.0, 814.0, 5.0, 10.0);
else
avg = mapFloat(avg, 0.0, 406.0, 0.0, 5.0);
7.2.2 Current Sensor
if (avg < 1318.0)
avg = mapFloat(avg, 1187.0, 1328.0, 6.0, 5.0);
else if (avg < 1470.0)
avg = mapFloat(avg, 1328.0, 1470.0, 5.0, 4.0);
.
.
.
else if (avg < 1894.0)
avg = mapFloat(avg, 1754.0, 1894.0, 2.0, 1.0);
else
avg = mapFloat(avg, 1894.0, 2034.0, 1.0, 0.0);
Iin (A) ADC value
0.0 2034
1.0 1894
2.0 1754
3.0 1613
4.0 1470
5.0 1328
6.0 1187
7.2.3 Temperature Sensor
Vin (mV) Temp. (°C) ADC Value
755 25.5 954
778 27.8 981
801 30.1 1011
825 32.5 1041
854 35.4 1078
877 37.7 1107
899 39.9 1136
922 42.2 1164
952 45.2 1202
975 47.5 1231
998 49.8 1259
if (avg < 981.0)
avg = mapFloat(avg, 954.0, 981.0, 25.5, 27.8);
else if (avg < 1011.0)
avg = mapFloat(avg, 981.0, 1011.0, 27.8, 30.1);
.
.
.
.
else if (avg < 1231.0)
avg = mapFloat(avg, 1202.0, 1231.0, 45.2, 47.5);
else
avg = mapFloat(avg, 1231.0, 1259.0, 47.5, 49.8);
7.2.4 Irradiance Sensor
Vin (mV) Irradiance (Wm-2
) ADC Value
72.4 51 86
147.7 104 183
284.0 200 355
420.3 296 528
568.0 400 713
710.0 500 892
853.4 601 1074
998.3 703 1257
1134.6 799 1429
1279.4 901 1611
1420.0 1000 1789
1567.7 1104 1975
1704.0 1200 2148
if (avg < 86)
{
avg = map(avg, 0, 86, 0, 51);
}
else if (avg < 183)
{
avg = map(avg, 86, 183, 51, 104);
}
.
.
.
.
else
{
avg = map(avg, 1975, 2148, 1104, 1200);
}
7.3 Efforts for Data Precision
7.4 Results for Data Precision
7.5 Results for Data Trueness
7.5.1 Power Measurement
PKNOWN (W) PMEASURED (W) Error
93.8 94.3 0.5%
94.3 94.5 0.2 %
100.3 101.5 1.2 %
117.6 117.9 0.3 %
122.4 123.0 0.5 %
132.4 131.1 1.0 %
135.9 135.7 0.1 %
159.9 160.8 0.6 %
PKNOWN (W) PMEASURED (W) Error
23.4 23.8 1.7 %
39.7 40.1 1.0 %
74.7 74.3 0.5 %
100.5 99.2 1.3 %
117.2 117.0 0.2 %
125.3 125.2 0.1 %
132.8 132.5 0.2 %
148.3 147.3 0.7 %
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
0
100
200
300
400
500
600
700
800
900
1000
6:00:00 8:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00
Power(W)
Irradiance(Wm-2)
Time (h)
Irradiance vs Power Output
Irradiance Power Output
7.5.2 Temperature Measurement
TFLUKE TSS Error Error TSS TFLUKE
TAMBIENT
33.8 °C 33.7 °C 0.1 °C 0.7 °C 45.4 °C 46.1 °C
TAMBIENT
33.6 °C 33.4 °C 0.2 °C 1.0 °C 45.9 °C 46.9 °C
33.7 °C 33.6 °C 0.1 °C 1.0 °C 46.8 °C 47.8 °C
31.0 °C 30.8 °C 0.2 °C 1.1 °C 35.5 °C 36.6 °C
31.1 °C 30.9 °C 0.2 °C 0.8 °C 35.1 °C 35.9 °C
31.5 °C 31.1 °C 0.4 °C 0.8 °C 34.6 °C 35.2 °C
31.7 °C 31.2 °C 0.5 °C 0.5 °C 34.5 °C 35.0 °C
TPV1
41.6 °C 40.7 °C 0.9 °C 0.5 °C 42.9 °C 43.4 °C
TPV1
41.2 °C 40.4 °C 0.8 °C 0.2 °C 41.9 °C 42.1 °C
41.1 °C 40.3 °C 0.8 °C 0.3 °C 42.2 °C 42.5 °C
34.0 °C 34.2 °C 0.2°C 0.4 °C 32.6 °C 33.0 °C
33.9 °C 33.8 °C 0.1 °C 0.5 °C 32.3 °C 32.8 °C
33.6 °C 33.2 °C 0.4 °C 0.4 °C 32.2 °C 32.6 °C
33.1 °C 32.9 °C 0.2 °C 0.2 °C 32.0 °C 32.2 °C
8. Implementation Costs
Sys. Q Part Name USD Sys. Q Part Name USD
MetPak-
Pro
1 XBee-Pro RF Module $ 34.00
PV-
Panels
1 Arduino DUE MCU $ 28.99
1 XBee Explorer Board $ 8.99 1 XBee-Pro RF Module $ 34.00
1 5 VDC Buck Converter $ 4.50 1 XBee Explorer Board $ 8.99
1 RSLink2 RS-232 Converter $ 14.95 1 2.4 GHz Antenna $ 1.99
1 Waterproof Box $ 16.50 3 1Ω 100W Resistor $ 11.85
1 B2A Circuit Breaker $ 5.79 4 IRFZ44 MOSFET $ 2.75
1 2.4 GHz Antenna $ 1.99 3 MOSFET Heat sink $ 4.95
Shipping & Duties $ 30.00 6 2200µF 50V Cap. $ 2.97
Total $ 116.72 3 ACS712 Sensor $ 11.10
5 TMP36 Sensor $ 7.50
Rutland
913
1 Arduino DUE MCU $ 28.99 3 B16A Circuit Breaker $ 31.00
1 Protoshield & Breadboard $ 8.54 1 Resistor & Cap Assort $ 8.00
1 XBee-Pro RF Module $ 34.00 35 PCB connectors $ 30.23
1 XBee Explorer Board $ 8.99 1 Electrical Box $ 16.90
1 2.4 GHz Antenna $ 1.99 1 Breaker Din Rail $ 5.50
1 Waterproof Box 1 $ 16.50 1 Miscellaneous $ 20.00
1 Waterproof Box 2 $ 7.50 Shipping & Duties $ 45.00
1 2 Channel Relay Board $ 6.99 Total $ 271.72
1 ACS712 Current Sensor $ 3.70
1 B2A Circuit Breaker $ 5.79
Dash-
BRD
1 Arduino Pro Micro $ 10.00
1 Miscellaneous $ 5.00 1 20x4 Character LCD $ 13.40
Shipping & Duties $ 45.00 1 XBee-Pro RF Module $ 34.00
Total $ 167.99 1 XBee Explorer Board $ 8.99
1 Mini Breadboard $ 1.99
Birdges
2 XBee-Pro RF Module $ 68.00 1 IR Receiver $ 1.95
2 XBee Explorer Board $ 17.98 1 Painting Materials $ 23.28
2 2.4 GHz Antenna $ 2.98 Shipping & Duties $ 20.00
2 2W Signal Amplifier $ 59.98 Total $ 113.61
2 Antenna Post $ 25.00
2 Fuse Holder & Fuse $ 2.75 Grand Total $ 964.70
2 Junction Box $ 10.99
2 220 VAC to 5 VDC Supply $ 18.98
2 Waterproof Box $ 33.10
1 Fasteners & Misc. $ 15.00
Shipping & Duties $ 40.00
Total $ 294.66
12%
17%
31%
28%
12%
Sub-system Cost Breakdown
MetPak Rutland Bridges PV-Panels DashBRD
9. Conclusions and Recommendations
9.1 Conclusions
“
”
“
”
9.2 Recommendations
References
“
”
® ® ®
’
®
Appendix A
Appendix B
MetPak Pro1
Rutland 913
PV-panels

