SlideShare uma empresa Scribd logo
1 de 78
Spatio-temporal control of
                                                    light in complex media
                                                                    Sébastien
                                                                     POPOFF




             Directors : M. Fink et C. Boccara
             Supervisors : S. Gigan et G. Lerosey



                                                                          1
14/12/2011
Introduction
                                                Imaging in optics


What are optical systems useful for?
                                       Look further




        Look smaller




14/12/2011                                                      2
Introduction
                      Aberrations


Imaging in optics




                     Atmospheric
                     aberrations



14/12/2011                         3
Introduction
                                                                                Adaptive optics


Real-time correction of aberrations with adaptive optics
                             Courtesy: F. Lacombe/observatoire de Paris



    Wavefront correction
   (ex: deformable mirror)




                                                                      Imaging
                                                                       device
                                                                       (CCD)
                               Wavefront Sensor
                             (ex: Hartmann-Schack)


             Real-time control loop
14/12/2011                                                                                   4
Introduction
                                                                  Strong perturbations


AO convenient for wavefront perturbation :
Large spatial scale / small amplitude
Relevant for astronomy, free space optics, some biological applications…

What about stronger pertubations?
Multiple scattering, multiple reflections…

Techniques in Acoustics / Electromagnetism
Time reversal

Can we apply them in optics?


   14/12/2011                                                                         5
Introduction
                                                                                           Time reversal
Time reversal mirror   (Ultrasound experiment)
                            Hypothesis : linearity, reversibility of wave equation




     Spatial and temporal focusing              A. Derode, P. Roux et M. Fink, Phys. Rev. Lett., 75, 4206 (1995)

One-channel time reversal
                                                                                 importance of reflections




                                              Temporal focusing                          Spatial focusing
   14/12/2011                                                                                               6
                                                 C. Draeger and M. Fink, Phys. Rev. Lett., 79, 407 (1997)
Introduction
                                                                   Time reversal
                       If no access to temporal details

Monochromatic counterpart of TR: Phase conjugation




                                             Reverse time  conjugate the phase

                                  Spatial focusing




  14/12/2011                                                                      7
Introduction
                                                          New techniques of light control

                                     What about optics?
Spatial light modulators (SLM)                    Temporal control:
                                                  -   Pulse shaping
                                                  -   Modulators
                                                      Acousto-optic modulators (up to GHz)
                                                      Electro-optic modulators ( > 10 GHz)



                                                       Allow a high degree of control
                                                      on light propagation!
Deformable mirrors: up to 4000 elements –
kHz – expensive
Liquid cristals technology: ~1 million pixels –
~100Hz – cheap
  14/12/2011                                                                                 8
Outline




I. Transmission matrix in scattering media
II. Reflection matrix and optical “DORT”
III. Complex envelope time reversal




14/12/2011                                         9
Transmission matrix in scattering media
                                                       Introduction




                        In every day life…




             …clouds…     …white paint…



                                             …biological tissues !




14/12/2011                                                           10
Transmission matrix in scattering media
              Scattering: complex but coherent process



                       Simple case
                       Young slits:
                       Fringes : Two waves interference




                       Thick disordered media:
                       Speckle
                       - Multiple events of diffusion
                       - Position of diffuser unknown



14/12/2011                                              11
Transmission matrix in scattering media
                                                  Multiple scattering: too complex


                                        White paint
                    100μm               (particle size ≤ 1 μm)


                                           >108 particles
                                           Impossible to simulate
                              1mm²




             Only predictions accessible: Mesoscopic physics
             Statistical properties on transport, correlations, fluctuations
             No knowledge of the field for a given realization



14/12/2011                                                                      12
Transmission matrix in scattering media
                                 A pioneering experiment

             A speckle grain:
             • Interference of a great number of optical paths
              Sum of terms of random phases (phasors)
             • Contributions in phase  constructive
             interferences of multiple paths




14/12/2011                                                 13
Transmission matrix in scattering media
                             A pioneering experiment




14/12/2011                                        14
Transmission matrix in scattering media
                                                                                   Improve the resolution




                                                                                                    λf1/D1




                                                                                                   λf2/D2



        Acoustics:   A. Derode, P. Roux and M. Fink , Phys. Rev. Lett., 75, 4206 (1995)
        Optics:      I. M. Vellekoop, A. Lagendijk and A. P. Mosk, Nature Photonics 4, 320 - 322 (2010)


14/12/2011                                                                                                   15
Transmission matrix in scattering media
                                                          First experiment



Remarks:

- 1 optimization = 1 focal spot
 Need to optimize for each target
- Optimization: only indirect information on the medium


                     Can we go further?




14/12/2011                                                              16
Transmission matrix in scattering media
                                                    Basic principle




SLM : array of pixels   Linear system   CCD camera : array of pixels

                  =           =                 =




14/12/2011                                                      17
Transmission matrix in scattering media
                                                                          Linear media and matrices

             E in Input field                      1.. N
                                      E   out
                                          m
                                                                     in
                                                                hmn En     E out   H .E in
             E out Output field                             n


                                                                Input k




                                                 Output k
                                Free space
                                                                             Direct access to
                                                                             information

                                                        Identity Matrix

                                                                Input k
                                                   Output k



                         Scattering sample
                                                                             Information shuffled but
                                                                             not lost!
                                             Seemingly Random Matrix
14/12/2011                                                                                       18
Transmission matrix in scattering media
                                                                             Setup

Objective : Measuring the Transmission Matrix
Hypothesis : Coherence of the illumination, Stability of the Medium, Linearity


                                                   Sample

                                                       ZnO
                                                      L = 80 25
     Output                                μm         l* = 6 2 μm
   Detection
(Interferometry)
1 macropixel ↔
k vector
                                                                 Input Control
                                                             Spatial Light Modulator
                                                             (SLM) in Phase Only
                                                             Modulation
                                                             macropixel ↔ k vector

  14/12/2011                                                                     19
Transmission matrix in scattering media
                                                      Measurement of the Transmission Matrix

Step by step reconstruction

                                            1..N
                                  out                   in
                             E    m                hmn En
                                             n




       Pixel off       Pixel on



In practice, we use                                                                        φ=+π/2
Hadamard vectors                                                                           φ=-π/2
(Phase-only SLM,SNR)                    ,               ,       ,          etc…

  E. Herbert, M. Pernot, G. Montaldo, M. Fink and M. Tanter, IEEE UFFC, 56, 2388, (2009)
 14/12/2011                                                                                         20
Transmission matrix in scattering media
                             Construction of the Transmission Matrix




               Transmission matrix
             (filtered to remove effect of the reference)

14/12/2011                                                        21
Transmission matrix in scattering media
                                                     Applications: Focusing
  What can we do with the TM?
  Calculate the mask to display!




