SlideShare uma empresa Scribd logo
1 de 40
A
PROJECT REPORT
ON
SWITCHGEAR AND PROTECTION
BACHELOR OF TECHNOLOGY
(Electrical Engineering)
Submitted by:
MD SAFDAR ALI
Department of EE, JMI, NEW DELHI
FACULTY OF ENGINEERING & TECHNOLOLGY
JAMIA MILLIA ISLAMIA, NEW DELHI
CANDIDATE’S DECLARATION
I “MD SAFDAR ALI”12EES-23, a student of B.Tech (EE) hereby declared that I
own the full responsibility for the information, result etc. provided in this project
report titled “SWITCHGEAR AND PROTECTIN”. I have taken care of all respect
to honor the intellectual property right and have acknowledged the contributions of
other for using them in this academic purpose. I further declared that in case of any
violation of intellectual property right or copyright I as the candidate would be fully
responsible for the same. My supervisor and institute should not be held for full or
partial violation of copyright if found at any stage of my degree.
Name of the student: MD SAFDAR ALI
Branch: ELECTRICAL Under the Guidance of
Mr. V. K PANDEY
(SR. Deputy General Manager)
Mr. DIGVIJAY NATH TRIPATHI
(Assistant Manager)
L & T Engineering
PREFACE
Electricity and Electric Circuits forms the neural system of any industry analogous to
the nervous system of human. Electrical engineering is the foremost important part of
any manufacturing unit. Thus, to utilize the available Electrical energy efficiently &
judiciously various generations, control & distribution mechanisms are used. This
project provides a general overview of the system approach of design for safe and
efficient operation for entire life of electrical system.
Some of the few aspects of the fundamental system of Electric Engineering are
earthing and lightning protection, load list analysis, cable sizing, lighting.
ACKNOWLEDGEMENT
I would like to extend my heartfelt gratitude towards Larsen & Toubro Limited for
providing me with an excellent opportunity to undergo my internship from this
prestigious engineering company of our country.
On the personal front I must thank Mr. V. K PANDEY (Sr. Deputy General
Manager) for providing me the very first introduction on the practical side of the
subject, thereby opening an interesting training opportunity besides extending me
valuable guidance from time to time.
It is difficult to overstate my gratitude towards my training in-charge and mentor,
Mr. DIGVIJAY NATH TRIPATHI (Assistant Manager Electrical). It was only
with his active support, inspiration and efforts to explain concepts clearly, that this
training program is becoming very interesting and fruitful for me. Throughout my
training period he is a co36nstant source of encouragement, guidance, and
knowledge. Despite his busy work schedule with the ongoing projects, he took out
time to help me collect plenty of study material from the in-house resources as well
as made himself available to clear all the doubts and problems which arose during the
course of the training. It would have been nearly impossible to arrange the right input
to prepare this report without his generous help. And finally, I would like thank all
my fellow trainees for their help throughout my training period at L&T. I would like
to thank Miss. NIDHI MITTAL (HR) for providing me this opportunity to complete
my training.
OVERVIEW
L&T is India’s largest engineering and construction conglomerate (net worth
approx.14.5 billion US$ and workforce of 50000 employees) with additional interests
in electrical, electronics and IT. Today it is one of India’s biggest and best known
industrial organizations with a reputation for technological excellence, high quality of
products and services, and strong customer orientation. Seven decades of a strong,
customer-focused approach and the continuous quest for world-class quality have
enabled it to attain and sustain leadership in all its major lines of business.
L&T enjoys a premier brand image in India and its international presence is on the
rise, with a global spread of over 30 offices and joint ventures with world leaders. It
continues to grow its overseas manufacturing footprint, with facilities in China and
the Gulf region. The company's businesses are supported by a wide marketing and
distribution network, and have established a reputation for strong customer support.
PROJECT FLOW
To supplement the power generation needs of the state, the Government of Punjab
(GoP)had planned to develop 1200 ( +/- 10%) MW thermal power plant at village
Nalash near Rajpura, District Patiala, Punjab on Build, Own and Operate (BOO)
basis for 25 years. Accordingly, Nabha Power Limited ( NPL) , a wholly owned
company of Punjab State Electricity Board was established as Special Purpose
Vehicle (SPV) to develop the proposed Project. ARfQ / RfP was floated by PSEB in
line with Case 2 Competitive Bidding Guidelines of Govt. of India & L&T Power
Development Limited was identified as lowest bidder. The unit configuration was
adopted as 2 x 700 MW as per provisions in PPA .Rajpura is located at a distance of
about 7 km. from Rajpura Railway station and about 28 Km from Chandigarh
Airport. The Site is located 5 km form NH-1 & 7 km from NH-64.
NPL has placed order on L&T for design, engineering, manufacture, assembly,
testing at manufacturer’s works, packaging and shipping, transport, delivery to site,
receipt, unloading, handling and storage at site, Civil, Structural & Architectural
Works, Erection, testing and commissioning and putting into operation of 2 X 700
MW Power Plant on EPC basis.
SINGLE LINE DIAGRAM OF THERMAL POWER PLANT:
DETAILS OF EQUIPMENTS IN RAJPURA THERMAL POWER
PALNT:
Generator ratings
 703.8 MW
 20 KV
 3 PH
 50 HZ
 0.85PF
Transformer ratings
 60/35/25 MVA
 20/110.5/11.5 KV
 ONAN/ONAF/OFFAF
 Dyn1yn1
 Z= 12/12/24%
 ON LOAD TAP CHANGER 10% IN STEPS OF 1.25% IN HV SIDE
Switchgear ratings
 HT Switchgear
 11 KV
 2000 A
 3 W
 3 PH
 40 KA FOR 1 SEC.
MV Switchgear
 6.6/3.3 kv
 3000 A
 3 W
 3 PH
 50 KA FOR 1 SEC.
LT Switchgear
 415 V
 4000 A
 3 W
 3PH
SWITCHGEAR AND PROTECTION
ELECTRICALSWITCHGEAR
A switchgear or electrical switchgear is a generic term which includes all the
switching devices associated with mainly power system protection. It also includes
all devices associated with control, metering and regulating of electrical power
system. Assembly of such devices in a logical manner forms a switchgear. This is
very basic definition of switchgear.
SWITCHGEAR AND PROTECTION
Switchgear protection plays a vital role in modern power system network, right from
generation through transmission to distribution end. The current interruption device
or switching device is called circuit breaker in Switchgear protection system.
4. Type of faults
 Asymmetrical
1. Single line to ground fault
2. Line to line fault
3. Double line to ground fault
 Symmetrical
1. LLL Fault
2. LLLG Fault
Fig: Asymmetrical faults
Fig: Symmetrical faults
SYMMETRICAL FAULT:
Symmetrical faults are those type of faults in which all the three phases gets involved
simultaneously. For example: triple line fault (L-L-L), triple line to ground fault (L-
L-L-G).
These are very severe faults and occurinfrequently in the power systems. These are
also called as balanced faults and are of two types namely line to line to line to
ground (L-L-L-G) and line to line to line (L-L-L)
Only 2-5 percent of system faults are symmetrical faults. If these faults occur, system
remains balanced but results in severe damage to the electrical power system
equipments.
Above figure shows two types of three phase symmetrical faults. Analysis of these
fault is easy and usually carried by per phase basis. Three phase fault analysis or
information is required for selecting set-phase relays, rupturing capacity of the circuit
breakers and rating of the protective switchgear.
ASYMMETRICAL FAULT:
In this type of faults, the fault occurmainly in one or two phases and are categorizes
as unbalanced fault. For example: single line to ground (L-G), double line to ground
(L-L-G).
Line to ground fault (L-G) is most common fault and 65-70 percent of faults are of
this type.
It causes the conductorto make contactwith earth or ground. 15 to 20 percent of
faults are double line to ground and causes the two conductors to make contactwith
ground. Line to line faults occurwhen two conductors make contactwith each other
mainly while swinging of lines due to winds and 5- 10 percent of the faults are of this
type.
These are also called unbalanced faults since their occurrencecauses unbalance in the
system. Unbalance of the system means that that impedance values are different in
each phase causing unbalance current to flow in the phases. These are more difficult
to analyze and are carried by per phase basis similar to three phase balanced faults.
ARC IN CIRCUIT BREAKER
During opening of current carrying contacts in a circuit breaker the medium in
between opening contacts becomehighly ionized through which the interrupting
current gets low resistive path and continues to flow through this path even the
contacts are physically separated. During the flowing of current from one contactto
other the path becomes so heated that it glows. This is called arc.
ELECTRICAL CIRCUIT BREAKER
Electrical Circuit Breaker is a switching device which can be operated manually as
well as automatically for controlling and protection of electrical power system
respectively. As the modern power system deals with huge currents, the spacial
attention should be given during designing of circuit breaker to safe interruption of
arc produced during the operation of circuit breaker. This was the basic definition of
circuit breaker.
TYPES OF CIRCUIT BREAKER
1) Oil Circuit Breaker
2) Air Circuit Breaker
3) SF6 Circuit Breaker
4) Vacuum Circuit Breaker
SWITCHGEAR EQUIPMENT FUNCTION
1. Fuse:
To Protectcircuit against over current and short circuit currents.
2.Circuit breaker
To make or break the circuit manually or remotely under normal condition and
automatically under fault condition.
3.Isolator
To disconnect the part of the system for maintenance from live circuit under no
current condition.
4.Earthing Switch
To discharge the voltage on the line ( due to charges of line capacitance to earth) after
disconnecting line from live section.
5. Light using arrester
To divert high voltage surge towards the earth, due to lighting stroke or switching
surges.
6. Current transformer
To stepping down the magnitude of current for measurement, protection and control.
7. Potential transformer
To stepping down the magnitude of line voltage for measurement, protection and
control.
8. Relay
To disconnect the abnormally operating part so as to prevent the subsequent faults eg.
Overload protection of a machine protects the machine and prevent insulation failure.
SWITCHGEAR DEVICES:
FUSE:
Fuse Link & Fuse Base,
High break range of low voltage fuse links have been designed to meet the
requirements set for modern industrial installations & electrical power plants. Their
breaking capacity is sufficient even for the highest short circuit levels, which are
normally reached in practice.
The breaking capacity of the fuse links is 80KA at 415AC. The fuse links are
suitable for use in both AC/ DC applications for over current and short circuit
protection and have very low let through energy resulting in reduced
electromagnetic stress and reliable short circuit clearance.
They have excellent non deterioration performance and low power loss values well
within the limits of the specification.
Features:
• Excellent AC and DC performance
• Low watt loss
• Interchangeable with compatible brands
• ISI Marked
Range : • 2A-630A in Bolted design (BS type)
• 6A-630A in Blade Contact design (DIN type)
• 4A-63A in Round Head design (RH type)
Specification : Conforms to IEC:60269-1 & 2-1 /
IS:13703-1 & 2-1192
* Current Ratings : 2A, 4A, 6A, 10A, 16A, 20A 25A,
32A, 40A, 50A, 63A, 80A, 100A, 125A, 160A,
200A, 250A, 315A, 350A, 400A, 425, 500, 630.
Current and Time curve
The time for blowing out of fuse depends the magnitude of the excessive current.
Larger the current the more the fuse will blow i.e., the fuse has inverse time
characteristics as shown in fig.
Advantages:
1. It is the cheapest form of protection available.
2. It needs no maintenance.
3. Its operation is inherently completely automatic unlike circuit breaker.