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Harmonic rel catalog
Harmonic rel catalogHarmonic rel catalog
Harmonic rel catalog
 
Electronic test equipment, Oscilloscope, Spectrum, Analyzer ,DMM
Electronic test equipment, Oscilloscope, Spectrum, Analyzer ,DMMElectronic test equipment, Oscilloscope, Spectrum, Analyzer ,DMM
Electronic test equipment, Oscilloscope, Spectrum, Analyzer ,DMM
 
Ad7716
Ad7716Ad7716
Ad7716
 
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
 
Edwards Signaling E-NAC Installation Manual
Edwards Signaling E-NAC Installation ManualEdwards Signaling E-NAC Installation Manual
Edwards Signaling E-NAC Installation Manual
 
Pvi 5000 6000-tl-en_0
Pvi 5000 6000-tl-en_0Pvi 5000 6000-tl-en_0
Pvi 5000 6000-tl-en_0
 
Final report
Final reportFinal report
Final report
 
K31 Controller
K31 ControllerK31 Controller
K31 Controller
 
Datasheet
DatasheetDatasheet
Datasheet
 
Tcs230
Tcs230Tcs230
Tcs230
 
Widom smart double_switch_l_en
Widom smart double_switch_l_enWidom smart double_switch_l_en
Widom smart double_switch_l_en
 
Datasheet (4)
Datasheet (4)Datasheet (4)
Datasheet (4)
 
Cc2530
Cc2530Cc2530
Cc2530
 
K30 Temperature Controller
K30 Temperature ControllerK30 Temperature Controller
K30 Temperature Controller
 
Aruba 2930F Switch Series Datasheet
Aruba 2930F Switch Series DatasheetAruba 2930F Switch Series Datasheet
Aruba 2930F Switch Series Datasheet
 
Netzer ds 247-128-specsheet
Netzer ds 247-128-specsheetNetzer ds 247-128-specsheet
Netzer ds 247-128-specsheet
 
Netzer DS 130
Netzer DS 130Netzer DS 130
Netzer DS 130
 
Netzer ds 37-16-specsheet
Netzer ds 37-16-specsheetNetzer ds 37-16-specsheet
Netzer ds 37-16-specsheet
 
PVI-10
PVI-10PVI-10
PVI-10
 
Sfp+ tunable
Sfp+ tunableSfp+ tunable
Sfp+ tunable
 

Destaque

Journal of Petroleum and Gas Engineering 2015
Journal of Petroleum and Gas Engineering 2015Journal of Petroleum and Gas Engineering 2015
Journal of Petroleum and Gas Engineering 2015
Vadim Akhmetgareev
 

Destaque (16)

Manjamen Sumber Daya Manusia
Manjamen Sumber Daya ManusiaManjamen Sumber Daya Manusia
Manjamen Sumber Daya Manusia
 