                                                                    CCD
                          SLM
                                            sample
                 Only one measurement of
                          the TM




                                                                    CCD
                          SLM




                                            sample




                                                                    CCD
                          SLM




Plane wave illumination

  14/12/2011                                sample                        22
Transmission matrix in scattering media
                                                              Applications: Focusing

Which mask to focus?
Phase conjugated mask
Put contributions in phase on one
                                                         ?
spot ↔ A. Mosk experiment


         E     in   t    *
                        H E   target             E out   H t H *.E target

 Strong values in the diagonal
      We can focus everywhere
                                         N=256
                                                                                t        *
                                                                            H H
 Non-diagonal elements not zero
          Imperfection inherent to PC


  14/12/2011                            N=256 modes (16x16 pixels on the CCD)       23
Transmission matrix in scattering media




Can we go beyond phase conjugation?
      Statistical properties of the TM
      Transfer of information (image)



14/12/2011                                              24
Transmission matrix in scattering media
                                     Statistical properties of the transmission matrix


Tool: Singular Value Decomposition
(generalization of diagonalization for                                  Output basis
any Matrix)                                    H      U V*              Input basis


                0    0     0    - i >0 represents the amplitude transmission
         1
                                through the ith channel.
         0      2    0     0
         0      0   ...   ...
                                -Σλi2 corresponds to the total transmittance for a
         0      0   ...    N    plane wave

             We study the distribution of (normalized) singular values ρ(λ)



  14/12/2011                                                                       25
Transmission matrix in scattering media
                                      Statistical properties of the transmission matrix

A general Random Matrix Theory prediction : quarter circle law distribution




       Transmission matrix
  (filtered to remove effect of the
              reference)                         In acoustics:
                                                 A. Aubry et al., Phys. Rev. Lett., 102, 84301, (2009)
Signature of randomness
  14/12/2011                                                                                    26
Transmission matrix in scattering media
                                                   Applications: Image transmission




                                                                          CCD
        SLM




                                        sample




                  ?                       TM

                                       We want OH
E img         O.E out   OH .E obj      close to Identity

Finding Eobj knowing Eout           Shaping
  14/12/2011                                                                     27
Transmission matrix in scattering media
                                                                Applications: Image transmission


What operator to reconstruct a complex image? (knowing the TM)



                               1                               Perfect reconstruction
  Inversion : O            H         OH     I
                                                               Not stable in presence of noise



  1   0        0     0             1/ 1     0     0       0
  0             0    0               0    1/ 2    0       0
       2
                                                                    low λi  high 1/λi
  0   0        ...   ...             0      0    ...     ...
                                                                    If noise, H-1 dominated by noise !
  0   0        ...    N              0      0    ...   1/ N




  14/12/2011                                                                                     28
Transmission matrix in scattering media
                                                       Applications: Image transmission

What operator to reconstruct a complex image ?

                                  t       *          Very stable
   Phase Conjugation : O              H              Reconstruction perturbated when the
                                      t
                             OH           H *H       image is complex
                             t
               H   λi  λi       H*
   t
       H *H
           N=100




  14/12/2011          N=100                                                          29
Transmission matrix in scattering media
                                                                Applications: Image transmission



                                                                t    *         1 t
A tradeoff : Tikhonov Regularization                    O           H .H   I         H*
     (A.N.Tikhonov, Soviet. Math. Dokl., 1963)




                                                 0   (Noiseless)                          (Noisy)
                                                            1                               t       *
                                                 O H                                  O         H


Optimal Operator for σ = Noise variance



  14/12/2011                                                                                            30
Transmission matrix in scattering media
                                                    Applications: Image transmission

Experimental Results :

                                            Output Speckle (Eout)




         Input Mask (Eobj)


                          Inversion   Phase Conjugation        Regularization
         Reconstruction




                          C = 11%         C = 76%                 C = 95%

14/12/2011                                                                        31
Transmission matrix in scattering media
                      Applications: Image transmission




14/12/2011                                          32
Transmission matrix in scattering media
                                                                        Conclusion and Perspective

       We did:
      - Focusing and information transfer through complex medium
      - Studied statistical properties of a scattering medium

       More:
      - Develop a faster setup (micromirror arrays, ferromagnetic SLMs) for
      biological purposes
      - Study more complex media (Anderson localization, photonic
      cristals…)
References :
- S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara and S. Gigan, Phys. Rev. Lett 104, 100601, (2010)
- S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara and S. Gigan, Nat. Commun., 1,1 ncomms1078 (2010)
Related papers :
- I.M. Vellekoop and A.P. Mosk, Opt. Lett. 32, 2309 (2007).
-Z. Yaqoob, D. Psaltis, M.S. and Feld and C. Yang, Nat. Phot., 2, 110 (2008).
And many many more !
     14/12/2011                                                                                         33
From transmission matrix to reflection matrix




SLM
                     Linear sample          CCD camera



             =              =               =



14/12/2011                                                 34
From transmission matrix to reflection matrix




SLM : array of pixels




                               Linear sample



CCD camera : array of pixels

 14/12/2011                                                          35
Reflection matrix and optical “DORT”




I. Transmission matrix in scattering media
II. Reflection matrix and optical “DORT”
III. Complex envelope time reversal




14/12/2011                                                   36
Reflection matrix and optical “DORT”
                                                                 Introduction


Applications of the RM for multiply scattering media?

Measure of the CBS cone as in acoustics
Optics:        M.P.V. Albada and A. Lagendijk, Phys. Rev. Lett., 55,2692 (1985)
Acoustics:     A; Tourin et al, Phys. Rev. Lett., 79, 3637, (1997)
               A. Aubry et al., Phys. Rev. Lett., 102, 84301, (2009)

Problem:
Measurement in optics: noise, specular reflections…

Application in freespace / aberrating medium (simple scattering):
The DORT method in optics (suggested by A. Aubry)



 14/12/2011                                                                37
Reflection matrix and optical “DORT”
                                                            Introduction




                             E0                             KE0
Iterative time reversal




                           K * E0
                                *
                                                            KK * E0
                                                                  *




                          K * KE0                           KK * KE0


14/12/2011                                                             38
Reflection matrix and optical “DORT”
                                                                               Introduction

    At step n:
             2n   t    *        n
        E             K K           E0                    0
                                                              1       0         0
                                                                                0
                                                                                            0
                                                                                            0
                                                                      2
                                                          0           0        ...         ...
    SVD of K:                                             0           0        ...          N


                                Output basis
     K        U V*              Input basis               1
                                                           2n
                                                                      0               0           0
                                                  2n      0           0               0           0
                                                          0           0              ...         ...
             2n            2n       *                     0           0              ...          0
      E           U             V E0                     2n               2n                           2n
                                                        1                2     ...                  N



14/12/2011                                                                                             39
Reflection matrix and optical “DORT”
                                                             Introduction

                 1 strong singular value ↔ 1 scatterer ?
  DORT:
  - Mesure of the RM
  - SVD of the RM
  - Display the first singular vectors




14/12/2011                                                             40
Reflection matrix and optical “DORT”
                                                               Introduction

                 Works with an aberrating medium
                        (single scattering only)




             Hypothesis: linearity, single scattering regime




14/12/2011                                                               41
Reflection matrix and optical “DORT”
                                            Setup

                                 Scatterers:
                                 100 nm isotropic gold
                                 particles on a glass
                                 slide




                                Cross Polarization
 Control


                Aberrating
                medium


14/12/2011                                      42
Reflection matrix and optical “DORT”
                                                                      Problems


The energy measured should only come from the scatterers

Problem:
- Important contributions of specular reflections !

