O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a navegar o site, você aceita o uso de cookies. Leia nosso Contrato do Usuário e nossa Política de Privacidade.
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a utilizar o site, você aceita o uso de cookies. Leia nossa Política de Privacidade e nosso Contrato do Usuário para obter mais detalhes.
Publicada em
Soumith Chintala is a Researcher at Facebook AI Research, where he works on deep learning, reinforcement learning, generative image models, agents for video games and large-scale high-performance deep learning. Prior to joining Facebook in August 2014, he worked at MuseAmi, where he built deep learning models for music and vision targeted at mobile devices. He holds a Masters in CS from NYU, and spent time in Yann LeCun’s NYU lab building deep learning models for pedestrian detection, natural image OCR, depth-images among others.
Abstract Summary:
Dynamic Deep Learning: a paradigm shift in AI research and tools:
AI research has seen many shifts in the last few years. We’ve seen research go from using static datasets such as Imagenet to being more dynamic and online in self-driving cars, robots and game-playing.Many dynamic environments such as Universe and Starcraft are being used in AI research to solve problems pertaining to reinforcement learning and online learning. In this talk, I shall discuss these shifts in research. Tools such as PyTorch, DyNet and Chainer have popped up to cope up with the paradigm shift, enabling cutting-edge AI, and I shall discuss these as well.
Parece que você já adicionou este slide ao painel
Entre para ver os comentários