4. The minimum time of operation can be made much smaller than that with the
circuit breakers.
5. It has inverse time-current characteristic.
Disadvantages:
1. Considerable time is lost in rewiring or replacing a fuse after operation.
2. On heavy short circuit discrimination between fuses in series cannot be obtained
unless there is considerable differences in the relative sizes of fuses concerned.
3. The current-time characteristics of a fuse cannot always be correlated with of the
protected device.
Miniature Circuit Breaker
Electrical Distribution needs
are continuouslyevolvingin
residential, commercial and
industrial sectors. Improved
operational safety, continuity of
service, greater convenience
and operating cost have
assumed a tremendous
significance.MiniatureCircuit
Breakers have been designed
to continuously adapt to these
changing needs.
TECHNICAL INFORMATION
Standard Conformity IS / IEC 60898 - 1
Type/Series B C D
Rated Current (In) A 6-40 0.5 - 63* 0.5 - 63*
Rated Voltage (Ue) V~ 240/415 240/415 240/415
Rated Frequency (f) Hz 50
No. of Poles (Execution) 1 P, 1P+N, 2P, 3P, 3P+N, 4P
Rated Short Circuit Breaking
Capacity
kA 10 10 0.5 - 32A - 10 kA
40 A - 63A - 4.5kA
Magnetic Release Setting (3-5)In (5-10)In (10-20) In
Rated Insulation Voltage (Ui) V 660
Rated Impulse Voltage (Uimp) kV 4
Electrical / Mechanical
Endurance (no. of operations)
<32A
>32A
Ambient Working Temperature (o
C)
20000
10000
-5 °C to 55°C
Terminal Capacity (max) sq.mm 25
Vibration g 3
Shock 40 mm free fall
Protection Class IP-20
Installation Position Vertical / Horizontal
Range
A to 40A - ‘B’ Curve6
A to 63A - ‘C’ Curve0.5
0.5A to 63A - ‘D’ Curve
A to 63A for DC Application0.5
Execution
Single Pole (1P)
Single Pole & Neutral (1P+N)
Double Pole (2P)
Three Pole (3P)
Three Pole & Neutral (3P+N)
Four Pole (4P)
Specification
IS / IEC 60898 - 1
Accessories
Auxiliary Switch
Shunt Trip
TRIPPING
CHARACTERISTICS
Based on the Tripping
Characteristics, MCBs are
available in ‘B’, ‘C’ and ‘D’ curve
to suit different types of
applications.
‘B’ Curve: for protection of electrical circuits with equipment that does
not cause surge current (lighting and distribution circuits). Short circuit
release is set to (3-5) In
‘C’ Curve: for protection of electrical
circuits with equipment that causes surge
current (inductive loads and motor
circuits).
Short circuit release is set to (5 - 10) In
‘D’ Curve: for protection of electrical
circuits which causes high inrush current,
typically 12-15 times the thermal rated
current (transformers, X-ray machines
etc.) Short circuit release is set to
(10 - 20) In.
Multiples of Rated Current (x In)
T
im
e
(s
ec
.)
10000.00
1000.00
100.00
10.00
1.00
0.10
0.01
1 2 3 5 10 20 30 100
1.13 1.45
B Curve
C Curve
D Curve
Moulded Case Circuit Breaker
FEATURES RANGE AND SPECIFICATION.
Features
1. Wide range: 16A to 1600A (AC).
2. Compactdimensions.
3. Adjustable thermal setting(70-100%).
4. Adjustable magnetic setting.
5. Suitable for use as switch disconnector.
6. Push to trip button provision.
7. Suitable for DC application up to 1600A.
8. Separate main and arcing contacts.
9. Wide range of accessories.
Range:
16A to 1600A in five frame sizes in single pole three pole and four pole with
switched neutral execution.
Specification:
Conforms to IEC ; 60947-1&2/ IS 13947-1&2.
Applications:
1. Distribution feeders.
2. Transformers.
3. DG sets.
4. APFC system.
5. DC loads.
6. UPS.
7. Motors.
8. Furnaces.
ACB
Before discussing about ACB schemes, let us first understand what an Air
Circuit Breaker (ACB) is? As its name suggests, it is a device used to break or
disconnect the circuit with air as an arc quenching medium in normal operating
as well as fault conditions such as short circuit. It is designed to break the circuit
under severe fault conditions where the current increases to a very high value
capable of damaging the whole system.
Generally, fault sensing devices like relays which are an integral part of the
ACB scheme sense the fault conditions and give a trip command to the ACB.
The ACB then trips & isolates the faulty circuit from the healthy part. After the
fault has been cleared or repaired the user can again switch on the ACB.
Although these operations & protections can also be performed by other devices
like MCCB’s or contactor coupled with relays. But the problem occurs when
the current rises to such a high value that the arc’s produced at high current
levels become so acute that it calls for equipment having higher breaking &
withstanding capacity. These are incorporated in the ACB in such a way that it
can handle as well as break such high amount of current. Thus the main
difference between an ACB and other devices is the capability to quench heavy
arcs. ACB has the following major parts:
1A Closing coil, which is responsible for closing the power contacts once the
closing impulse is given to it.
2A Tripping coil, which is responsible for opening the power contacts when
the tripping command is given or under faulty conditions.
3A Spring charging motor which charges a spring responsible for opening &
closing the contacts.
ACB SCHEMES
Like any other scheme, the ACB scheme can also be broadly divided into power
circuit and control circuit. The control circuit consists of interlocks to take care
of the tripping and closing operations of the ACB.
An ACB scheme can be divided into the following parts:
1. Power circuit or Main circuit
2. Spring charging motor circuit
3. Closing coil circuit
4. Anti pumping circuit
5. Tripping circuit
6. Trip circuit supervision circuit
Spring Charging Motor Circuit
In an ACB, the closing operation is done using a high tension spring,
which can either be manually charged or automatically charged with the help of
a motor. The energy stored in this spring, forces the power contacts to close. In
motor charged ACB, the motor used to charge the spring needs to be
disconnected after the spring is completely charged. To achieve this operation
limit switches are provided. In case of an AC control supply one limit switch is
provided whereas in case of DC control supply two limit switches are provided,
one in +ve& one in –ve. This is because it is observed that in case of midpoint
earthed DC system leakage current flows to earth from –ve and weakens the
insulation. In order to avoid this the disconnection of +ve as well as –ve supply
to stop the motor is a must. In an ACB scheme if electrical indication is required
for spring charging, additional aux contactor is required. In case of DC control
supply, aux contactor is connected between terminal F & H. In case of AC
control supply aux contactor is connected between F & D. Circuit shown above
is for DC spring charge motor. When spring is in discharged condition, limit
switches on both the sides of motor will be in closed condition. So motor gets
the supply & in turn starts charging the spring. Also aux contactor connected
between F & H will pick up. NC contact of this contactor is used to give spring
charged indication. Since contactor is in picked up condition, NC contact will
open out & SPRING CHARGED I/L will not glow. When the spring gets fully
charged, Limit switches opens out cutting the supply to the MOTOR. Along
with this the contactoralso drops off.
CLOSING COIL CIRCUIT
The closing coil circuit as shown in the figure consists of an electromagnetic
coil and a series of NO & NC contacts responsible for various functions. The
first NO gets closed only if the trip ckt. is healthy. The next NC contact of the
lockout relay is put in series with the closing coil to ensure that the there is no
fault. The NC contactof the auxiliary contactoris kept in series with the closing
coil, which blocks closing command to closing coil till spring is charged. The
NC contactof the anti-pumping relay ensures that ANTIPUMPING relay is not
operated.
WHAT IS ANTI PUMPING?
Supposeif there is a continuous closing command to the closing coil circuit.
Breaker closes. Now supposea tripping command is given to the breaker the
breaker will trip. But due to presence of a continuous close command, breaker
will close again. It will again trip due to the presence of trip command & again
close because of continuous close command. This continuous ON & OFF of a
breaker is known as pumping. This operation can damage the ACB as well as
the system life. In order to prevent this operation, circuit used is called as anti-
pumping. Anti pumping circuit is as shown below. Now, when a closing
command is given to the closing coil of the circuit, the breaker gets supply
through a NC contact of the anti-pumping contactor. The closing coil is
energized and the Breaker closes. Now an NO contact of the ACB is connected
in series with the coil of Anti-pumping contactorcloses. Thus when the breaker
closes the contactorcoil gets energized and it picks up. As a result the NO
contact of the contactorconnected across the
ACB NO contactalso closes which provides an hold on to the contactor. Thus
even if the breaker is tripped the contactorcontinues to be energized because
continuous closing command is available. Hence the NC contactof the ANTI
PUMPING contactorprovided in series with the closing remains open & does
not allow the continuous closing command to again close the breaker. Thus
preventing any anti-pumping action.
TRIPPING CIRCUIT
The tripping circuit of an outgoing ACB is as shown below. It consists of a
tripping coil which trips the breaker whenever it is energized. It consists of a
TNC switch for manual tripping. When this switch is kept in the tripping
position, supply goes to trip coil & trip coil eneregises & trips the breaker. NO
contact of the lockout relay is also provided which trips the breaker when relay
senses the fault. The remote signals are also connected in series which can also
trip the breaker. An under voltage trip contact is provided in series through a
service position switch which energises the trip coil whenever an under voltage
is sensed by the main relay. The contactprovided just beside the coil is an NO
contact of the circuit breaker which prevents the excitation of the tripping coil
when the breaker is open.
WHY IS A SERVICE POSITION SWITCH PROVIDED IN
SERIES WITH THE TRIP COIL?
Supposean engineer is testing or servicing the breaker with the auxiliary
supply present. The breaker is kept in the test position. So the controlsignals are
all present. The HT breaker at this time is also OFF. The main relay will thus
sense it as an under voltage as there is no power supply available & give the trip
command to the breaker. It will thus lead to an accident. Similarly, if a remote
trip command is given from the controlcenter by someone who is unaware of
the servicing will also lead to an accident. In order to prevent such an accident a
service position switch is provided so that the engineer can disconnect the
remote commands by keeping it on the test position while working on the
breaker.
TRIP CIRCUIT SUPERVISION CIRCUIT
Since the safety of a plant is largely dependent on the speed of isolation of the
faulty section, it is very important to continuously monitor the trip circuit of the
breaker feeders. A simple circuit using a trip circuit supervision relay is as
shown in the tripping circuit. The relay provided in the circuit checks and
verifies the continuity of the coils & all the connected loops. It opens whenever
the trip circuit is faulty. NO of this relay is provided in series with the closing
coil of the breaker, which prevents the closing of the breaker whenever the trip
circuit is unhealthy.
STARTING METHODS IN INDUCTION MOTORS
1. Direct On Line
2. Star/Delta method
3. Auto Transformer
4. Soft starter
5. VFD starter
DIRECT ON LINE (DOL) MOTOR STARTER
Different starting methods are employed for starting induction motors because
Induction Motor draws more starting current during starting. To prevent damage
to the windings due to the high starting current flow, we employ different types
of starters.
The simplest form of motor starter for the induction motor is the Direct On Line
starter. The Direct On Line Motor Starter (DOL) consista MCCB or Circuit
Breaker, Contactor and an overload relay for protection. Electromagnetic
contactorwhich can be opened by the thermal overload relay under fault
conditions.
Typically, the contactor will be controlled by separate start and stop buttons,