Problemática jornada única
Problemática jornada únicaProblemática jornada única
Problemática jornada única
 
mghexe
mghexemghexe
mghexe
 
Jp toutankhamon zip1115211
Jp toutankhamon zip1115211Jp toutankhamon zip1115211
Jp toutankhamon zip1115211
 
Barcelona paris new highway
Barcelona paris new highwayBarcelona paris new highway
Barcelona paris new highway
 
Η ΕΦΗΜΕΡΙΣ ΤΩΝ ΚΥΡΙΩΝ
Η ΕΦΗΜΕΡΙΣ ΤΩΝ ΚΥΡΙΩΝΗ ΕΦΗΜΕΡΙΣ ΤΩΝ ΚΥΡΙΩΝ
Η ΕΦΗΜΕΡΙΣ ΤΩΝ ΚΥΡΙΩΝ
 
Journal of Petroleum and Gas Engineering 2015
Journal of Petroleum and Gas Engineering 2015Journal of Petroleum and Gas Engineering 2015
Journal of Petroleum and Gas Engineering 2015
 
Adivina quién es
Adivina quién esAdivina quién es
Adivina quién es
 
Lleno y vacío
Lleno y vacíoLleno y vacío
Lleno y vacío
 
Color amarillo
Color amarilloColor amarillo
Color amarillo
 
Bose Ad Campaign - "Silence Never Sounded So Good"
Bose Ad Campaign - "Silence Never Sounded So Good" Bose Ad Campaign - "Silence Never Sounded So Good"
Bose Ad Campaign - "Silence Never Sounded So Good"
 
Top 100 des entreprises qui recrutent dans le numérique en 2015
Top 100 des entreprises qui recrutent dans le numérique en 2015Top 100 des entreprises qui recrutent dans le numérique en 2015
Top 100 des entreprises qui recrutent dans le numérique en 2015
 
Hormona del crecimiento
Hormona del crecimientoHormona del crecimiento
Hormona del crecimiento
 
Las razas de perros mas peligrosas
Las razas de perros mas peligrosasLas razas de perros mas peligrosas
Las razas de perros mas peligrosas
 
Tracer
TracerTracer
Tracer
 
Yp.ap .yli .panel_.2017-1 (1)
Yp.ap .yli .panel_.2017-1 (1)Yp.ap .yli .panel_.2017-1 (1)
Yp.ap .yli .panel_.2017-1 (1)
 

Semelhante a Thesis_Pijpers_PDF

Semelhante a Thesis_Pijpers_PDF (20)

10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
 
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
 
spf-2.5g-bx40d-1550nm-1310nm-40km-bidi-fiber-optical-module-151067.pdf
spf-2.5g-bx40d-1550nm-1310nm-40km-bidi-fiber-optical-module-151067.pdfspf-2.5g-bx40d-1550nm-1310nm-40km-bidi-fiber-optical-module-151067.pdf
spf-2.5g-bx40d-1550nm-1310nm-40km-bidi-fiber-optical-module-151067.pdf
 
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
 
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
 
BlueOptics Bo66jxx680d 10gbase cwdm xfp transceiver 1471nm 1611nm 80 km singl...
BlueOptics Bo66jxx680d 10gbase cwdm xfp transceiver 1471nm 1611nm 80 km singl...BlueOptics Bo66jxx680d 10gbase cwdm xfp transceiver 1471nm 1611nm 80 km singl...
BlueOptics Bo66jxx680d 10gbase cwdm xfp transceiver 1471nm 1611nm 80 km singl...
 
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
 
BlueOptics Bo66jxx660d 10gbase cwdm xfp transceiver 1271nm 1451nm 60 km singl...
BlueOptics Bo66jxx660d 10gbase cwdm xfp transceiver 1271nm 1451nm 60 km singl...BlueOptics Bo66jxx660d 10gbase cwdm xfp transceiver 1271nm 1451nm 60 km singl...
BlueOptics Bo66jxx660d 10gbase cwdm xfp transceiver 1271nm 1451nm 60 km singl...
 
Bo32j852s3d 10gbase-sr x2 transceiver 850nm 300 meter multimode sc-duplex 10g...
Bo32j852s3d 10gbase-sr x2 transceiver 850nm 300 meter multimode sc-duplex 10g...Bo32j852s3d 10gbase-sr x2 transceiver 850nm 300 meter multimode sc-duplex 10g...
Bo32j852s3d 10gbase-sr x2 transceiver 850nm 300 meter multimode sc-duplex 10g...
 
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
 
BlueOptics Bo33j852s3d 10gbase-sr xenpak transceiver 850nm 300 meter multimod...
BlueOptics Bo33j852s3d 10gbase-sr xenpak transceiver 850nm 300 meter multimod...BlueOptics Bo33j852s3d 10gbase-sr xenpak transceiver 850nm 300 meter multimod...
BlueOptics Bo33j852s3d 10gbase-sr xenpak transceiver 850nm 300 meter multimod...
 
spf-2.5g-bx20d-1550nm-1310nm-20km-bidi-transceiver-module-151065.pdf
spf-2.5g-bx20d-1550nm-1310nm-20km-bidi-transceiver-module-151065.pdfspf-2.5g-bx20d-1550nm-1310nm-20km-bidi-transceiver-module-151065.pdf
spf-2.5g-bx20d-1550nm-1310nm-20km-bidi-transceiver-module-151065.pdf
 