Solutions:                                 
                                           Pin
- Cross polarization
                                          x      
- (Dark field)                                   k

                                    y
                                                              100 nm gold
                                          x                   beads
                                
                                k
                                        
                                        Pout
                                 y



14/12/2011                                                                  43
Reflection matrix and optical “DORT”
                                  Selective Focusing




  Reflection




     Control



14/12/2011                                       44
Reflection matrix and optical “DORT”
                                            Setup

                                 Scatterers:
                                 100 nm isotropic gold
                                 particles on a glass
                                 slide




                                Cross Polarization



                Aberrating
                medium


14/12/2011                                      45
Reflection matrix and optical “DORT”
                                                      Adaptive optics


  Aspect of the first input singular vector (phase mask)




         Free space ~ lens            With aberrating mediums


14/12/2011                                                         46
Reflection matrix and optical “DORT”
                         Modes of a single particles




                              Particle ~
                              3 orthogonal dipoles

                               Need for sufficient NA to
                               excite the dipoles with one
                               input polarization



                           y component of the
                           output field


14/12/2011                                         47
Reflection matrix and optical “DORT”
                                                   Modes of a single particle



                Theoretical singular value distribution
                          (vector diffraction theory)
 Number of SV




                     Py Dipole                Pz Dipole
                                                             Px Dipole




14/12/2011                                                                48
Reflection matrix and optical “DORT”
                          Modes of a single particle




14/12/2011                                       49
Reflection matrix and optical “DORT”
                                                 Modes of a single particle




                Experimental singular value distribution

                          ?          Pz dipole           Px dipole
 Number of SV




                     Py Dipole           Pz Dipole
                                                           Px Dipole




14/12/2011                                                              50
Reflection matrix and optical “DORT”
                                                                     Conclusions and Perspectives



        We did:
       - Selective focusing through aberrating medium
       - Radiation pattern analysis of a single nanobead


        More:
       - Reduce specular reflections (dark field)
       - Develop a setup more stable (laser)
         Pattern analysis for characterization, plasmonic, …

References :
- S.M. Popoff, A. Aubry ,G. Lerosey, M. Fink, A.C. Boccara and S. Gigan, Phys. Rev. Lett. (in press)



    14/12/2011                                                                                         51
Complex envelope time reversal




I. Transmission matrix in scattering media
II. Reflection matrix and optical “DORT”
III. Complex envelope time reversal




14/12/2011                                                  52
Complex envelope time reversal
                                                  Spatio-temporal focusing in complex media
                With spatial degrees of freedom                   With temporal degrees of freedom
                                                                          (pulse shaping)




J. Aulbach et al., Phys. Rev. Lett., 106,103901 (2011)




O. Katz et al., Nat. Photonics, 5, 372, (2011)            D. McCabe et al., Nat Commun., 2, 447, (2011)
   14/12/2011                                                                                    53
Complex envelope time reversal
                                              Modulation for telecommunications
    When only low frequencies accessible
     Modulation (Telecomunications)

                 Carrier wave                    Signal

                                   x
=                               Propagation
                                              Detector

    Independent modulation in phase and quadrature (IQ)

    Use high frequency waves with ‘low’ frequency generator / oscilloscope

    Lower bandwidth but very high spectral resolution

    Modulators and demodulators widely available for telecommunications ($$$)

    14/12/2011                                                               54
Complex envelope time reversal
                                                                                                Time reversal

                                                                                     hAB (t )     E (t ).e j   t




                                                                hAB ( t )      E ( t ).e    j t                     -t


 Spatial and temporal focusing                                   TR = reverse modulation
                                                                     + conjugate carrier wave
                    G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004)




     Time (μs)                                                           Time (μs)


Pulse in modulation at A (on one quadrature)                        Signal received at A after time reversal
 14/12/2011                                                                                                        55
Complex envelope time reversal
                                                                         Setup
Setup




Modulation Part:                        Demodulation Part:
- 10 GHz arbitrary waveform generator   - Interferometric detection of 2 quadratures
- Triple Mach-Zehnder modulator         - 50 GHz oscilloscope

14/12/2011                                                                    56
Complex envelope time reversal
                                                    Modulation / Demodulation




Modulation Part:
- 10 GHz arbitrary waveform generator
- Triple Mach-Zehnder modulator (Photline)
                                             Demodulation Part:
                                             - Interferometric detection of 2 quadratures
14/12/2011                                   - 20 GHz oscilloscope                 57
Complex envelope time reversal
                                        Bandwidth vs medium’s correlation frequency

Lifetime in system need to be >> 1/Δf modulation

Electromagnetism experiment:
Huge cavity needed ( > 13m3)  Huge number of modes (λ2.45GHz = 12cm )

                                                       Impulse response B



                                    B

A
                                                                       Time (μs)

                      G. Lerosey et al., Phys. Rev. Lett., 92, 193904 (2004)

Same problem in optics
Need for strong dispersion / strong enough signal

 14/12/2011                                                                        58
Complex envelope time reversal
                                                Temporal focusing

     Looped single
     mode cavity
                     input             output

                     Evanescent
                       coupling

                      Channel I                 Channel Q
   Impulse
   response



Numerical
time reversal
(correlations)
  14/12/2011                                                   59
Complex envelope time reversal
                                                                Temporal focusing




                               Channel I                        Channel Q
Numerical
time reversal
(correlations)


Experimental
time reversal


                   Demonstration of the compression of the impulse
                             response by time reversal
                 Application : fiber optics telecommunication

    14/12/2011                                                                 60
Complex envelope time reversal
                                               Towards spatio-temporal focusing

Problems : Weak signals / Need for very strong dispersion
        Multimode fiber cavity


                                                            Scattering medium



                                                            input          output


        Chaotic
        3D cavity

                                                      Still in progress!