and an auxiliary contact on the contactor is used, across the start button, as a
hold in contact. I.e. the contactoris electrically latched closed while the motor is
operating.
PRINCIPLE OF DIRECT ON LINE STARTER (DOL)
To start, the contactor is closed, applying full line voltageto the motor
windings. The motor will draw a very high inrush currentfor a very shorttime,
the magnetic field in the iron, and then the currentwill be limited to the
Locked Rotor Currentof the motor. The motor will develop Locked Rotor
Torqueand begin to accelerate towards full speed.
As the motor accelerates, the currentwill begin to drop, but will not drop
significantly until the motor is at a high speed, typically about 85% of
synchronous speed. Theactual starting currentcurveis a function of the motor
design, and the terminal voltage, and is totally independent of the motor load.
The motor load will affect the time taken for the motor to accelerate to full
speed and therefore the duration of the high starting current, but not the
magnitude of the starting current.
Provided the torque developed by the motor exceeds the load torqueat all
speeds during the startcycle, the motor will reach full speed. If the torque
delivered by the motor is less than the torque of the load at any speed during
the start cycle, the motor will stops accelerating. If the starting torque with a
DOL starter is insufficientfor the load, the motor mustbe replaced with a
motor which can develop a higher starting torque.
The acceleration torqueis the torquedeveloped by the motor minus the load
torque, and will change as the motor accelerates due to the motor speed
torque curveand the load speed torque curve. The start time is dependent on
the acceleration torqueand the load inertia.
DOL starting have a maximum startcurrentand maximum starttorque.
This may causean electrical problem with the supply, or it may cause a
mechanical problem with the driven load. So this will be inconvenient for the
users of the supply line, always experience a voltage drop when starting a
motor. But if this motor is not a high power one it does not affect much.
FIG: DOL STARTER
STAR DELTA STARTER
This is a starting method that reduces the starting current and starting torque.
Star delta starter design normally consists of three contactors, an overload relay
and a timer for setting the time in the star-position (starting position).
For the star delta starter, a motor must be in delta connected during a normal run
and the main purposeis to be able to use star delta starter.Star delta starter
received the starting current is about 30 % of the starting current during direct
on line start and the starting torque is reduced to about 25 % of the torque
available at a D.O.L start.
Star delta starter only works when the application is light loaded during the
start. If the motor is too heavily loaded, there will not be enough torque to
accelerate the motor up to speed before switching over to the delta position.
DESCRIPTION OF STAR DELTA STARTER OPERATION:
For star delta starter, the basic function is to enable the motor to start and the
motor windings are configured in a star formation to the supply voltage.
The voltage applied for star delta starter to the individual motor winding is
therefore reduced by a factor of 1/√3 = 0.58 this connection amounts to
approximately 30% of the delta values. The starting current is reduced to one
third of the direct starting current.
Due to the reduced starting torque, the star-delta-connection is suitable for
drives with a high inertia mass but a resistance torque which is low or only
increases with increased speed. It is preferably used for applications where the
drive is only put under a load after run-up.
After motor run-up, in most cases an automatic timing relay controls the switch-
over from star to delta. The run-up using star connection should last until the
motor has reached the approximate operational speed so that after switching to
delta, as little postacceleration as possible is required. Post-acceleration in delta
connection will instigate high currents as seen with direct on-line starting. The
duration of start in star connection depends on the motor load. During delta
connection, the full mains voltage is applied to the motor windings. To enable a
switch-over from star to delta, the six ends of the motor winding are connected
onto terminals. The contactors of a star-delta starter switch over the windings
accordingly.
HOW STAR DELTA STARTER WORKS?
Starting in star, the main contactorconnects the mains to winding endings U1,
V1, W1.The star contactorshorts winding endings U2, V2, W2.
After successfulrun-up, the star contactorswitches itself off and the delta
contactorconnects terminals U1/V2, V1/W2, W1/U2.
When changing from star to delta, we should pay attention to ensure it running
in the correctphase sequence. Incorrect phase sequence can lead to very high
current peaks during the cold switch-over pause, due to the easy torque
reduction following re-start.
High peaks current can damage the motor windings and stress the control gear
unnecessarily. The rotation of the motor has to be considered as well. If wrong
rotation, we should change the rotation by switch the phase. I discuss detail
about How to change star delta starter motor rotation in my separate post.
For star delta starter circuit diagram, wiring technique and motor base
termination, Please read my postfor star delta motor connection. Also for
simple star delta control circuit wiring and types of star delta starter, please refer
to my postfor Electro mechanical star delta.
Fig:STAR DELTA STARTER
AUTOTRANSFORMER-STARTING
An autotransformer starter enables the start of squirrel-cage motors using a
reduced starting current, since the voltage is reduced during start. Contrary to a
star-delta connection, only three wires to the motor and 3 motor connections are
required. This connection is particularly widely used in English-speaking
countries.
During start-up, the motor is connected to the autotransformer’s tappings. This
means that the motor starts up with a reduced voltage and a correspondingly
low current. The autotransformer reduces the current in the mains supply line
further and in accordance with its ratio. Like the star delta connection, the
autotransformer starter has a favourable torque-current take-up ratio.
In order to adapt the motor start characteristics to the torque requirement,
autotransformers are usually equipped with three selectable tappings (e.g. 80%,
65%, 50%). When the motor has almost reached its rated torque, the star
connection on the transformer is opened. The transformer’s partial windings act
as chokes in series to the motor windings, and therefore, like the uninterrupted
star delta connection, the motor speed does not drop during switch over. After
the main contactor has been switched in, the motor windings are applied to the
full mains voltage. Finally, the transformer is disconnected from the mains.
Depending on tapping and the motor’s starting current ratio, the starting current
amounts to 1 - 5 x Ie. The available torque is reduced in ratio to the starting
current.
FIG: AUTO TRANSFORMERSTARTER
CONCEPT OF DRAWOUT FEEDER:
The starter circuitry is generally accommodated in draw out type of feeder in a
MCC panel. This type of feeder can be racked in or racked put with the help of
racking handle, racking screw & sliding telescopic rails. Power supply to the
feeder is given through the STABIN contact mounted on the dropper & power
supply to customer is given through the D/O O/G power contact. Control supply
from external side as well as interlock/feedeback from/to outside is given
through SICs (Secondary Isolating Contacts). There are three types of SICs (i.e.
SERVICE, TEST & SERVICE + TEST). SERVICE SICs can be mounted in
front as well as rear column. However TEST & SERVICE + TEST SICs are
mounted only in front column.
Fully draw-out module has 3 distint functional positions additonal 2 positions
for maintenance purpose.
1. SERVICE: The module has stab-in type of contacts and power contacts on its
rear side (behind the base plate). The stab-in contacts get connected to the
droppers and the power contacts get connected to the outgoing power terminals
in this position. In this position SERVICE SICs & SERVICE +TEST SICs
remain engaged. However TEST SICs remain disengaged.
2. TEST: After opening the door module is racked out to bring it to TEST
position. In this position, STAB-IN as well as O/G contact gets disengaged.
Hence no power supply is available to module. In this position SERVICE SICs
gets disengaged. However TEST &
SERVICE +TEST SICs remain engaged. In this position, Control circuit can be
tested selectively.
3. ISOLATED: In this position, both power and control SICs get disengaged.
4. MAINTENANCE: In this position, one can get access to all components.
5. HINGED OUT: In this position, one can get access to components on rear
and incoming contacts without removing the module.
CRITICAL THINGS TO BE TAKEN CARE WHILEMAKING A STARTER SCHEME:
Following things need special attention while making a scheme drawing for any
starter feeder:
1. CONTROL CABLING: The control cables for commands coming from
customer side (remote, DCS, PLC, etc.) are generally multi-core cables.
Therefore whenever control terminals are numbered for external commands,
attempt should be made to keep the numbers of these terminals serially. This
makes the cable termination at site easier.
2. DRAW-OUT / FIXED FEEDERS: The starter feeders can be offered in
draw-out as well as fixed type. While making scheme, the type of feeder should
be kept in mind. The type of draw-out and fixed feeder affects the type of
control terminals and power terminals. The representation of the two types of
terminals is different in a scheme diagram.
3. CONTROL SUPPLY: Control supply coming to the control circuit of the
feeder should be shown appropriately. It may be coming from inside the feeder
or from the switchboard or any external supply. The auxiliary bus, from which
the supply is tapped, should be named correctly in accordance with the general
arrangement drawing.
4. CONTROL CIRCUIT PROTECTION: The fuses or MCBs given for the
control circuit protection should be appropriately selected. The rating of the
fuses/MCBs is to be selected according to the equipments connected in the
circuit.
According to the application, the type of SIC is to be selected.
5. SIC ARRANGEMENT: The SICs have specific position in a draw-out
module. Therefore the arrangement of the SICs should be checked in a scheme.
The number of SICs that can be accommodated also should be checked with
respect to the feeder size. Also it should be kept in mind that Test SICs and
Service + Test SICs can only come in the front column of the module.
6. STAR-DELTA SCHEME LOGIC: If any interlocks are there in a star-delta
starter feeder, the scheme should be re-checked for logic. The operation of the
feeder in star and delta modes should be analysed.
ADVANTAGES OF SOFT STARTERS:
• Increased acceleration time can be beneficial for motor and machine.
• The starting current is reduced or can be limited.
• The torque is adapted to the correspondingload.
• Forpumps, surges during start and stop can be avoided.
• Jerky movements and shocks, which could hamper a process,are avoided.
• The wear and tear of belts, chains, gears and bearings is avoided.
• By means of the different controls, simplified automation is possible.
POSSIBLE APPLICATIONS:
• Travelling cranes, conveyor belts, drives
• Mixers, mills, crushers
• Pumps, compressors, ventilators
• Drives with gears, chains, belts, clutches
Pumps: By means of a special pump control it is possible to eliminate pressure
impact, which occurs during pump start and stop.
Compressors:Forcompressors, the speed can decrease during switch-over from
star to delta. A softstarter ensures a continuous start. A reduction in speed does
not occur.
Single-phase motors: If a single-phase motor is to be powered using a soft
starter, a single-phase full-wave controlled softstarter is required.
In general: The soft starter represents an economical substitute for star-delta
systems and offers superior performance. For applications with where a high
starting torque is required, a softstarter should be the preferred choice.
THANK YOU