LMV221 sdx
LMV221 sdxLMV221 sdx
LMV221 sdx
 
spf-2.5g-bx40u-1310nm-1550-40km-bidi-fiber-optical-module-151066.pdf
spf-2.5g-bx40u-1310nm-1550-40km-bidi-fiber-optical-module-151066.pdfspf-2.5g-bx40u-1310nm-1550-40km-bidi-fiber-optical-module-151066.pdf
spf-2.5g-bx40u-1310nm-1550-40km-bidi-fiber-optical-module-151066.pdf
 
BlueOptics Bo66jxx640d t1-10gbase-cwdm xfp transceiver 1271nm-1451nm 40 km si...
BlueOptics Bo66jxx640d t1-10gbase-cwdm xfp transceiver 1271nm-1451nm 40 km si...BlueOptics Bo66jxx640d t1-10gbase-cwdm xfp transceiver 1271nm-1451nm 40 km si...
BlueOptics Bo66jxx640d t1-10gbase-cwdm xfp transceiver 1271nm-1451nm 40 km si...
 
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
 
dwdm-sfp10g-40km-c56-optical-module-141102.doc
dwdm-sfp10g-40km-c56-optical-module-141102.docdwdm-sfp10g-40km-c56-optical-module-141102.doc
dwdm-sfp10g-40km-c56-optical-module-141102.doc
 
dwdm-sfp10g-40km-c61-optical-module-141107.doc
dwdm-sfp10g-40km-c61-optical-module-141107.docdwdm-sfp10g-40km-c61-optical-module-141107.doc
dwdm-sfp10g-40km-c61-optical-module-141107.doc
 
DWDM-SFP10G-40-C22-T02#141068.pdf
DWDM-SFP10G-40-C22-T02#141068.pdfDWDM-SFP10G-40-C22-T02#141068.pdf
DWDM-SFP10G-40-C22-T02#141068.pdf
 
spf-2.5g-bx20u-1310nm-1550nm-20km-bidi-fiber-optical-module-151064.pdf
spf-2.5g-bx20u-1310nm-1550nm-20km-bidi-fiber-optical-module-151064.pdfspf-2.5g-bx20u-1310nm-1550nm-20km-bidi-fiber-optical-module-151064.pdf
spf-2.5g-bx20u-1310nm-1550nm-20km-bidi-fiber-optical-module-151064.pdf
 

