Highly efficient organic devices.

Sociedade Brasileira de Pesquisa em Materiais
Sociedade Brasileira de Pesquisa em MateriaisSociedade Brasileira de Pesquisa em Materiais
Highly Efficient Organic Devices 
Karl Leo* 
Institut für Angewandte Photophysik, 
TU Dresden, 01062 Dresden, Germany, www.iapp.de 
* currently: KAUST, Thuwal, Saudi-Arabia 
XIII Brazilian MRS Meeting 2014 
João Pessoa 
30.9.2014
Acknowledgments 
• Johannes Widmer 
• Christian Körner 
• Chris Elschner 
• Christoph 
Schünemann 
• Wolfgang Tress 
• Martin Hermenau 
• Toni Müller 
• Max Tietze 
• Selina Olthof 
• Malte Gather 
• Simone Hofmann 
• Tobias Schwab 
• Moritz Riede 
Hong-Wei Chang 
Chung-Chih Wu 
Xuanhua Li 
Fengxian Xie 
Wallace Choy 
Martin Pfeiffer 
Karsten Walzer 
Christian Uhrich 
Roland Fitzner 
Egon Reinold 
Peter Bäuerle 
University of Ulm 
Department Organic 
Chemistry II
King Abdullah University of Science and Technology 
- KAUST
King Abdullah University of Science and Technology 
(KAUST) 
Solar and Photovoltaics 
Engineering Research 
Center (SPERC)
Outline 
• Introduction to Organic 
Semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
Organic Semiconductors 
• Large area & flexible substrates possible 
• Large variety: millions of molecules, mostly carbon 
• Low cost: approx. 1g/m2 active material 
Photovoltaic 
cells 
Organic 
materials 
Transistors 
and memory 
Organic light 
emitting 
diodes
Polymers vs small molecules 
• Polymers: deposition from solution 
• Small molecules (oligomers): vacuum or solution 
• OLED: Polymer lost the race (for the moment…) 
• Solar Cells: Polymer and small molecules on par
Some people drink organic semiconductors….. 
350 400 450 500 550 600 650 700 
3,4 
3,2 
3,0 
2,8 
2,6 
2,4 
2,2 
2,0 
1,8 
1,6 
1,4 
1,2 
1,0 
0,8 
0,6 
0,4 
0,2 
0,0 
Absorption 
Wellenlänge
Carbon: the influence of dimensionality 
Source: Castro Neto, Geim et al. 
Van der Waals-coupling: 
Narrow bands 
104 
m ob ility 
0D 
2D covalent 
broad bands 
2D 
101 
10-2 
1D covalent: 
broad bands 
1D
Mobility in Organic Semiconductors 
Typical OLED 
today! 
Source: IBM J. Res. Dev.