Mais conteúdo relacionado

Mais procurados

POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION
moiz89
 

Mais procurados (20)

Differential protection
Differential protectionDifferential protection
Differential protection
 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
 
Differential Protection Relay
DifferentialProtection RelayDifferentialProtection Relay
Differential Protection Relay
 
Relays
RelaysRelays
Relays
 
Automatic transfer switch (ats)
Automatic transfer switch (ats)Automatic transfer switch (ats)
Automatic transfer switch (ats)
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION
 
Relay
RelayRelay
Relay
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relays
 
Induction Motor Protection System
Induction Motor Protection SystemInduction Motor Protection System
Induction Motor Protection System
 
Types of relay
Types of relayTypes of relay
Types of relay
 
Active_Power_Filter
Active_Power_FilterActive_Power_Filter
Active_Power_Filter
 
transformer protection
transformer protection transformer protection
transformer protection
 
Current Transformer
Current TransformerCurrent Transformer
Current Transformer
 
92 electrical interview questions and answers
92 electrical interview questions and answers92 electrical interview questions and answers
92 electrical interview questions and answers
 
Switchgear and protection 4
Switchgear and protection 4Switchgear and protection 4
Switchgear and protection 4
 
Switchgear presentation
Switchgear presentationSwitchgear presentation
Switchgear presentation
 
Motor Protection
Motor ProtectionMotor Protection
Motor Protection
 
400kv-Substation-Training-report-Unnao-India.ppt
400kv-Substation-Training-report-Unnao-India.ppt400kv-Substation-Training-report-Unnao-India.ppt
400kv-Substation-Training-report-Unnao-India.ppt
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear
 
Instrument Transformer Presentation
Instrument Transformer PresentationInstrument Transformer Presentation
Instrument Transformer Presentation
 

Destaque

Switchgear and protection 1
Switchgear and protection 1Switchgear and protection 1
Switchgear and protection 1
Md Irshad Ahmad
 
Switchgear and Protection of HV Systems
Switchgear and Protection of HV SystemsSwitchgear and Protection of HV Systems
Switchgear and Protection of HV Systems
Nicola Cochrane
 
Single phasing of three phase induction motor
Single phasing of three phase induction motorSingle phasing of three phase induction motor
Single phasing of three phase induction motor
JUNAID SK
 

Destaque (20)

Switchgear and protection 1
Switchgear and protection 1Switchgear and protection 1
Switchgear and protection 1
 
Switchgear and protection 2
Switchgear and protection 2Switchgear and protection 2
Switchgear and protection 2
 
Control of machines
Control of machinesControl of machines
Control of machines
 
three phase induction machine starter
three phase induction machine starterthree phase induction machine starter
three phase induction machine starter
 
induction motor protection system seminar report
induction motor protection system seminar reportinduction motor protection system seminar report
induction motor protection system seminar report
 
3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor ppt
 
Starter of an induction motor
Starter of an induction motor Starter of an induction motor
Starter of an induction motor
 
Electrical motors (1)
Electrical motors (1)Electrical motors (1)
Electrical motors (1)
 
1.MCB -Meba
1.MCB -Meba1.MCB -Meba
1.MCB -Meba
 
Switchgear and Protection of HV Systems
Switchgear and Protection of HV SystemsSwitchgear and Protection of HV Systems
Switchgear and Protection of HV Systems
 
Protection and Switchgear-EE2402 notes Unit-2
Protection and Switchgear-EE2402 notes Unit-2Protection and Switchgear-EE2402 notes Unit-2
Protection and Switchgear-EE2402 notes Unit-2
 
Presentation on starter
Presentation on starterPresentation on starter
Presentation on starter
 
File 1389424591
File 1389424591File 1389424591
File 1389424591
 
Thermal Power Plant
Thermal Power PlantThermal Power Plant
Thermal Power Plant
 
Three Phase Ac Winding Calculation
Three Phase Ac Winding CalculationThree Phase Ac Winding Calculation
Three Phase Ac Winding Calculation
 