Thesis_Pijpers_PDF

  • 1.
  • 4.
  • 8.
  • 10. “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ”
  • 11. 1. Introduction 1.1 Design Motivation ç ç ’ 1.2 Design Goal
  • 12. 1.3 Problem Statement ’ 1.4 Sub-problems     1.5 Research Methodology “ ”,
  • 14.
  • 15. 2. Communication 2.1 Wired- or wireless connection
  • 16. 2.2 Selecting the wireless module 2.2.1 HM-TRP ’
  • 17. 2.2.2 XBee-PRO DigiMesh 2.4 “ ” Parameter Condition Min Typical Max Unit Power Supply 2.4 3.3 3.6 V Operating Temperature -40 85 ℃ Operating Frequency 413 433 453 MHz Transmit Power Range 1 20 dBm Receive Sensitivity FSK, Fdev=35K, DR=9.6Kbps -114 -112 dBm FSK, Fdev=35K, DR=100Kbps -104 -102 Tx Current 20 dBm output power 100 120 mA UART Data Rate 1.2 115.2 Kbps
  • 20. ’ NI CH ID SH SL DH DL BD MetPak Transmitter E EEFF 13A200 40C5CB58 13A200 40C4B9D2 57600 WindGen Transceiver E EEFF 13A200 40C4B9D2 13A200 40C4B9DA 115200 Porter Transceiver E EEFF 13A200 40C4B9DB 0 FFFF 115200 H-Building Transceiver E EEFF 13A200 40C4B9EE 0 FFFF 115200 SolPanel Transceiver E EEFF 13A200 40C4B9DA 13A200 40C4B9D6 115200 PC Receiver E EEFF 13A200 40C4B9D6 0 FFFF 115200
  • 21. 2.4 Materials Used Parameter Name Description CH Channel Channel number used for transmitting and receiving data (Uses 802.15.4 protocol channel numbers). ID Network ID User network identifier. Nodes must have the same network identifier to communicate. SH Serial Number High The high 32 bits of the RF module’s unique IEEE 64-bit address. (Read-only) SL Serial Number Low The low 32 bits of the RF module’s unique IEEE 64-bit address. (Read only) DH Destination Address High Upper 32 bit of the 64-bit destination address. When combined with DL, it defines the destination address used for transmission. DL Destination Address Low Lower 32 bit of the 64-bit destination address. When combined with DH, it defines the destination address used for transmission. NI Node Identifier A string identifier for the module. (Up to 20 byte ASCII string). BD Baud rate Serial interface rate (speed for data transfer between radio modem and host).
  • 22. 2.4.1 The Antenna 2.4.2 Signal Amplifier 2.4.3 XBee Explorer Board Operating Frequency 2400 ~ 2500 MHz Operation Mode Bi-directional, half-duplex Output Power 2000 mW (33dBm) Input Power 0 ~ 20 dBm Transmit gain 13 ~ 16 dB Receiver gain ≤ 12 dB Power Adapter 6V/ 2A DC, 100 ~ 240 VAC
  • 23. 2.4.4 DC Power Supply 2.4.5 Antennae pole Input voltage 90 ~ 240 VAC 50/60 Hz Input current 54 mA (110V); 27 mA (220 V) Output voltage 5 VDC ± 0.2V Output current 0-800mA, 1A(peak) Output power 4W, Max. 5W Output ripple 60mV Q Name Description Location 6 XBee-PRO DigiMesh 2.4 See section 2.2.2 All nodes, see Figure 2.4 6 2.4 GHz Omni Antenna See section 2.4.2 MetPak, Rutland 913, Bridges 6 XBee Explorer Board See section 2.4.4 All nodes, see Figure 2.4 2 Electrical Box Box for fitting electrical components. Bridges 2 Junction Box Box where safety fuse is installed Bridges 2 Wi-Fi Signal Booster Sunhans 2W amplifier for boosting received and transmitted signals. Bridges 2 Antennae Pole 8 feet, galvanized steel, Ø 47mm, 2.7mm thickness Bridges 4 M6 Bolts & Nuts Used for fastening the two antennae poles at the bridges Bridges 2 600mA Fuses Fuse for protecting components at the bridges (630mA) Bridges 2 Small Breadboard For mounting XBee module Rutland 913, PV-panels
  • 25. 2.5.2 H-building Bridge 2.6 Network Benchmark
  • 26.
  • 27. 3. MetPak Pro Weather Station 3.1 MetPak Pro specifications
  • 28. 3.2 MetSet Comms PRT Interface RS232 PRT Sensor OFF Baud Rate 57600 PRT Units C Node ID Q Output Rate 1/4HZ AN1 Message Mode CONT AN1 Sensor OFF Sensor Type SOLAR ASCII_Setup Units WM2 Termination CRLF Analog Input Type VOLTAGE Echo ON Substitute Name AN01 High 99999 Wind Low 99998 North Alignment 0 Sensor Wind speed ON AN2 Wind speed Units MS AN1 Sensor OFF No-Direction Wind Speed 0.50 Sensor Type TEMP Units C Temperature Analog Input Type VOLTAGE Temperature Sensor ON Substitute Name AN02 Temperature Units C High 99999 Dew point Sensor ON1 Low 99998 Dew point units C DIG1 Pressure DIG1 Sensor OFF Pressure Sensor ON Sensor Type RAIN Pressure Units HPA Units MM Count 10.0 Humidity Substitute Name DIG01 Humidity Sensor ON Humidity Units % Power Up Status Message Output ON Reporting Report Message Output ON NODE,DIR,SPEED,PRESS,RH,TEMP,DEWPOINT,VOLT,STATUS Unit Message Output ON Inputs Message Output ON