 14/12/2011                                                                     61
Conclusion


I. Transmission matrix in scattering media
        -    Spatial focusing
        -    Image transmission
        -    Singular value analysis
II. Reflection matrix and optical “DORT”
        -    Selective focusing through an aberrating medium
        -    Scattering pattern analysis
III. Complex envelope time reversal
        -    Temporal focusing
        -    Towards spatial and temporal focusing...
14/12/2011                                                             62
Remerciements :

 Collaborateurs :        Préparation échantillons :
                         Laurent Boitard
 Sylvain Gigan
                         Gilles Tessier
 Geoffroy Lerosey
                         Benoit Malher
 Alexandre Aubry
                         Olivier Loison
 Remi Carminati
 Mathias Fink            Aide au montage :
 Claude Boccara          Aurélien Peilloux
 Théorie :               Sébastien Bidault
 Samuel Grésillon        Caractérisation des échantillons :
 Support divers :        Matthieu Leclerc
 Marie Lattelais



14/12/2011                                            63
Collaborateurs




Sylvain      Geoffroy   Alexandre     Rémi      Mathias         Claude
GIGAN        LEROSEY     AUBRY      CARMINATI    FINK          BOCCARA




14/12/2011                                                           64
Transmission matrix in scattering media
                          Statistical properties of the transmission matrix



                      Hobs    H.   ref




         Artefact :
  « raster » effect
       due to the
 amplitude of Sref
                                                     Effect of      ref


                       Observed Matrix


14/12/2011                                                                65
Transmission matrix in scattering media
                                                                             Setup

Objective : Measuring the Transmission Matrix
Hypothesis : Coherence of the illumination, Stability of the Medium, Linearity


                                                                 Input Control
                                                            Spatial Light Modulator
                                                            (SLM) in Phase Only
                                                            Modulation
   Output                                                   A macropixel ↔ A k
  Detection                                                 vector
CCD Camera
A macropixel
↔ A k vector
                                                                     Sample


                                                                                 ZnO
                                                                                   L=
  14/12/2011                                                80   25 μm            66
Matrice de Transmission Optique d’un Milieu Diffusant
                                            Applications : Transmission d’Image


                      Efficacité de la reconstruction en fonction
                      de σ




                                                        σ


   Filtrage inverse                                                 Filtrage adapté
14/12/2011                                                                            67
Matrice de Transmission et Milieu Diffusant
                             Propriétés Statistiques de la Matrice de Transmission

Une prédiction générale des matrices aléatoires : “Loi du quart de cercle”
                                       obs
                                 fil  hmn
                              hmn      obs
                                      hmn
                                                 m




               Matrice Observée                               Matrice Filtrée

         Filtrage de Hobs pour éliminer les effets de la référence

  14/12/2011                                                                    68
Transmission matrix in scattering media
                                                            Applications : Focusing




                                                           Theoretical focusing
                                                                    VS
                                                           Experimental focusing
       Target   Expected focusing from      Experimental
                   measured matrix            focusing




14/12/2011                                                                      69
Transmission matrix in scattering media
                                                Stability and Measurement Time




             TM Measurement Time        ~ 15 min
             (1024x1024 )
             Decorrelation Time of      ~ 1 hour
             ZnO deposit
             Decorrelation Time of
                                        << 1s
             Biological Tissues




14/12/2011                                                                  70
Reflection matrix and optical “DORT”
                                            Introduction



                            The reflection matrix
     En       n

                               E in Input field
                               E out Output field
                                       1..N
                              out                  in
                             Em               kmn En
k mn En       m                         n


                               E out        K .E in


 14/12/2011                                             71
Optical time reversal in modulation
                                                                                            Time reversal

 Time reversal in modulation                                Signal received at B




                                             B

     A                                                       TR = reverse modulation
                                                                 + conjugate carrier wave


Pulse in modulation at A (on one quadrature)




                                                             Signal received at A

                                                                Spatial and temporal focusing

                            G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004)
     14/12/2011                                                                                        72
Transmission matrix in scattering media
                                      The matrix model : A conveniant model



             Free space              Multiply scattering sample




             Detrimental to Conventional Optical Techniques
              Matrix Description to link input / output k vectors


14/12/2011                                                               73
Transmission matrix in scattering media
                                              Measuring the Complex Output Field


                                      2
             I out        Eout                                          No phase information !

                                          i          2
             I        Eout            e Eref                            Interferometric stability
                                                                        for several minutes !
             E ref uniform
                                                          3             1
                              0                                   i
             Eout         I           I             i I   2
                                                                  e I   2




                                                3             1
                                                                             E ref not uniform
                     I0   I               i I   2
                                                     ei I     2




                                  *
                                                                             OK as long as …..
                     Eout .Eref                                              …. is constant
                                                                             E ref

14/12/2011                                                                                  74
Transmission Matrix of an Optical Scattering Medium
                                                                               Theoretical Focus Spot




                                                                                                λf1/D1




                                                                                                λf2/D2



             I. M. Vellekoop, A. Lagendijk & A. P. Mosk, Nature Photonics 4, 320 - 322 (2010)




14/12/2011                                                                                               75
Transmission Matrix of an Optical Scattering Medium
                                              Theoretical Focus Spot




             D       λF/D        SLM             L       λl/L

                                                     l
                 F




14/12/2011                                                        76
Complex envelope time reversal
                                                                                           Time reversal

 Time reversal in modulation in                            Signal received at B
 a reverberant cavity



                                            B

                                                            TR = reverse modulation
     A                                                          + conjugate carrier wave


Pulse in modulation at A (on one quadrature)




                                                            Signal received at A

                                                               Spatial and temporal focusing

                             G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004)
     14/12/2011                                                                                       77
Transmission matrix in scattering media
                                                                      Linear media and matrices

             E in Input field                     1.. N
                                      E   out
                                          m
                                                               in
                                                          hmn En       E out   H .E in
             E out Output field                     n


                                                          Input k

                                Free space



                                                Output
                                                                         Direct access to


                                                  k
                                                                         information

                                                    Identity Matrix

                                                          Input k

                         Scattering sample
                                                Output




                                                                         Information shuffled but
                                                  k




                                                                         not lost !
                                             Seemingly Random Matrix

14/12/2011                                                                                   78

Mais conteúdo relacionado

Mais procurados

Cassandra audio-video sensor fusion for aggression detection
Cassandra  audio-video sensor fusion for aggression detectionCassandra  audio-video sensor fusion for aggression detection
Cassandra audio-video sensor fusion for aggression detectionJoão Gabriel Lima
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...Alexander Decker
 
Accelarating Optical Quadrature Microscopy Using GPUs
Accelarating Optical Quadrature Microscopy Using GPUsAccelarating Optical Quadrature Microscopy Using GPUs
Accelarating Optical Quadrature Microscopy Using GPUsPerhaad Mistry
 