Relays
  Relays  Relays
Relays
 
Solar tree seminar ppt
Solar tree seminar ppt Solar tree seminar ppt
Solar tree seminar ppt
 
Single phasing of three phase induction motor
Single phasing of three phase induction motorSingle phasing of three phase induction motor
Single phasing of three phase induction motor
 
Starters of induction motor and protection equipment
Starters of induction motor and protection equipmentStarters of induction motor and protection equipment
Starters of induction motor and protection equipment
 
HUSAMELDIN MOHAMED 13-05-2016
HUSAMELDIN MOHAMED 13-05-2016HUSAMELDIN MOHAMED 13-05-2016
HUSAMELDIN MOHAMED 13-05-2016
 

Semelhante a SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR

MOHAMMED OVAIZ_Resume -Industry
MOHAMMED OVAIZ_Resume -IndustryMOHAMMED OVAIZ_Resume -Industry
MOHAMMED OVAIZ_Resume -Industry
Mohammed Ovaiz
 
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENTREPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
Himanshu Paghdal
 
Doc a.7-tlc report
Doc a.7-tlc reportDoc a.7-tlc report
Doc a.7-tlc report
9951081577
 
Engineering Practice Report
Engineering Practice ReportEngineering Practice Report
Engineering Practice Report
Paul Soko
 

Semelhante a SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR (20)

220 kv Sub- Station By Akshit Jain Majhola Moradabad .docx
220 kv Sub- Station By Akshit Jain Majhola Moradabad .docx220 kv Sub- Station By Akshit Jain Majhola Moradabad .docx
220 kv Sub- Station By Akshit Jain Majhola Moradabad .docx
 
MOHAMMED OVAIZ_Resume -Industry
MOHAMMED OVAIZ_Resume -IndustryMOHAMMED OVAIZ_Resume -Industry
MOHAMMED OVAIZ_Resume -Industry
 
IRJET - Overview of Smart Tower Technology for Transmission Lines
IRJET - 	  Overview of Smart Tower Technology for Transmission LinesIRJET - 	  Overview of Smart Tower Technology for Transmission Lines
IRJET - Overview of Smart Tower Technology for Transmission Lines
 
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENTREPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
REPORT- RADIAL FEEDER PROTECTION PANEL DEVELOPMENT
 
Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018
 
Doc a.7-tlc report
Doc a.7-tlc reportDoc a.7-tlc report
Doc a.7-tlc report
 
IRJET- Automatic EB DG Switiching Operation using PLC and HMI
IRJET-  	  Automatic EB DG Switiching Operation using PLC and HMIIRJET-  	  Automatic EB DG Switiching Operation using PLC and HMI
IRJET- Automatic EB DG Switiching Operation using PLC and HMI
 
arivu.pptx
arivu.pptxarivu.pptx
arivu.pptx
 
IRJET- Microcontroller based Automatic Power Change Over Mechanism
IRJET- Microcontroller based Automatic Power Change Over MechanismIRJET- Microcontroller based Automatic Power Change Over Mechanism
IRJET- Microcontroller based Automatic Power Change Over Mechanism
 
jey new resume
jey new resumejey new resume
jey new resume
 
Internship Presentation.pptx
Internship Presentation.pptxInternship Presentation.pptx
Internship Presentation.pptx
 
Electrical and Electronics Engineering (EEE Internship presentation
Electrical and Electronics Engineering (EEE Internship presentationElectrical and Electronics Engineering (EEE Internship presentation
Electrical and Electronics Engineering (EEE Internship presentation
 
Topology review and derivation methodology of single phase transformerless ph...
Topology review and derivation methodology of single phase transformerless ph...Topology review and derivation methodology of single phase transformerless ph...
Topology review and derivation methodology of single phase transformerless ph...
 
A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...
A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...
A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...
 
SHORT CIRCUIT ANALYSIS OF ELECTRICAL DISTRIBUTION SYSTEM FOR INDUSTRY APPLICA...
SHORT CIRCUIT ANALYSIS OF ELECTRICAL DISTRIBUTION SYSTEM FOR INDUSTRY APPLICA...SHORT CIRCUIT ANALYSIS OF ELECTRICAL DISTRIBUTION SYSTEM FOR INDUSTRY APPLICA...
SHORT CIRCUIT ANALYSIS OF ELECTRICAL DISTRIBUTION SYSTEM FOR INDUSTRY APPLICA...
 
IRJET- Electric Car Charging Station: A Review
IRJET- Electric Car Charging Station: A ReviewIRJET- Electric Car Charging Station: A Review
IRJET- Electric Car Charging Station: A Review
 
Engineering Practice Report
Engineering Practice ReportEngineering Practice Report
Engineering Practice Report
 
NAVEEN inter.pdf
NAVEEN inter.pdfNAVEEN inter.pdf
NAVEEN inter.pdf
 
Automatic Phase Changer
Automatic Phase ChangerAutomatic Phase Changer
Automatic Phase Changer
 
IRJET- Multi-Level Inverter for Solar On-Grid System Design
IRJET- Multi-Level Inverter for Solar On-Grid System DesignIRJET- Multi-Level Inverter for Solar On-Grid System Design
IRJET- Multi-Level Inverter for Solar On-Grid System Design
 