  • 29. 3.3 Data Output <STX>NODE, DIR, SPEED, PRESS, RH, TEMP, DEWPOINT, VOLT, STATUS2 <ETX>CHECKSUM 3.4 Materials Used 3.4.1 Buck Converter
  • 30. 3.4.2 RSLink2 Q Name Description 1 XBee-Pro DigiMesh 2.4 Node: MetPak Transmitter. Wireless module for communication, see Chapter 2.2.2 1 2.4 GHz Omni Antenna Antenna connected to XBee-Pro DigiMesh 2.4 module, see Chapter 2.4.2 1 Buck Converter For voltage stabilization and overvoltage protection, see section 3.3.1 1 XBee Explorer Board Interface Board for XBee module, see Chapter 2.4.4 1 RSLink2 board RS-232 to UART converter 1 Electrical Box 190 x 140 x 70 mm IP55 1 B2 Circuit Breaker Located at Rutland 913 sub-station.
  • 32.
  • 33. 4. Rutland 913 Wind Turbine
  • 34. 4.1 Initial System’s Shortcomings ’ ’ “ ’ ” 4.1.1 No over-discharge Protection ’ 4.1.2 No over-charge Protection
  • 35. 4.1.3 No Thermal Overload Protection 4.2 Redesigned System 4.3 Shortcoming’s Solutions 4.3.1 Over-charge Protection
  • 36. 4.3.2 Dynamic Dump Load ’
  • 38. 4.4 The Arduino Code “ ” ’ “ ” ’ void loop() { readSensors(); handleBatteryVoltage(); handleI2T(); displaySerial(); if (Serial1.available() > 0) { receivedBytes = Serial1.readBytesUntil(0x0A, inData, 55); previousDataMicros = micros(); while (Serial1.available() > 0) { Serial1.read(); } processSerial(); } else { fictionalData(); } }
  • 39. 4.4.1 readSensors() 4.4.2 handleBatteryVoltage() 4.4.3 handleI2T() 4.4.4 displaySerial()
  • 40. ’ processSerial() fictionalData() 4.4.5 processSerial() " " 4.5.6 fictionalData() 4.4.7 The CustomError Alarming Byte ’ ’
  • 41. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP
  • 42. 4.5 Data output <STX>NODE, , , , , , WPOW, , 00 , CUSTOMERROR<ETX>CHECKSUM 4.6 Materials Used 4.6.1 Arduino DUE ’
  • 43. 4.6.2 ACS 712 Current Sensor Microcontroller AT91SAM3X8E Operating Voltage 3.3V Input Voltage (recommended) 7-12V Input Voltage (limits) 6-16V Digital I/O Pins 54 (of which 12 provide PWM output) Analog Input Pins 12 (up to 12-bit) Analog Output Pins (DAC) 2 Hardware UART 4 Total DC Output Current on all I/O lines 130 mA DC Current for 3.3V Pin 800 mA DC Current for 5V Pin 800 mA Flash Memory 512 KB SRAM 96 KB Clock Speed 84 MHz Characteristic Symbol Test Conditions Min Typ Max Units Supply Voltage VCC 4.5 5.0 5.5 V Supply Current ICC VCC = 5.0, output open 10 13 mA Zero Current Output Voltage VOUT Bidirectional; IP = 0A, TA = 25°C 0.5 x VCC Output Resistive Load RLoad VOUT to GND 4.7 kΩ Optimized Accuracy Range IP -20 - 20 A Sensitivity Sens Over full range of IP, TA = 25°C 96 100 104 mV/A Noise VNOISE TA = 25°C, 185 mV/A, CF = 47 nF, COUT = open, 2 kHz bandwidth 11 mV
  • 44. 4.6.3 ProtoShield with Breadboard 4.6.4 2 Channel SPDT Relay Board 4.6.5 IRFZ44N MOSFET
  • 45. 4.6.6 2N2222 Transistor Q Name Description 1 Arduino DUE MCU See section 4.6.1 1 ACS 712 Current Sensor 20A version, see section 4.6.2 1 ProtoShield with Breadboard See section 4.6.3 1 XBee-PRO DigiMesh 2.4 RF-module for wireless communication, see Chapter 2.2.2 1 XBee Explorer Board Interface Board for XBee module, see Chapter 2.4.4 1 Mini Breadboard Used for mounting XBee Explorer Board 1 2.4 GHz Omni Antenna Antenna connected to XBee-Pro DigiMesh 2.4 module, see Chapter 2.4.2 1 2 Channel SPDT Relay Board Used for (dis)connecting the wind turbine. See section 4.6.4 1 IRFZ44N MOSFET MOSFET for switching dump load. See section 4.6.5 1 Heat sink for MOSFET Used for dissipating heat from MOSFET 1 2N2222 Transistor Used for MOSFET Driver, see section 4.6.6 6 0.25W 1% Resistors Used for various parts of the electrical circuit. 2 Electrical Box 1 Small where 2x B2 Breakers are installed, 1 Medium where electronics are installed. 1 B2 Circuit Breaker Used for connecting or disconnecting power from MCU and components. Installed next to breaker used for MetPak Pro. 1 Variable Power Resistor (8Ω) Used as dump load