Fcv bio cv_simoncelli
Fcv bio cv_simoncelliFcv bio cv_simoncelli
Fcv bio cv_simoncellizukun
 
Icam 2009 Soft Actuators H Bridges Nanopores
Icam 2009 Soft Actuators H Bridges NanoporesIcam 2009 Soft Actuators H Bridges Nanopores
Icam 2009 Soft Actuators H Bridges Nanoporesdickbroer
 
Digital Radiography
Digital RadiographyDigital Radiography
Digital RadiographyBipul Poudel
 
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...Alireza_Roodaki
 

Mais procurados (9)

Cassandra audio-video sensor fusion for aggression detection
Cassandra  audio-video sensor fusion for aggression detectionCassandra  audio-video sensor fusion for aggression detection
Cassandra audio-video sensor fusion for aggression detection
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
 
Accelarating Optical Quadrature Microscopy Using GPUs
Accelarating Optical Quadrature Microscopy Using GPUsAccelarating Optical Quadrature Microscopy Using GPUs
Accelarating Optical Quadrature Microscopy Using GPUs
 
Fcv bio cv_simoncelli
Fcv bio cv_simoncelliFcv bio cv_simoncelli
Fcv bio cv_simoncelli
 
Icam 2009 Soft Actuators H Bridges Nanopores
Icam 2009 Soft Actuators H Bridges NanoporesIcam 2009 Soft Actuators H Bridges Nanopores
Icam 2009 Soft Actuators H Bridges Nanopores
 
Digital Radiography
Digital RadiographyDigital Radiography
Digital Radiography
 
Digital Radiography
Digital RadiographyDigital Radiography
Digital Radiography
 
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...
Signal decompositions using trans-dimensional Bayesian methods: Alireza Rooda...
 
digital radiography
digital radiographydigital radiography
digital radiography
 

Semelhante a Spatio-temporal control of light in complex media

A Fresh Look at Seismic Thin-bed Mapping
A Fresh Look at Seismic Thin-bed MappingA Fresh Look at Seismic Thin-bed Mapping
A Fresh Look at Seismic Thin-bed MappingVictor Aarre
 
Phase contrast microscope
Phase contrast microscopePhase contrast microscope
Phase contrast microscopeRavi Kumar
 
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變cclarbl
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystalsvinzilla
 
Superdiffusion of waves in random media
Superdiffusion of waves in random mediaSuperdiffusion of waves in random media
Superdiffusion of waves in random mediavynck
 
Fcv learn sudderth
Fcv learn sudderthFcv learn sudderth
Fcv learn sudderthzukun
 
Light Field: New opportunities and applications
Light Field: New opportunities and applicationsLight Field: New opportunities and applications
Light Field: New opportunities and applicationsSe Baek Oh
 
Lasers in ophthalmology
Lasers in ophthalmologyLasers in ophthalmology
Lasers in ophthalmologyAjay Gulati
 
Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterAbstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterSonia Sanchez
 
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...Carlos Bella
 
photoacoustics electroptical cell dr1
photoacoustics electroptical cell dr1photoacoustics electroptical cell dr1
photoacoustics electroptical cell dr1Vicente Torres
 

Semelhante a Spatio-temporal control of light in complex media (20)

A1 04 Telescopes
A1 04 TelescopesA1 04 Telescopes
A1 04 Telescopes
 
A Fresh Look at Seismic Thin-bed Mapping
A Fresh Look at Seismic Thin-bed MappingA Fresh Look at Seismic Thin-bed Mapping
A Fresh Look at Seismic Thin-bed Mapping
 
Sjogren - Sensing Surveillance & Navigation - Spring Review 2012
Sjogren - Sensing Surveillance & Navigation - Spring Review 2012Sjogren - Sensing Surveillance & Navigation - Spring Review 2012
Sjogren - Sensing Surveillance & Navigation - Spring Review 2012
 
Phase contrast microscope
Phase contrast microscopePhase contrast microscope
Phase contrast microscope
 
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變
淺談光電同調控制的觀點在材料開發與應用上可能帶來的改變
 
Optics 1
Optics 1Optics 1
Optics 1
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystals
 
Superdiffusion of waves in random media
Superdiffusion of waves in random mediaSuperdiffusion of waves in random media
Superdiffusion of waves in random media
 
Fcv learn sudderth
Fcv learn sudderthFcv learn sudderth
Fcv learn sudderth
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Light Field: New opportunities and applications
Light Field: New opportunities and applicationsLight Field: New opportunities and applications
Light Field: New opportunities and applications
 
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
 
Radiographic interpretation
Radiographic interpretationRadiographic interpretation
Radiographic interpretation
 
spect .pptx
spect .pptxspect .pptx
spect .pptx
 
Unwrapping Multi-Echo Phase Images with Irregular Echo Spacings
Unwrapping Multi-Echo Phase Images with Irregular Echo SpacingsUnwrapping Multi-Echo Phase Images with Irregular Echo Spacings
Unwrapping Multi-Echo Phase Images with Irregular Echo Spacings
 
Lasers in ophthalmology
Lasers in ophthalmologyLasers in ophthalmology
Lasers in ophthalmology
 
Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterAbstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
 
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
 
photoacoustics electroptical cell dr1
photoacoustics electroptical cell dr1photoacoustics electroptical cell dr1
photoacoustics electroptical cell dr1
 
Mammalian Near IR vision
Mammalian Near IR visionMammalian Near IR vision
Mammalian Near IR vision
 

Último

Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Último (20)

Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 

Spatio-temporal control of light in complex media

  • 1. Spatio-temporal control of light in complex media Sébastien POPOFF Directors : M. Fink et C. Boccara Supervisors : S. Gigan et G. Lerosey 1 14/12/2011
  • 2. Introduction Imaging in optics What are optical systems useful for? Look further Look smaller 14/12/2011 2
  • 3. Introduction Aberrations Imaging in optics Atmospheric aberrations 14/12/2011 3
  • 4. Introduction Adaptive optics Real-time correction of aberrations with adaptive optics Courtesy: F. Lacombe/observatoire de Paris Wavefront correction (ex: deformable mirror) Imaging device (CCD) Wavefront Sensor (ex: Hartmann-Schack) Real-time control loop 14/12/2011 4
  • 5. Introduction Strong perturbations AO convenient for wavefront perturbation : Large spatial scale / small amplitude Relevant for astronomy, free space optics, some biological applications… What about stronger pertubations? Multiple scattering, multiple reflections… Techniques in Acoustics / Electromagnetism Time reversal Can we apply them in optics? 14/12/2011 5
  • 6. Introduction Time reversal Time reversal mirror (Ultrasound experiment) Hypothesis : linearity, reversibility of wave equation Spatial and temporal focusing A. Derode, P. Roux et M. Fink, Phys. Rev. Lett., 75, 4206 (1995) One-channel time reversal importance of reflections Temporal focusing Spatial focusing 14/12/2011 6 C. Draeger and M. Fink, Phys. Rev. Lett., 79, 407 (1997)
  • 7. Introduction Time reversal If no access to temporal details Monochromatic counterpart of TR: Phase conjugation Reverse time  conjugate the phase Spatial focusing 14/12/2011 7
  • 8. Introduction New techniques of light control What about optics? Spatial light modulators (SLM) Temporal control: - Pulse shaping - Modulators Acousto-optic modulators (up to GHz) Electro-optic modulators ( > 10 GHz)  Allow a high degree of control on light propagation! Deformable mirrors: up to 4000 elements – kHz – expensive Liquid cristals technology: ~1 million pixels – ~100Hz – cheap 14/12/2011 8
  • 9. Outline I. Transmission matrix in scattering media II. Reflection matrix and optical “DORT” III. Complex envelope time reversal 14/12/2011 9
  • 10. Transmission matrix in scattering media Introduction In every day life… …clouds… …white paint… …biological tissues ! 14/12/2011 10
  • 11. Transmission matrix in scattering media Scattering: complex but coherent process Simple case Young slits: Fringes : Two waves interference Thick disordered media: Speckle - Multiple events of diffusion - Position of diffuser unknown 14/12/2011 11
  • 12. Transmission matrix in scattering media Multiple scattering: too complex White paint 100μm (particle size ≤ 1 μm) >108 particles Impossible to simulate 1mm² Only predictions accessible: Mesoscopic physics Statistical properties on transport, correlations, fluctuations No knowledge of the field for a given realization 14/12/2011 12
  • 13. Transmission matrix in scattering media A pioneering experiment A speckle grain: • Interference of a great number of optical paths  Sum of terms of random phases (phasors) • Contributions in phase  constructive interferences of multiple paths 14/12/2011 13
  • 14. Transmission matrix in scattering media A pioneering experiment 14/12/2011 14
  • 15. Transmission matrix in scattering media Improve the resolution λf1/D1 λf2/D2 Acoustics: A. Derode, P. Roux and M. Fink , Phys. Rev. Lett., 75, 4206 (1995) Optics: I. M. Vellekoop, A. Lagendijk and A. P. Mosk, Nature Photonics 4, 320 - 322 (2010) 14/12/2011 15
  • 16. Transmission matrix in scattering media First experiment Remarks: - 1 optimization = 1 focal spot  Need to optimize for each target - Optimization: only indirect information on the medium Can we go further? 14/12/2011 16
  • 17. Transmission matrix in scattering media Basic principle SLM : array of pixels Linear system CCD camera : array of pixels = = = 14/12/2011 17
  • 18. Transmission matrix in scattering media Linear media and matrices E in Input field 1.. N E out m in hmn En E out H .E in E out Output field n Input k Output k Free space Direct access to information Identity Matrix Input k Output k Scattering sample Information shuffled but not lost! Seemingly Random Matrix 14/12/2011 18
  • 19. Transmission matrix in scattering media Setup Objective : Measuring the Transmission Matrix Hypothesis : Coherence of the illumination, Stability of the Medium, Linearity Sample ZnO L = 80 25 Output μm l* = 6 2 μm Detection (Interferometry) 1 macropixel ↔ k vector Input Control Spatial Light Modulator (SLM) in Phase Only Modulation macropixel ↔ k vector 14/12/2011 19
  • 20. Transmission matrix in scattering media Measurement of the Transmission Matrix Step by step reconstruction 1..N out in E m hmn En n Pixel off Pixel on In practice, we use φ=+π/2 Hadamard vectors φ=-π/2 (Phase-only SLM,SNR) , , , etc… E. Herbert, M. Pernot, G. Montaldo, M. Fink and M. Tanter, IEEE UFFC, 56, 2388, (2009) 14/12/2011 20
  • 21. Transmission matrix in scattering media Construction of the Transmission Matrix Transmission matrix (filtered to remove effect of the reference) 14/12/2011 21
  • 22. Transmission matrix in scattering media Applications: Focusing What can we do with the TM? Calculate the mask to display! CCD SLM sample Only one measurement of the TM CCD SLM sample CCD SLM Plane wave illumination 14/12/2011 sample 22
  • 23. Transmission matrix in scattering media Applications: Focusing Which mask to focus? Phase conjugated mask Put contributions in phase on one ? spot ↔ A. Mosk experiment E in t * H E target E out H t H *.E target Strong values in the diagonal We can focus everywhere N=256 t * H H Non-diagonal elements not zero Imperfection inherent to PC 14/12/2011 N=256 modes (16x16 pixels on the CCD) 23
  • 24. Transmission matrix in scattering media Can we go beyond phase conjugation?  Statistical properties of the TM  Transfer of information (image) 14/12/2011 24
  • 25. Transmission matrix in scattering media Statistical properties of the transmission matrix Tool: Singular Value Decomposition (generalization of diagonalization for Output basis any Matrix) H U V* Input basis 0 0 0 - i >0 represents the amplitude transmission 1 through the ith channel. 0 2 0 0 0 0 ... ... -Σλi2 corresponds to the total transmittance for a 0 0 ... N plane wave We study the distribution of (normalized) singular values ρ(λ) 14/12/2011 25
  • 26. Transmission matrix in scattering media Statistical properties of the transmission matrix A general Random Matrix Theory prediction : quarter circle law distribution Transmission matrix (filtered to remove effect of the reference) In acoustics: A. Aubry et al., Phys. Rev. Lett., 102, 84301, (2009) Signature of randomness 14/12/2011 26