Último

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 

Último (20)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 

SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR

  • 1. A PROJECT REPORT ON SWITCHGEAR AND PROTECTION BACHELOR OF TECHNOLOGY (Electrical Engineering) Submitted by: MD SAFDAR ALI Department of EE, JMI, NEW DELHI FACULTY OF ENGINEERING & TECHNOLOLGY JAMIA MILLIA ISLAMIA, NEW DELHI
  • 2. CANDIDATE’S DECLARATION I “MD SAFDAR ALI”12EES-23, a student of B.Tech (EE) hereby declared that I own the full responsibility for the information, result etc. provided in this project report titled “SWITCHGEAR AND PROTECTIN”. I have taken care of all respect to honor the intellectual property right and have acknowledged the contributions of other for using them in this academic purpose. I further declared that in case of any violation of intellectual property right or copyright I as the candidate would be fully responsible for the same. My supervisor and institute should not be held for full or partial violation of copyright if found at any stage of my degree. Name of the student: MD SAFDAR ALI Branch: ELECTRICAL Under the Guidance of Mr. V. K PANDEY (SR. Deputy General Manager) Mr. DIGVIJAY NATH TRIPATHI (Assistant Manager) L & T Engineering
  • 3. PREFACE Electricity and Electric Circuits forms the neural system of any industry analogous to the nervous system of human. Electrical engineering is the foremost important part of any manufacturing unit. Thus, to utilize the available Electrical energy efficiently & judiciously various generations, control & distribution mechanisms are used. This project provides a general overview of the system approach of design for safe and efficient operation for entire life of electrical system. Some of the few aspects of the fundamental system of Electric Engineering are earthing and lightning protection, load list analysis, cable sizing, lighting.
  • 4. ACKNOWLEDGEMENT I would like to extend my heartfelt gratitude towards Larsen & Toubro Limited for providing me with an excellent opportunity to undergo my internship from this prestigious engineering company of our country. On the personal front I must thank Mr. V. K PANDEY (Sr. Deputy General Manager) for providing me the very first introduction on the practical side of the subject, thereby opening an interesting training opportunity besides extending me valuable guidance from time to time. It is difficult to overstate my gratitude towards my training in-charge and mentor, Mr. DIGVIJAY NATH TRIPATHI (Assistant Manager Electrical). It was only with his active support, inspiration and efforts to explain concepts clearly, that this training program is becoming very interesting and fruitful for me. Throughout my training period he is a co36nstant source of encouragement, guidance, and knowledge. Despite his busy work schedule with the ongoing projects, he took out time to help me collect plenty of study material from the in-house resources as well as made himself available to clear all the doubts and problems which arose during the course of the training. It would have been nearly impossible to arrange the right input to prepare this report without his generous help. And finally, I would like thank all my fellow trainees for their help throughout my training period at L&T. I would like to thank Miss. NIDHI MITTAL (HR) for providing me this opportunity to complete my training.
  • 5. OVERVIEW L&T is India’s largest engineering and construction conglomerate (net worth approx.14.5 billion US$ and workforce of 50000 employees) with additional interests in electrical, electronics and IT. Today it is one of India’s biggest and best known industrial organizations with a reputation for technological excellence, high quality of products and services, and strong customer orientation. Seven decades of a strong, customer-focused approach and the continuous quest for world-class quality have enabled it to attain and sustain leadership in all its major lines of business. L&T enjoys a premier brand image in India and its international presence is on the rise, with a global spread of over 30 offices and joint ventures with world leaders. It continues to grow its overseas manufacturing footprint, with facilities in China and the Gulf region. The company's businesses are supported by a wide marketing and distribution network, and have established a reputation for strong customer support.
  • 6. PROJECT FLOW To supplement the power generation needs of the state, the Government of Punjab (GoP)had planned to develop 1200 ( +/- 10%) MW thermal power plant at village Nalash near Rajpura, District Patiala, Punjab on Build, Own and Operate (BOO) basis for 25 years. Accordingly, Nabha Power Limited ( NPL) , a wholly owned company of Punjab State Electricity Board was established as Special Purpose Vehicle (SPV) to develop the proposed Project. ARfQ / RfP was floated by PSEB in line with Case 2 Competitive Bidding Guidelines of Govt. of India & L&T Power Development Limited was identified as lowest bidder. The unit configuration was adopted as 2 x 700 MW as per provisions in PPA .Rajpura is located at a distance of about 7 km. from Rajpura Railway station and about 28 Km from Chandigarh Airport. The Site is located 5 km form NH-1 & 7 km from NH-64. NPL has placed order on L&T for design, engineering, manufacture, assembly, testing at manufacturer’s works, packaging and shipping, transport, delivery to site, receipt, unloading, handling and storage at site, Civil, Structural & Architectural Works, Erection, testing and commissioning and putting into operation of 2 X 700 MW Power Plant on EPC basis.
  • 7. SINGLE LINE DIAGRAM OF THERMAL POWER PLANT:
  • 8. DETAILS OF EQUIPMENTS IN RAJPURA THERMAL POWER PALNT: Generator ratings  703.8 MW  20 KV  3 PH  50 HZ  0.85PF Transformer ratings  60/35/25 MVA  20/110.5/11.5 KV  ONAN/ONAF/OFFAF  Dyn1yn1  Z= 12/12/24%  ON LOAD TAP CHANGER 10% IN STEPS OF 1.25% IN HV SIDE Switchgear ratings  HT Switchgear  11 KV  2000 A  3 W  3 PH  40 KA FOR 1 SEC.
  • 9. MV Switchgear  6.6/3.3 kv  3000 A  3 W  3 PH  50 KA FOR 1 SEC. LT Switchgear  415 V  4000 A  3 W  3PH
  • 10. SWITCHGEAR AND PROTECTION ELECTRICALSWITCHGEAR A switchgear or electrical switchgear is a generic term which includes all the switching devices associated with mainly power system protection. It also includes all devices associated with control, metering and regulating of electrical power system. Assembly of such devices in a logical manner forms a switchgear. This is very basic definition of switchgear. SWITCHGEAR AND PROTECTION Switchgear protection plays a vital role in modern power system network, right from generation through transmission to distribution end. The current interruption device or switching device is called circuit breaker in Switchgear protection system. 4. Type of faults  Asymmetrical 1. Single line to ground fault 2. Line to line fault 3. Double line to ground fault  Symmetrical 1. LLL Fault 2. LLLG Fault
  • 11. Fig: Asymmetrical faults Fig: Symmetrical faults SYMMETRICAL FAULT: Symmetrical faults are those type of faults in which all the three phases gets involved simultaneously. For example: triple line fault (L-L-L), triple line to ground fault (L- L-L-G).
  • 12. These are very severe faults and occurinfrequently in the power systems. These are also called as balanced faults and are of two types namely line to line to line to ground (L-L-L-G) and line to line to line (L-L-L) Only 2-5 percent of system faults are symmetrical faults. If these faults occur, system remains balanced but results in severe damage to the electrical power system equipments. Above figure shows two types of three phase symmetrical faults. Analysis of these fault is easy and usually carried by per phase basis. Three phase fault analysis or information is required for selecting set-phase relays, rupturing capacity of the circuit breakers and rating of the protective switchgear. ASYMMETRICAL FAULT: In this type of faults, the fault occurmainly in one or two phases and are categorizes as unbalanced fault. For example: single line to ground (L-G), double line to ground (L-L-G). Line to ground fault (L-G) is most common fault and 65-70 percent of faults are of this type. It causes the conductorto make contactwith earth or ground. 15 to 20 percent of faults are double line to ground and causes the two conductors to make contactwith ground. Line to line faults occurwhen two conductors make contactwith each other mainly while swinging of lines due to winds and 5- 10 percent of the faults are of this type.
  • 13. These are also called unbalanced faults since their occurrencecauses unbalance in the system. Unbalance of the system means that that impedance values are different in each phase causing unbalance current to flow in the phases. These are more difficult to analyze and are carried by per phase basis similar to three phase balanced faults. ARC IN CIRCUIT BREAKER During opening of current carrying contacts in a circuit breaker the medium in between opening contacts becomehighly ionized through which the interrupting current gets low resistive path and continues to flow through this path even the contacts are physically separated. During the flowing of current from one contactto other the path becomes so heated that it glows. This is called arc. ELECTRICAL CIRCUIT BREAKER Electrical Circuit Breaker is a switching device which can be operated manually as well as automatically for controlling and protection of electrical power system respectively. As the modern power system deals with huge currents, the spacial attention should be given during designing of circuit breaker to safe interruption of arc produced during the operation of circuit breaker. This was the basic definition of circuit breaker. TYPES OF CIRCUIT BREAKER 1) Oil Circuit Breaker 2) Air Circuit Breaker 3) SF6 Circuit Breaker 4) Vacuum Circuit Breaker
  • 14. SWITCHGEAR EQUIPMENT FUNCTION 1. Fuse: To Protectcircuit against over current and short circuit currents. 2.Circuit breaker To make or break the circuit manually or remotely under normal condition and automatically under fault condition. 3.Isolator To disconnect the part of the system for maintenance from live circuit under no current condition. 4.Earthing Switch To discharge the voltage on the line ( due to charges of line capacitance to earth) after disconnecting line from live section. 5. Light using arrester To divert high voltage surge towards the earth, due to lighting stroke or switching surges. 6. Current transformer To stepping down the magnitude of current for measurement, protection and control. 7. Potential transformer To stepping down the magnitude of line voltage for measurement, protection and control. 8. Relay To disconnect the abnormally operating part so as to prevent the subsequent faults eg. Overload protection of a machine protects the machine and prevent insulation failure.
  • 15. SWITCHGEAR DEVICES: FUSE: Fuse Link & Fuse Base, High break range of low voltage fuse links have been designed to meet the requirements set for modern industrial installations & electrical power plants. Their breaking capacity is sufficient even for the highest short circuit levels, which are normally reached in practice. The breaking capacity of the fuse links is 80KA at 415AC. The fuse links are suitable for use in both AC/ DC applications for over current and short circuit protection and have very low let through energy resulting in reduced electromagnetic stress and reliable short circuit clearance. They have excellent non deterioration performance and low power loss values well within the limits of the specification. Features: • Excellent AC and DC performance • Low watt loss • Interchangeable with compatible brands • ISI Marked Range : • 2A-630A in Bolted design (BS type) • 6A-630A in Blade Contact design (DIN type) • 4A-63A in Round Head design (RH type) Specification : Conforms to IEC:60269-1 & 2-1 / IS:13703-1 & 2-1192 * Current Ratings : 2A, 4A, 6A, 10A, 16A, 20A 25A, 32A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 200A, 250A, 315A, 350A, 400A, 425, 500, 630.
  • 16. Current and Time curve The time for blowing out of fuse depends the magnitude of the excessive current. Larger the current the more the fuse will blow i.e., the fuse has inverse time characteristics as shown in fig.