Single crystal electroluminescence 
• Williams&Schadt 1969 
• 100μm Anthracene crystal, 100V voltage
First OLED 
C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
First White OLED 
J. Kido et al, Appl. Phys. Lett. 64, 813 (1993)
Time 
1st wave: small 
OLED Display 
Progression of Organic Products 
3rd wave: OLED 
lighting 
2nd wave: 
OLED TV 
4th wave: OPV 
5th wave: 
Organic 
Electronics
OLED Displays on the Market 
Passive Matrix 
Philips OLED 
Shaver 
• 2013 market: Approx. 10 billion $ (Idtechex) 
• 100% small molecule OLED 
• 99% Asian Manufacturers 
Active Matrix 
Kodak Camera 
Samsung phone 
Nokia phone 
LG OLED TV
iWatch: flexible OLED display 
Oled-display.net 
• OLED: ideal for flexible devices 
• Thin-film encapsulation is 
challenging 
• Usual approach: Plastic film 
coated with multilayer 
encapsulation system 
• Diffusion rates must be 106 
times lower than for food 
encapsulation
Outline 
• Introduction to organic semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
The pin-OLED structure 
p i n 
p-HTL 
Electron Blocker 
Hole Blocker 
Emitter 
Anode 
Cathode 
n-ETL 
• Device operates in flat-band condition 
• Carriers are injected through thin space-charge layers
AOB 
F F 
F F 
N 
N 
N 
N 
F4-TCNQ 
N 
N 
N 
N 
N 
N 
N 
N Zn 
S 
CN 
CN 
S 
Bu Bu 
S 
C60 
ZnPc 
S 
Bu Bu 
S 
CN 
CN 
DCV5T-Bu 
Cathode 
n-doped ETL 
Photovoltaic 
active Layer 
p-doped HTL 
Anode 
n 
i 
p 
B. Maennig et al., Appl. Phys. A 79, 1 (2004) 
M. Riede et al., Nanotechnology 19, 424001 (2008) 
4P-TPD 
Di-NPD 
2-TNATA 
The p-i-n Concept for 
Organic Solar Cells
Basics of Doping: p-doping 
Inorganic Organic 
· broad bands 
· small correlation energies (e-h » 4meV) 
· hydrogen model works 
· hopping transport 
· large correlation (e-h » 0.5 eV) 
· polaron effects important
Quartz monitors 
Co-evaporation of doped films 
Substrate 
Dopant Matrix 
p » 10-4 Pa 
Tevap= 100..400 oC 
TSubs= -50..150 oC 
d = 25..1000 nm 
rM» 1 Å/s 
Dopant/Matrix ratio of 1:2000 
achieved
UPS/XPS study of doping process 
• MeO-TPD doped with F4-TCNQ 
• Molar doping ratio is varied 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Fermi level shift and conductivity change 
• MeO-TPD doped with F4- 
TCNQ 
• Fermi level shift observed 
in UPS and XPS 
• Fermi level shifts first very 
quickly, slope >>kT 
• Then saturation 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Origin of Saturation: tail states 
• Fermi level shift is caused by 
tail states of Gaussian 
• Distance to HOMO level 
depends on material 
• Distance correlates with 
disorder: smaller in ZnPC, 
larger in amorphous 
materials 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Model assuming deep traps 
• Deep traps with 
concentration Nt 
• Energy Et 
• NA<<Nt: only traps are 
filled 
• NA>>Nt: Normal doping 
M. Tietze et al., Phys. Rev. B86, 025320 (2012)
Trap model and experiment 
• Model describes Fermi 
level shift reasonably well 
• Experiment more “smeared 
out”: broadening of trap 
state 
• Concentration and energy 
of traps can be determined 
precisely 
M. Tietze et al., Phys. Rev. B86, 025320 (2012)
Molecular n-type doping: a challenge 
N 
N 
N 
N 
N 
N 
N 
N Zn 
N N 
3 
3.5 
Electron Affinity [eV] 
4 
4.5 
OLED 
OSC 
C60 
NTCDA 
ZnPc 
BPhen 
TCNQ 
require stronger donors 
air sensitive donors 
air stable donors 
Dopand 
Matrix 
Alternative solution: metallic dopants Li, Cs (Kido et al.): unstable at higher temperature
Air stable n-dopants 
• Usual n-dopant are not 
stable in air 
• Here: Iodine splits off 
when evaporated 
• Strong n-dopant in C60 
P. Wei et al., JACS, dx.doi.org/10.1021/ja211382x
All-organic device: Red pin OLED at 2.4V 
Best devices: 1.89V ≈ thermodynamic limit + 20%
Outline 
• Introduction to organic semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes 
(OLED) 
• Organic Solar Cells
Highly Efficient OLEDs 
Singlet/Triplet ratio 
Rad. efficiency 
•The quantum efficiency of 
OLEDs is given by 
•The luminous efficacy is 
defined as 
[1] Meerheim, PhD Thesis 2009 
Charge Balance 
Outcoupling 
efficiency 
Driving voltage 
Except for outcoupling, everything is close to optimum!