  • 47. 5. Solar sub-system ’ ’ 5.1 Specifications Power Supply 9-12 VDC, 1A Measured Parameters: Power W Temperature °C Solar irradiance Wm-2 System Inputs 3 x PV-panels 5 x TMP36 temperature sensor 1 x GS-WV Pyranometer Range Optimal 6 PV Voltage 0 – 48 5 – 40 VDC PV Current 0 – 10 0.5 – 8 ADC Solar Irradiance 0 – 1000 20 – 1000 Wm-2 Temperature -40 – 1257 25 – 50 °C PV MPPT Method Sweeping, takes approximately 2 seconds. Resolution Power 0.1 W Solar Irradiance 1 Wm-2 Temperature 0.1 °C Tolerance Typ Max Power ±0.7 ±1.7 % Solar Irradiance - - - Temperature ±0.5 ±1.1 °C Switching Dump Load MOSFET 20.5 kHz Cooling Fans 18.0 kHz Duty Cycle Resolution 8 bit - Alarm: Heat sink Temperature High, Solar Power Abnormality and No Data from Rutland 913. Additional Features: Temperature depended cooling fan speed, high temperature shut off.
  • 48. 5.2 Maximum Power Point Tracking ’ 5.2.1 Perturb & Observe “ ” ’ ’
  • 50. 5.3 Sub-system’s Elements 5.3.1 The PV-panels PVL-128 STP170S-24/Ab-1 STP205-18/Ud Cell Technology Amorphous silicon Mono-crystalline Poly-crystalline Optimum Operating Voltage 33.0 V 35.2 V 26.3 V Optimum Operating Current 3.88 A 4.95 A 7.80 A Open – Circuit Voltage 47.6 V 44.2 V 33.5 V Short – Circuit Current 4.80 A 5.20 A 8.23 A Maximum Power at STC 128 W 170 W 205 W Power Tolerance ± 5% ± 3% ± 5%
  • 51. 5.3.2 Dump Resistors ’ 𝑈 𝐼 1 tan⁡( 𝜑) Ω 𝜑 Ω Ω “ ” PVL-128 STP170S-24/Ab-1 STP205-18/Ud Min R-value 8.51 Ω 7.29 Ω 3.37 Ω
  • 52. 5.3.3 MOSFET Switching Boards    ’    5.3.4 Arduino Connector Shield
  • 53.
  • 54. 5.4 The Arduino Code void loop() void loop() { readTempSensors(); handleFanSpeed(); readSolarSensor(); displaySerial(); if (Serial1.available() > 0) { receivedBytes = Serial1.readBytes(inData, 65 ); previousDataMicros = micros(); while (Serial1.available() > 0) { Serial1.read(); } processSerial(); sweepPanels(); } else { fictionalData(); } } 5.4.1 sweepPanels() “ ”
  • 55. 5.4.2 readTempSensors() 5.4.3 handleFanSpeed() 5.4.4 readSolarSensor() 5.4.5 displaySerial()
  • 56. ’ processSerial() sweepPanels() fictionalData() 5.4.6 processSerial() “ ” handleAlarms() 5.4.7 handleAlarms() “ ” 5.4.8 fictionalData()
  • 57. 5.4.9 CustomError Continued Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP 5.5 Data output <STX>NODE, DIR, SPEED, PRESS, RH, TEMP, DEWPOINT, WPOW, IRRAD, PVP1, PVP2, PVP3, AT, PVT1, PVT2, PVT3, HST VOLT, MERPAKERROR, CUSTOMERROR<ETX>CHECKSUM
  • 58. <STX>NODE, , , , , , , IRRAD, PVP1, PVP2, PVP3, AT, PVT1, PVT2, PVT3, , 00, CUSTOMERROR<ETX>CHECKSUM 5.6 Materials Used 5.6.1 TMP36 Sensor −
  • 59. 5.6.2 Pyranometer 𝑉𝐴𝐷𝐶 2 𝑛∗𝑉𝑜 ⁡ 10-bit ADC 12-bit ADC Sym 3.3V 2.3 0.6 Wm-2 5.0V 3.4 NA Wm-2 5.7 Electrical Installation
  • 61.
  • 62.
  • 63. 6. DashBRD: ease at your disposal ’ 6.1 The purpose 6.2 Making of DashBRD ’
  • 65. 6.4 Operating DashBRD “ ” 6.4.1 Interfacing DashBRD to PC 6.4.2 Using DashBRD with MetView “ ”
  • 66.
  • 67.
  • 68.
  • 70. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Set Param. SPA HSTH NDPV WGTO BATUV BATOV NDWG NDMP
  • 71. ’ 6.6 The Arduino Code “ ” void loop() void loop() { handleBacklight(); displayCategory(category); handleIR(); if (Serial1.available() > 0) { fictionalMode = false; receivedBytes = Serial1.readBytes(inData, 129 ); previousDataMicros = millis(); processSerial(); } else { if (millis() - previousDataMicros >= receivedDataTimeout) { strCustomError = "20"; fictionalMode = true; } } handleBuzzer(); } 6.6.1 handleBacklight() “ ”
  • 72. 6.6.2 displayCategory(category) ’ “ ” “ ” 6.6.3 handleIR() 6.6.4 processSerial() “ ” “ ” 6.6.5 handleBuzzer()
  • 73. 6.7 Materials Used 6.7.1 Arduino Leonardo Pro Micro ’ 6.7.2 20x4 Character LCD 6.7.3 IR Receiver
  • 74.
  • 75. 7. Data Analysis ’ 7.1 What is Data Accuracy 7.2 Efforts for Data Trueness
  • 77. Output = map(input, 0, 1023, 0, 255); Input Output10 0 0 255 64 512 128 768 191 1023 255 Vin (V) ADC value 0.0 0 5.0 406 10.0 814 20.0 1635 30.0 2465 40.0 3308 float mapFloat(float x, float in_min, float in_max, float out_min, float out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; }
  • 78. if (avg > 2465.0) avg = mapFloat(avg, 2465.0, 3308.0, 30.0, 40.0); else if (avg > 1635.0) avg = mapFloat(avg, 1635.0, 2465.0, 20.0, 30.0); . . else if (avg > 406.0) avg = mapFloat(avg, 406.0, 814.0, 5.0, 10.0); else avg = mapFloat(avg, 0.0, 406.0, 0.0, 5.0); 7.2.2 Current Sensor if (avg < 1318.0) avg = mapFloat(avg, 1187.0, 1328.0, 6.0, 5.0); else if (avg < 1470.0) avg = mapFloat(avg, 1328.0, 1470.0, 5.0, 4.0); . . . else if (avg < 1894.0) avg = mapFloat(avg, 1754.0, 1894.0, 2.0, 1.0); else avg = mapFloat(avg, 1894.0, 2034.0, 1.0, 0.0);