  • 17. Advantages: 1. It is the cheapest form of protection available. 2. It needs no maintenance. 3. Its operation is inherently completely automatic unlike circuit breaker. 4. The minimum time of operation can be made much smaller than that with the circuit breakers. 5. It has inverse time-current characteristic. Disadvantages: 1. Considerable time is lost in rewiring or replacing a fuse after operation. 2. On heavy short circuit discrimination between fuses in series cannot be obtained unless there is considerable differences in the relative sizes of fuses concerned. 3. The current-time characteristics of a fuse cannot always be correlated with of the protected device.
  • 18. Miniature Circuit Breaker Electrical Distribution needs are continuouslyevolvingin residential, commercial and industrial sectors. Improved operational safety, continuity of service, greater convenience and operating cost have assumed a tremendous significance.MiniatureCircuit Breakers have been designed to continuously adapt to these changing needs.
  • 19. TECHNICAL INFORMATION Standard Conformity IS / IEC 60898 - 1 Type/Series B C D Rated Current (In) A 6-40 0.5 - 63* 0.5 - 63* Rated Voltage (Ue) V~ 240/415 240/415 240/415 Rated Frequency (f) Hz 50 No. of Poles (Execution) 1 P, 1P+N, 2P, 3P, 3P+N, 4P Rated Short Circuit Breaking Capacity kA 10 10 0.5 - 32A - 10 kA 40 A - 63A - 4.5kA Magnetic Release Setting (3-5)In (5-10)In (10-20) In Rated Insulation Voltage (Ui) V 660 Rated Impulse Voltage (Uimp) kV 4 Electrical / Mechanical Endurance (no. of operations) <32A >32A Ambient Working Temperature (o C) 20000 10000 -5 °C to 55°C Terminal Capacity (max) sq.mm 25 Vibration g 3 Shock 40 mm free fall Protection Class IP-20 Installation Position Vertical / Horizontal Range A to 40A - ‘B’ Curve6 A to 63A - ‘C’ Curve0.5 0.5A to 63A - ‘D’ Curve A to 63A for DC Application0.5 Execution Single Pole (1P) Single Pole & Neutral (1P+N) Double Pole (2P) Three Pole (3P) Three Pole & Neutral (3P+N) Four Pole (4P) Specification IS / IEC 60898 - 1 Accessories Auxiliary Switch Shunt Trip
  • 20. TRIPPING CHARACTERISTICS Based on the Tripping Characteristics, MCBs are available in ‘B’, ‘C’ and ‘D’ curve to suit different types of applications. ‘B’ Curve: for protection of electrical circuits with equipment that does not cause surge current (lighting and distribution circuits). Short circuit release is set to (3-5) In ‘C’ Curve: for protection of electrical circuits with equipment that causes surge current (inductive loads and motor circuits). Short circuit release is set to (5 - 10) In ‘D’ Curve: for protection of electrical circuits which causes high inrush current, typically 12-15 times the thermal rated current (transformers, X-ray machines etc.) Short circuit release is set to (10 - 20) In. Multiples of Rated Current (x In) T im e (s ec .) 10000.00 1000.00 100.00 10.00 1.00 0.10 0.01 1 2 3 5 10 20 30 100 1.13 1.45 B Curve C Curve D Curve
  • 22. FEATURES RANGE AND SPECIFICATION. Features 1. Wide range: 16A to 1600A (AC). 2. Compactdimensions. 3. Adjustable thermal setting(70-100%). 4. Adjustable magnetic setting. 5. Suitable for use as switch disconnector. 6. Push to trip button provision. 7. Suitable for DC application up to 1600A. 8. Separate main and arcing contacts. 9. Wide range of accessories. Range: 16A to 1600A in five frame sizes in single pole three pole and four pole with switched neutral execution. Specification: Conforms to IEC ; 60947-1&2/ IS 13947-1&2. Applications: 1. Distribution feeders. 2. Transformers. 3. DG sets. 4. APFC system. 5. DC loads. 6. UPS. 7. Motors. 8. Furnaces.
  • 23. ACB Before discussing about ACB schemes, let us first understand what an Air Circuit Breaker (ACB) is? As its name suggests, it is a device used to break or disconnect the circuit with air as an arc quenching medium in normal operating as well as fault conditions such as short circuit. It is designed to break the circuit under severe fault conditions where the current increases to a very high value capable of damaging the whole system. Generally, fault sensing devices like relays which are an integral part of the ACB scheme sense the fault conditions and give a trip command to the ACB. The ACB then trips & isolates the faulty circuit from the healthy part. After the fault has been cleared or repaired the user can again switch on the ACB. Although these operations & protections can also be performed by other devices like MCCB’s or contactor coupled with relays. But the problem occurs when the current rises to such a high value that the arc’s produced at high current levels become so acute that it calls for equipment having higher breaking & withstanding capacity. These are incorporated in the ACB in such a way that it can handle as well as break such high amount of current. Thus the main difference between an ACB and other devices is the capability to quench heavy arcs. ACB has the following major parts: 1A Closing coil, which is responsible for closing the power contacts once the closing impulse is given to it. 2A Tripping coil, which is responsible for opening the power contacts when the tripping command is given or under faulty conditions. 3A Spring charging motor which charges a spring responsible for opening & closing the contacts.
  • 24. ACB SCHEMES Like any other scheme, the ACB scheme can also be broadly divided into power circuit and control circuit. The control circuit consists of interlocks to take care of the tripping and closing operations of the ACB. An ACB scheme can be divided into the following parts: 1. Power circuit or Main circuit 2. Spring charging motor circuit 3. Closing coil circuit 4. Anti pumping circuit 5. Tripping circuit 6. Trip circuit supervision circuit Spring Charging Motor Circuit In an ACB, the closing operation is done using a high tension spring, which can either be manually charged or automatically charged with the help of a motor. The energy stored in this spring, forces the power contacts to close. In motor charged ACB, the motor used to charge the spring needs to be disconnected after the spring is completely charged. To achieve this operation limit switches are provided. In case of an AC control supply one limit switch is provided whereas in case of DC control supply two limit switches are provided, one in +ve& one in –ve. This is because it is observed that in case of midpoint earthed DC system leakage current flows to earth from –ve and weakens the insulation. In order to avoid this the disconnection of +ve as well as –ve supply to stop the motor is a must. In an ACB scheme if electrical indication is required for spring charging, additional aux contactor is required. In case of DC control supply, aux contactor is connected between terminal F & H. In case of AC control supply aux contactor is connected between F & D. Circuit shown above is for DC spring charge motor. When spring is in discharged condition, limit switches on both the sides of motor will be in closed condition. So motor gets the supply & in turn starts charging the spring. Also aux contactor connected between F & H will pick up. NC contact of this contactor is used to give spring charged indication. Since contactor is in picked up condition, NC contact will open out & SPRING CHARGED I/L will not glow. When the spring gets fully charged, Limit switches opens out cutting the supply to the MOTOR. Along with this the contactoralso drops off.
  • 25. CLOSING COIL CIRCUIT The closing coil circuit as shown in the figure consists of an electromagnetic coil and a series of NO & NC contacts responsible for various functions. The first NO gets closed only if the trip ckt. is healthy. The next NC contact of the lockout relay is put in series with the closing coil to ensure that the there is no fault. The NC contactof the auxiliary contactoris kept in series with the closing coil, which blocks closing command to closing coil till spring is charged. The NC contactof the anti-pumping relay ensures that ANTIPUMPING relay is not operated. WHAT IS ANTI PUMPING? Supposeif there is a continuous closing command to the closing coil circuit. Breaker closes. Now supposea tripping command is given to the breaker the breaker will trip. But due to presence of a continuous close command, breaker will close again. It will again trip due to the presence of trip command & again close because of continuous close command. This continuous ON & OFF of a breaker is known as pumping. This operation can damage the ACB as well as the system life. In order to prevent this operation, circuit used is called as anti- pumping. Anti pumping circuit is as shown below. Now, when a closing command is given to the closing coil of the circuit, the breaker gets supply through a NC contact of the anti-pumping contactor. The closing coil is energized and the Breaker closes. Now an NO contact of the ACB is connected in series with the coil of Anti-pumping contactorcloses. Thus when the breaker closes the contactorcoil gets energized and it picks up. As a result the NO contact of the contactorconnected across the ACB NO contactalso closes which provides an hold on to the contactor. Thus even if the breaker is tripped the contactorcontinues to be energized because continuous closing command is available. Hence the NC contactof the ANTI PUMPING contactorprovided in series with the closing remains open & does not allow the continuous closing command to again close the breaker. Thus preventing any anti-pumping action.
  • 26. TRIPPING CIRCUIT The tripping circuit of an outgoing ACB is as shown below. It consists of a tripping coil which trips the breaker whenever it is energized. It consists of a TNC switch for manual tripping. When this switch is kept in the tripping position, supply goes to trip coil & trip coil eneregises & trips the breaker. NO contact of the lockout relay is also provided which trips the breaker when relay senses the fault. The remote signals are also connected in series which can also trip the breaker. An under voltage trip contact is provided in series through a service position switch which energises the trip coil whenever an under voltage is sensed by the main relay. The contactprovided just beside the coil is an NO contact of the circuit breaker which prevents the excitation of the tripping coil when the breaker is open. WHY IS A SERVICE POSITION SWITCH PROVIDED IN SERIES WITH THE TRIP COIL? Supposean engineer is testing or servicing the breaker with the auxiliary supply present. The breaker is kept in the test position. So the controlsignals are all present. The HT breaker at this time is also OFF. The main relay will thus sense it as an under voltage as there is no power supply available & give the trip command to the breaker. It will thus lead to an accident. Similarly, if a remote trip command is given from the controlcenter by someone who is unaware of the servicing will also lead to an accident. In order to prevent such an accident a service position switch is provided so that the engineer can disconnect the remote commands by keeping it on the test position while working on the breaker.
  • 27. TRIP CIRCUIT SUPERVISION CIRCUIT Since the safety of a plant is largely dependent on the speed of isolation of the faulty section, it is very important to continuously monitor the trip circuit of the breaker feeders. A simple circuit using a trip circuit supervision relay is as shown in the tripping circuit. The relay provided in the circuit checks and verifies the continuity of the coils & all the connected loops. It opens whenever the trip circuit is faulty. NO of this relay is provided in series with the closing coil of the breaker, which prevents the closing of the breaker whenever the trip circuit is unhealthy.
  • 28. STARTING METHODS IN INDUCTION MOTORS 1. Direct On Line 2. Star/Delta method 3. Auto Transformer 4. Soft starter 5. VFD starter DIRECT ON LINE (DOL) MOTOR STARTER Different starting methods are employed for starting induction motors because Induction Motor draws more starting current during starting. To prevent damage to the windings due to the high starting current flow, we employ different types of starters. The simplest form of motor starter for the induction motor is the Direct On Line starter. The Direct On Line Motor Starter (DOL) consista MCCB or Circuit Breaker, Contactor and an overload relay for protection. Electromagnetic contactorwhich can be opened by the thermal overload relay under fault conditions. Typically, the contactor will be controlled by separate start and stop buttons, and an auxiliary contact on the contactor is used, across the start button, as a hold in contact. I.e. the contactoris electrically latched closed while the motor is operating.