  • 27. Transmission matrix in scattering media Applications: Image transmission CCD SLM sample ? TM We want OH E img O.E out OH .E obj close to Identity Finding Eobj knowing Eout Shaping 14/12/2011 27
  • 28. Transmission matrix in scattering media Applications: Image transmission What operator to reconstruct a complex image? (knowing the TM) 1 Perfect reconstruction Inversion : O H OH I Not stable in presence of noise 1 0 0 0 1/ 1 0 0 0 0 0 0 0 1/ 2 0 0 2 low λi  high 1/λi 0 0 ... ... 0 0 ... ... If noise, H-1 dominated by noise ! 0 0 ... N 0 0 ... 1/ N 14/12/2011 28
  • 29. Transmission matrix in scattering media Applications: Image transmission What operator to reconstruct a complex image ? t * Very stable Phase Conjugation : O H Reconstruction perturbated when the t OH H *H image is complex t H λi  λi H* t H *H N=100 14/12/2011 N=100 29
  • 30. Transmission matrix in scattering media Applications: Image transmission t * 1 t A tradeoff : Tikhonov Regularization O H .H I H* (A.N.Tikhonov, Soviet. Math. Dokl., 1963) 0 (Noiseless) (Noisy) 1 t * O H O H Optimal Operator for σ = Noise variance 14/12/2011 30
  • 31. Transmission matrix in scattering media Applications: Image transmission Experimental Results : Output Speckle (Eout) Input Mask (Eobj) Inversion Phase Conjugation Regularization Reconstruction C = 11% C = 76% C = 95% 14/12/2011 31
  • 32. Transmission matrix in scattering media Applications: Image transmission 14/12/2011 32
  • 33. Transmission matrix in scattering media Conclusion and Perspective We did: - Focusing and information transfer through complex medium - Studied statistical properties of a scattering medium More: - Develop a faster setup (micromirror arrays, ferromagnetic SLMs) for biological purposes - Study more complex media (Anderson localization, photonic cristals…) References : - S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara and S. Gigan, Phys. Rev. Lett 104, 100601, (2010) - S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara and S. Gigan, Nat. Commun., 1,1 ncomms1078 (2010) Related papers : - I.M. Vellekoop and A.P. Mosk, Opt. Lett. 32, 2309 (2007). -Z. Yaqoob, D. Psaltis, M.S. and Feld and C. Yang, Nat. Phot., 2, 110 (2008). And many many more ! 14/12/2011 33
  • 34. From transmission matrix to reflection matrix SLM Linear sample CCD camera = = = 14/12/2011 34
  • 35. From transmission matrix to reflection matrix SLM : array of pixels Linear sample CCD camera : array of pixels 14/12/2011 35
  • 36. Reflection matrix and optical “DORT” I. Transmission matrix in scattering media II. Reflection matrix and optical “DORT” III. Complex envelope time reversal 14/12/2011 36
  • 37. Reflection matrix and optical “DORT” Introduction Applications of the RM for multiply scattering media? Measure of the CBS cone as in acoustics Optics: M.P.V. Albada and A. Lagendijk, Phys. Rev. Lett., 55,2692 (1985) Acoustics: A; Tourin et al, Phys. Rev. Lett., 79, 3637, (1997) A. Aubry et al., Phys. Rev. Lett., 102, 84301, (2009) Problem: Measurement in optics: noise, specular reflections… Application in freespace / aberrating medium (simple scattering): The DORT method in optics (suggested by A. Aubry) 14/12/2011 37
  • 38. Reflection matrix and optical “DORT” Introduction E0 KE0 Iterative time reversal K * E0 * KK * E0 * K * KE0 KK * KE0 14/12/2011 38
  • 39. Reflection matrix and optical “DORT” Introduction At step n: 2n t * n E K K E0 0 1 0 0 0 0 0 2 0 0 ... ... SVD of K: 0 0 ... N Output basis K U V* Input basis 1 2n 0 0 0 2n 0 0 0 0 0 0 ... ... 2n 2n * 0 0 ... 0 E U V E0 2n 2n 2n 1  2  ...  N 14/12/2011 39
  • 40. Reflection matrix and optical “DORT” Introduction 1 strong singular value ↔ 1 scatterer ? DORT: - Mesure of the RM - SVD of the RM - Display the first singular vectors 14/12/2011 40
  • 41. Reflection matrix and optical “DORT” Introduction Works with an aberrating medium (single scattering only) Hypothesis: linearity, single scattering regime 14/12/2011 41
  • 42. Reflection matrix and optical “DORT” Setup Scatterers: 100 nm isotropic gold particles on a glass slide Cross Polarization Control Aberrating medium 14/12/2011 42
  • 43. Reflection matrix and optical “DORT” Problems The energy measured should only come from the scatterers Problem: - Important contributions of specular reflections ! Solutions:  Pin - Cross polarization x  - (Dark field) k y 100 nm gold x beads  k  Pout y 14/12/2011 43
  • 44. Reflection matrix and optical “DORT” Selective Focusing Reflection Control 14/12/2011 44
  • 45. Reflection matrix and optical “DORT” Setup Scatterers: 100 nm isotropic gold particles on a glass slide Cross Polarization Aberrating medium 14/12/2011 45
  • 46. Reflection matrix and optical “DORT” Adaptive optics Aspect of the first input singular vector (phase mask) Free space ~ lens With aberrating mediums 14/12/2011 46
  • 47. Reflection matrix and optical “DORT” Modes of a single particles Particle ~ 3 orthogonal dipoles Need for sufficient NA to excite the dipoles with one input polarization y component of the output field 14/12/2011 47
  • 48. Reflection matrix and optical “DORT” Modes of a single particle Theoretical singular value distribution (vector diffraction theory) Number of SV Py Dipole Pz Dipole Px Dipole 14/12/2011 48
  • 49. Reflection matrix and optical “DORT” Modes of a single particle 14/12/2011 49
  • 50. Reflection matrix and optical “DORT” Modes of a single particle Experimental singular value distribution ? Pz dipole Px dipole Number of SV Py Dipole Pz Dipole Px Dipole 14/12/2011 50
  • 51. Reflection matrix and optical “DORT” Conclusions and Perspectives We did: - Selective focusing through aberrating medium - Radiation pattern analysis of a single nanobead More: - Reduce specular reflections (dark field) - Develop a setup more stable (laser)  Pattern analysis for characterization, plasmonic, … References : - S.M. Popoff, A. Aubry ,G. Lerosey, M. Fink, A.C. Boccara and S. Gigan, Phys. Rev. Lett. (in press) 14/12/2011 51
  • 52. Complex envelope time reversal I. Transmission matrix in scattering media II. Reflection matrix and optical “DORT” III. Complex envelope time reversal 14/12/2011 52
  • 53. Complex envelope time reversal Spatio-temporal focusing in complex media With spatial degrees of freedom With temporal degrees of freedom (pulse shaping) J. Aulbach et al., Phys. Rev. Lett., 106,103901 (2011) O. Katz et al., Nat. Photonics, 5, 372, (2011) D. McCabe et al., Nat Commun., 2, 447, (2011) 14/12/2011 53