  • 79. Iin (A) ADC value 0.0 2034 1.0 1894 2.0 1754 3.0 1613 4.0 1470 5.0 1328 6.0 1187 7.2.3 Temperature Sensor Vin (mV) Temp. (°C) ADC Value 755 25.5 954 778 27.8 981 801 30.1 1011 825 32.5 1041 854 35.4 1078 877 37.7 1107 899 39.9 1136 922 42.2 1164 952 45.2 1202 975 47.5 1231 998 49.8 1259
  • 80. if (avg < 981.0) avg = mapFloat(avg, 954.0, 981.0, 25.5, 27.8); else if (avg < 1011.0) avg = mapFloat(avg, 981.0, 1011.0, 27.8, 30.1); . . . . else if (avg < 1231.0) avg = mapFloat(avg, 1202.0, 1231.0, 45.2, 47.5); else avg = mapFloat(avg, 1231.0, 1259.0, 47.5, 49.8); 7.2.4 Irradiance Sensor Vin (mV) Irradiance (Wm-2 ) ADC Value 72.4 51 86 147.7 104 183 284.0 200 355 420.3 296 528 568.0 400 713 710.0 500 892 853.4 601 1074 998.3 703 1257 1134.6 799 1429 1279.4 901 1611 1420.0 1000 1789 1567.7 1104 1975 1704.0 1200 2148
  • 81. if (avg < 86) { avg = map(avg, 0, 86, 0, 51); } else if (avg < 183) { avg = map(avg, 86, 183, 51, 104); } . . . . else { avg = map(avg, 1975, 2148, 1104, 1200); } 7.3 Efforts for Data Precision
  • 82. 7.4 Results for Data Precision 7.5 Results for Data Trueness 7.5.1 Power Measurement PKNOWN (W) PMEASURED (W) Error 93.8 94.3 0.5% 94.3 94.5 0.2 % 100.3 101.5 1.2 % 117.6 117.9 0.3 % 122.4 123.0 0.5 % 132.4 131.1 1.0 % 135.9 135.7 0.1 % 159.9 160.8 0.6 % PKNOWN (W) PMEASURED (W) Error 23.4 23.8 1.7 % 39.7 40.1 1.0 % 74.7 74.3 0.5 % 100.5 99.2 1.3 % 117.2 117.0 0.2 % 125.3 125.2 0.1 % 132.8 132.5 0.2 % 148.3 147.3 0.7 %
  • 83. 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 0 100 200 300 400 500 600 700 800 900 1000 6:00:00 8:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00 Power(W) Irradiance(Wm-2) Time (h) Irradiance vs Power Output Irradiance Power Output
  • 84. 7.5.2 Temperature Measurement TFLUKE TSS Error Error TSS TFLUKE TAMBIENT 33.8 °C 33.7 °C 0.1 °C 0.7 °C 45.4 °C 46.1 °C TAMBIENT 33.6 °C 33.4 °C 0.2 °C 1.0 °C 45.9 °C 46.9 °C 33.7 °C 33.6 °C 0.1 °C 1.0 °C 46.8 °C 47.8 °C 31.0 °C 30.8 °C 0.2 °C 1.1 °C 35.5 °C 36.6 °C 31.1 °C 30.9 °C 0.2 °C 0.8 °C 35.1 °C 35.9 °C 31.5 °C 31.1 °C 0.4 °C 0.8 °C 34.6 °C 35.2 °C 31.7 °C 31.2 °C 0.5 °C 0.5 °C 34.5 °C 35.0 °C TPV1 41.6 °C 40.7 °C 0.9 °C 0.5 °C 42.9 °C 43.4 °C TPV1 41.2 °C 40.4 °C 0.8 °C 0.2 °C 41.9 °C 42.1 °C 41.1 °C 40.3 °C 0.8 °C 0.3 °C 42.2 °C 42.5 °C 34.0 °C 34.2 °C 0.2°C 0.4 °C 32.6 °C 33.0 °C 33.9 °C 33.8 °C 0.1 °C 0.5 °C 32.3 °C 32.8 °C 33.6 °C 33.2 °C 0.4 °C 0.4 °C 32.2 °C 32.6 °C 33.1 °C 32.9 °C 0.2 °C 0.2 °C 32.0 °C 32.2 °C
  • 85. 8. Implementation Costs Sys. Q Part Name USD Sys. Q Part Name USD MetPak- Pro 1 XBee-Pro RF Module $ 34.00 PV- Panels 1 Arduino DUE MCU $ 28.99 1 XBee Explorer Board $ 8.99 1 XBee-Pro RF Module $ 34.00 1 5 VDC Buck Converter $ 4.50 1 XBee Explorer Board $ 8.99 1 RSLink2 RS-232 Converter $ 14.95 1 2.4 GHz Antenna $ 1.99 1 Waterproof Box $ 16.50 3 1Ω 100W Resistor $ 11.85 1 B2A Circuit Breaker $ 5.79 4 IRFZ44 MOSFET $ 2.75 1 2.4 GHz Antenna $ 1.99 3 MOSFET Heat sink $ 4.95 Shipping & Duties $ 30.00 6 2200µF 50V Cap. $ 2.97 Total $ 116.72 3 ACS712 Sensor $ 11.10 5 TMP36 Sensor $ 7.50 Rutland 913 1 Arduino DUE MCU $ 28.99 3 B16A Circuit Breaker $ 31.00 1 Protoshield & Breadboard $ 8.54 1 Resistor & Cap Assort $ 8.00 1 XBee-Pro RF Module $ 34.00 35 PCB connectors $ 30.23 1 XBee Explorer Board $ 8.99 1 Electrical Box $ 16.90 1 2.4 GHz Antenna $ 1.99 1 Breaker Din Rail $ 5.50 1 Waterproof Box 1 $ 16.50 1 Miscellaneous $ 20.00 1 Waterproof Box 2 $ 7.50 Shipping & Duties $ 45.00 1 2 Channel Relay Board $ 6.99 Total $ 271.72 1 ACS712 Current Sensor $ 3.70 1 B2A Circuit Breaker $ 5.79 Dash- BRD 1 Arduino Pro Micro $ 10.00 1 Miscellaneous $ 5.00 1 20x4 Character LCD $ 13.40 Shipping & Duties $ 45.00 1 XBee-Pro RF Module $ 34.00 Total $ 167.99 1 XBee Explorer Board $ 8.99 1 Mini Breadboard $ 1.99 Birdges 2 XBee-Pro RF Module $ 68.00 1 IR Receiver $ 1.95 2 XBee Explorer Board $ 17.98 1 Painting Materials $ 23.28 2 2.4 GHz Antenna $ 2.98 Shipping & Duties $ 20.00 2 2W Signal Amplifier $ 59.98 Total $ 113.61 2 Antenna Post $ 25.00 2 Fuse Holder & Fuse $ 2.75 Grand Total $ 964.70 2 Junction Box $ 10.99 2 220 VAC to 5 VDC Supply $ 18.98 2 Waterproof Box $ 33.10 1 Fasteners & Misc. $ 15.00 Shipping & Duties $ 40.00 Total $ 294.66
  • 86. 12% 17% 31% 28% 12% Sub-system Cost Breakdown MetPak Rutland Bridges PV-Panels DashBRD
  • 87. 9. Conclusions and Recommendations 9.1 Conclusions “ ” “ ”