  • 29. PRINCIPLE OF DIRECT ON LINE STARTER (DOL) To start, the contactor is closed, applying full line voltageto the motor windings. The motor will draw a very high inrush currentfor a very shorttime, the magnetic field in the iron, and then the currentwill be limited to the Locked Rotor Currentof the motor. The motor will develop Locked Rotor Torqueand begin to accelerate towards full speed. As the motor accelerates, the currentwill begin to drop, but will not drop significantly until the motor is at a high speed, typically about 85% of synchronous speed. Theactual starting currentcurveis a function of the motor design, and the terminal voltage, and is totally independent of the motor load. The motor load will affect the time taken for the motor to accelerate to full speed and therefore the duration of the high starting current, but not the magnitude of the starting current. Provided the torque developed by the motor exceeds the load torqueat all speeds during the startcycle, the motor will reach full speed. If the torque delivered by the motor is less than the torque of the load at any speed during the start cycle, the motor will stops accelerating. If the starting torque with a DOL starter is insufficientfor the load, the motor mustbe replaced with a motor which can develop a higher starting torque.
  • 30. The acceleration torqueis the torquedeveloped by the motor minus the load torque, and will change as the motor accelerates due to the motor speed torque curveand the load speed torque curve. The start time is dependent on the acceleration torqueand the load inertia. DOL starting have a maximum startcurrentand maximum starttorque. This may causean electrical problem with the supply, or it may cause a mechanical problem with the driven load. So this will be inconvenient for the users of the supply line, always experience a voltage drop when starting a motor. But if this motor is not a high power one it does not affect much.
  • 31. FIG: DOL STARTER STAR DELTA STARTER This is a starting method that reduces the starting current and starting torque. Star delta starter design normally consists of three contactors, an overload relay and a timer for setting the time in the star-position (starting position). For the star delta starter, a motor must be in delta connected during a normal run and the main purposeis to be able to use star delta starter.Star delta starter received the starting current is about 30 % of the starting current during direct on line start and the starting torque is reduced to about 25 % of the torque available at a D.O.L start.
  • 32. Star delta starter only works when the application is light loaded during the start. If the motor is too heavily loaded, there will not be enough torque to accelerate the motor up to speed before switching over to the delta position. DESCRIPTION OF STAR DELTA STARTER OPERATION: For star delta starter, the basic function is to enable the motor to start and the motor windings are configured in a star formation to the supply voltage. The voltage applied for star delta starter to the individual motor winding is therefore reduced by a factor of 1/√3 = 0.58 this connection amounts to approximately 30% of the delta values. The starting current is reduced to one third of the direct starting current. Due to the reduced starting torque, the star-delta-connection is suitable for drives with a high inertia mass but a resistance torque which is low or only increases with increased speed. It is preferably used for applications where the drive is only put under a load after run-up. After motor run-up, in most cases an automatic timing relay controls the switch- over from star to delta. The run-up using star connection should last until the motor has reached the approximate operational speed so that after switching to delta, as little postacceleration as possible is required. Post-acceleration in delta connection will instigate high currents as seen with direct on-line starting. The duration of start in star connection depends on the motor load. During delta connection, the full mains voltage is applied to the motor windings. To enable a switch-over from star to delta, the six ends of the motor winding are connected onto terminals. The contactors of a star-delta starter switch over the windings accordingly.
  • 33. HOW STAR DELTA STARTER WORKS? Starting in star, the main contactorconnects the mains to winding endings U1, V1, W1.The star contactorshorts winding endings U2, V2, W2. After successfulrun-up, the star contactorswitches itself off and the delta contactorconnects terminals U1/V2, V1/W2, W1/U2. When changing from star to delta, we should pay attention to ensure it running in the correctphase sequence. Incorrect phase sequence can lead to very high current peaks during the cold switch-over pause, due to the easy torque reduction following re-start. High peaks current can damage the motor windings and stress the control gear unnecessarily. The rotation of the motor has to be considered as well. If wrong rotation, we should change the rotation by switch the phase. I discuss detail about How to change star delta starter motor rotation in my separate post. For star delta starter circuit diagram, wiring technique and motor base termination, Please read my postfor star delta motor connection. Also for simple star delta control circuit wiring and types of star delta starter, please refer to my postfor Electro mechanical star delta.
  • 34. Fig:STAR DELTA STARTER AUTOTRANSFORMER-STARTING An autotransformer starter enables the start of squirrel-cage motors using a reduced starting current, since the voltage is reduced during start. Contrary to a star-delta connection, only three wires to the motor and 3 motor connections are required. This connection is particularly widely used in English-speaking countries. During start-up, the motor is connected to the autotransformer’s tappings. This means that the motor starts up with a reduced voltage and a correspondingly low current. The autotransformer reduces the current in the mains supply line
  • 35. further and in accordance with its ratio. Like the star delta connection, the autotransformer starter has a favourable torque-current take-up ratio. In order to adapt the motor start characteristics to the torque requirement, autotransformers are usually equipped with three selectable tappings (e.g. 80%, 65%, 50%). When the motor has almost reached its rated torque, the star connection on the transformer is opened. The transformer’s partial windings act as chokes in series to the motor windings, and therefore, like the uninterrupted star delta connection, the motor speed does not drop during switch over. After the main contactor has been switched in, the motor windings are applied to the full mains voltage. Finally, the transformer is disconnected from the mains. Depending on tapping and the motor’s starting current ratio, the starting current amounts to 1 - 5 x Ie. The available torque is reduced in ratio to the starting current. FIG: AUTO TRANSFORMERSTARTER
  • 36. CONCEPT OF DRAWOUT FEEDER: The starter circuitry is generally accommodated in draw out type of feeder in a MCC panel. This type of feeder can be racked in or racked put with the help of racking handle, racking screw & sliding telescopic rails. Power supply to the feeder is given through the STABIN contact mounted on the dropper & power supply to customer is given through the D/O O/G power contact. Control supply from external side as well as interlock/feedeback from/to outside is given through SICs (Secondary Isolating Contacts). There are three types of SICs (i.e. SERVICE, TEST & SERVICE + TEST). SERVICE SICs can be mounted in front as well as rear column. However TEST & SERVICE + TEST SICs are mounted only in front column. Fully draw-out module has 3 distint functional positions additonal 2 positions for maintenance purpose. 1. SERVICE: The module has stab-in type of contacts and power contacts on its rear side (behind the base plate). The stab-in contacts get connected to the droppers and the power contacts get connected to the outgoing power terminals in this position. In this position SERVICE SICs & SERVICE +TEST SICs remain engaged. However TEST SICs remain disengaged. 2. TEST: After opening the door module is racked out to bring it to TEST position. In this position, STAB-IN as well as O/G contact gets disengaged. Hence no power supply is available to module. In this position SERVICE SICs gets disengaged. However TEST & SERVICE +TEST SICs remain engaged. In this position, Control circuit can be tested selectively. 3. ISOLATED: In this position, both power and control SICs get disengaged. 4. MAINTENANCE: In this position, one can get access to all components. 5. HINGED OUT: In this position, one can get access to components on rear and incoming contacts without removing the module.
  • 37. CRITICAL THINGS TO BE TAKEN CARE WHILEMAKING A STARTER SCHEME: Following things need special attention while making a scheme drawing for any starter feeder: 1. CONTROL CABLING: The control cables for commands coming from customer side (remote, DCS, PLC, etc.) are generally multi-core cables. Therefore whenever control terminals are numbered for external commands, attempt should be made to keep the numbers of these terminals serially. This makes the cable termination at site easier. 2. DRAW-OUT / FIXED FEEDERS: The starter feeders can be offered in draw-out as well as fixed type. While making scheme, the type of feeder should be kept in mind. The type of draw-out and fixed feeder affects the type of control terminals and power terminals. The representation of the two types of terminals is different in a scheme diagram. 3. CONTROL SUPPLY: Control supply coming to the control circuit of the feeder should be shown appropriately. It may be coming from inside the feeder or from the switchboard or any external supply. The auxiliary bus, from which the supply is tapped, should be named correctly in accordance with the general arrangement drawing. 4. CONTROL CIRCUIT PROTECTION: The fuses or MCBs given for the control circuit protection should be appropriately selected. The rating of the fuses/MCBs is to be selected according to the equipments connected in the circuit. According to the application, the type of SIC is to be selected. 5. SIC ARRANGEMENT: The SICs have specific position in a draw-out module. Therefore the arrangement of the SICs should be checked in a scheme. The number of SICs that can be accommodated also should be checked with respect to the feeder size. Also it should be kept in mind that Test SICs and Service + Test SICs can only come in the front column of the module.
  • 38. 6. STAR-DELTA SCHEME LOGIC: If any interlocks are there in a star-delta starter feeder, the scheme should be re-checked for logic. The operation of the feeder in star and delta modes should be analysed. ADVANTAGES OF SOFT STARTERS: • Increased acceleration time can be beneficial for motor and machine. • The starting current is reduced or can be limited. • The torque is adapted to the correspondingload. • Forpumps, surges during start and stop can be avoided. • Jerky movements and shocks, which could hamper a process,are avoided. • The wear and tear of belts, chains, gears and bearings is avoided. • By means of the different controls, simplified automation is possible.
  • 39. POSSIBLE APPLICATIONS: • Travelling cranes, conveyor belts, drives • Mixers, mills, crushers • Pumps, compressors, ventilators • Drives with gears, chains, belts, clutches Pumps: By means of a special pump control it is possible to eliminate pressure impact, which occurs during pump start and stop. Compressors:Forcompressors, the speed can decrease during switch-over from star to delta. A softstarter ensures a continuous start. A reduction in speed does not occur. Single-phase motors: If a single-phase motor is to be powered using a soft starter, a single-phase full-wave controlled softstarter is required. In general: The soft starter represents an economical substitute for star-delta systems and offers superior performance. For applications with where a high starting torque is required, a softstarter should be the preferred choice.