  • 54. Complex envelope time reversal Modulation for telecommunications When only low frequencies accessible  Modulation (Telecomunications) Carrier wave Signal x = Propagation Detector Independent modulation in phase and quadrature (IQ) Use high frequency waves with ‘low’ frequency generator / oscilloscope Lower bandwidth but very high spectral resolution Modulators and demodulators widely available for telecommunications ($$$) 14/12/2011 54
  • 55. Complex envelope time reversal Time reversal hAB (t ) E (t ).e j t hAB ( t ) E ( t ).e j t -t Spatial and temporal focusing TR = reverse modulation + conjugate carrier wave G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004) Time (μs) Time (μs) Pulse in modulation at A (on one quadrature) Signal received at A after time reversal 14/12/2011 55
  • 56. Complex envelope time reversal Setup Setup Modulation Part: Demodulation Part: - 10 GHz arbitrary waveform generator - Interferometric detection of 2 quadratures - Triple Mach-Zehnder modulator - 50 GHz oscilloscope 14/12/2011 56
  • 57. Complex envelope time reversal Modulation / Demodulation Modulation Part: - 10 GHz arbitrary waveform generator - Triple Mach-Zehnder modulator (Photline) Demodulation Part: - Interferometric detection of 2 quadratures 14/12/2011 - 20 GHz oscilloscope 57
  • 58. Complex envelope time reversal Bandwidth vs medium’s correlation frequency Lifetime in system need to be >> 1/Δf modulation Electromagnetism experiment: Huge cavity needed ( > 13m3)  Huge number of modes (λ2.45GHz = 12cm ) Impulse response B B A Time (μs) G. Lerosey et al., Phys. Rev. Lett., 92, 193904 (2004) Same problem in optics Need for strong dispersion / strong enough signal 14/12/2011 58
  • 59. Complex envelope time reversal Temporal focusing Looped single mode cavity input output Evanescent coupling Channel I Channel Q Impulse response Numerical time reversal (correlations) 14/12/2011 59
  • 60. Complex envelope time reversal Temporal focusing Channel I Channel Q Numerical time reversal (correlations) Experimental time reversal Demonstration of the compression of the impulse response by time reversal Application : fiber optics telecommunication 14/12/2011 60
  • 61. Complex envelope time reversal Towards spatio-temporal focusing Problems : Weak signals / Need for very strong dispersion Multimode fiber cavity Scattering medium input output Chaotic 3D cavity Still in progress! 14/12/2011 61
  • 62. Conclusion I. Transmission matrix in scattering media - Spatial focusing - Image transmission - Singular value analysis II. Reflection matrix and optical “DORT” - Selective focusing through an aberrating medium - Scattering pattern analysis III. Complex envelope time reversal - Temporal focusing - Towards spatial and temporal focusing... 14/12/2011 62
  • 63. Remerciements : Collaborateurs : Préparation échantillons : Laurent Boitard Sylvain Gigan Gilles Tessier Geoffroy Lerosey Benoit Malher Alexandre Aubry Olivier Loison Remi Carminati Mathias Fink Aide au montage : Claude Boccara Aurélien Peilloux Théorie : Sébastien Bidault Samuel Grésillon Caractérisation des échantillons : Support divers : Matthieu Leclerc Marie Lattelais 14/12/2011 63
  • 64. Collaborateurs Sylvain Geoffroy Alexandre Rémi Mathias Claude GIGAN LEROSEY AUBRY CARMINATI FINK BOCCARA 14/12/2011 64
  • 65. Transmission matrix in scattering media Statistical properties of the transmission matrix Hobs H. ref Artefact : « raster » effect due to the amplitude of Sref Effect of ref Observed Matrix 14/12/2011 65
  • 66. Transmission matrix in scattering media Setup Objective : Measuring the Transmission Matrix Hypothesis : Coherence of the illumination, Stability of the Medium, Linearity Input Control Spatial Light Modulator (SLM) in Phase Only Modulation Output A macropixel ↔ A k Detection vector CCD Camera A macropixel ↔ A k vector Sample ZnO L= 14/12/2011 80 25 μm 66
  • 67. Matrice de Transmission Optique d’un Milieu Diffusant Applications : Transmission d’Image Efficacité de la reconstruction en fonction de σ σ Filtrage inverse Filtrage adapté 14/12/2011 67
  • 68. Matrice de Transmission et Milieu Diffusant Propriétés Statistiques de la Matrice de Transmission Une prédiction générale des matrices aléatoires : “Loi du quart de cercle” obs fil hmn hmn obs hmn m Matrice Observée Matrice Filtrée Filtrage de Hobs pour éliminer les effets de la référence 14/12/2011 68
  • 69. Transmission matrix in scattering media Applications : Focusing Theoretical focusing VS Experimental focusing Target Expected focusing from Experimental measured matrix focusing 14/12/2011 69
  • 70. Transmission matrix in scattering media Stability and Measurement Time TM Measurement Time ~ 15 min (1024x1024 ) Decorrelation Time of ~ 1 hour ZnO deposit Decorrelation Time of << 1s Biological Tissues 14/12/2011 70
  • 71. Reflection matrix and optical “DORT” Introduction The reflection matrix En n E in Input field E out Output field 1..N out in Em kmn En k mn En m n E out K .E in 14/12/2011 71
  • 72. Optical time reversal in modulation Time reversal Time reversal in modulation Signal received at B B A TR = reverse modulation + conjugate carrier wave Pulse in modulation at A (on one quadrature) Signal received at A Spatial and temporal focusing G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004) 14/12/2011 72
  • 73. Transmission matrix in scattering media The matrix model : A conveniant model Free space Multiply scattering sample Detrimental to Conventional Optical Techniques Matrix Description to link input / output k vectors 14/12/2011 73
  • 74. Transmission matrix in scattering media Measuring the Complex Output Field 2 I out Eout No phase information ! i 2 I Eout e Eref Interferometric stability for several minutes ! E ref uniform 3 1 0 i Eout I I i I 2 e I 2 3 1 E ref not uniform I0 I i I 2 ei I 2 * OK as long as ….. Eout .Eref …. is constant E ref 14/12/2011 74
  • 75. Transmission Matrix of an Optical Scattering Medium Theoretical Focus Spot λf1/D1 λf2/D2 I. M. Vellekoop, A. Lagendijk & A. P. Mosk, Nature Photonics 4, 320 - 322 (2010) 14/12/2011 75
  • 76. Transmission Matrix of an Optical Scattering Medium Theoretical Focus Spot D λF/D SLM L λl/L l F 14/12/2011 76
  • 77. Complex envelope time reversal Time reversal Time reversal in modulation in Signal received at B a reverberant cavity B TR = reverse modulation A + conjugate carrier wave Pulse in modulation at A (on one quadrature) Signal received at A Spatial and temporal focusing G. Lerosey et al., Phys. Rel. Lett., 92, 193904 (2004) 14/12/2011 77
  • 78. Transmission matrix in scattering media Linear media and matrices E in Input field 1.. N E out m in hmn En E out H .E in E out Output field n Input k Free space Output Direct access to k information Identity Matrix Input k Scattering sample Output Information shuffled but k not lost ! Seemingly Random Matrix 14/12/2011 78