Spin Statistics: Phosphorescent Emitters are needed 
(Thompson & Forrest) 
hole electron exciton 
+ 
+ 
+ 
+ 
Triplet 
Triplet 
Triplet 
Singlet 
• e-h-recombination: 75% triplet- and 25% singlet-excitons 
• Phosphorescent emitters: triplets are used as well due to spin-orbit 
coupling by heavy metals (Ir, Pt, Cu…) 
• ≈ 100% internal quantum efficiency reached
Outcoupling Efficiency 
•Different index of 
refraction of organic, 
glas and air 
•Total reflection at 
interfaces 
•80% of all light is 
trapped in flat device: 
ξ≈0.2
Distribution of Power in Modes 
3 
•Outcoupled modes 
•Substrate modes (1) 
•Organic modes (2) 
•Plasmonic losses (3)
Substrate Modes: Outcoupling easily achieved 
SSoouurrccee:: TTeemmiiccoonn 
3
Waveguide Modes 
Glass 
ITO 
Organics 
Cathode 
Emitting Center 
M. Furno et al.
Surface Plasmon Modes 
Glass 
ITO 
Organics 
Cathode 
M. Furno et al. 
Emitting Center High Losses due to Coupling to Metal!
Distribution of power into different modes 
• Calculations by Mauro 
Furno (M. Furno et al. 
Proc. SPIE 7617, 
761716 (2010); Phys. 
Rev. B 85, 115205 
(2012)) 
• Model includes Purcell 
effect 
• Model can be tested 
by variation of electron 
transport layer 
thickness 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Ag (100) 
Bphen (x) 
Cs 
BAlq (10) 
NPB:Ir(MDQ)2(20) 
Spiro-TAD (10) 
MeO-TPD (36) 
NDP-2 
ITO (90) 
High-n (HI) glass 
Experiment: High Index Glass 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Ag (100) 
Bphen (x) 
Cs 
BAlq (10) 
NPB:Ir(MDQ)2(20) 
Spiro-TAD (10) 
Up to 54 % EQE (104 lm/W) reached for red OLEDs 
MeO-TPD (36) 
NDP-2 
ITO (90) 
High-n (HI) glass 
Experiment: High Index Glass 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Fabrication of gratings 
Wallace Choy et al., University of Hongkong
OLED on periodically structured substrates 
 1D grating 
 Bottom- and top-emitting OLED 
Tobias 
Schwab
Efficiency Enhancement for 
Bottom-Emitting OLEDs 
 EQE increase: Λ = 0.7μm → 1.26 x EQEplanar 
 increased luminance 
 comparable leakage 
[1] 
Fuchs et al., Optics Express, Vol. 21, Issue 14, pp. 16319-16330 (2013)
Bragg Scattering: Theory 
periodic structure → lattice constant 
additional intensity to air cone: 
→ reciprocal lattice constant 
 high order m 
 large G 
[1] 
[1] Salt et al., PRB (2000) Cornelius Fuchs
Mode analysis for p-polarization
Mode analysis for p-polarization
Mode analysis for p-polarization
Mode analysis for p-polarization
Outcoupling with nanoparticle layers 
• Polymer film with TiO2 scattering 
particles 
• Easy and low-cost preparation 
• Comparatively smooth layers 
(RMS=4.5nm) integrated below 
ITO electrode 
• Reasonable overlap with 
waveguide mode (blue) 
• Small overlap with plasmon mode 
(red) 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
White translucent OLED with NP scattering 
• White OLED tandem stack 
• Blue-red triplet harvesting unit 
• Combined with green phosphorescent unit 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
White translucent OLED with NP scattering 
• Outcoupling without NP layer: EQE 22% / 32 lm/W 
• With NP layer: 33% EQE / 46 lm/W 
• With NP and outcoupling sphere: 46% EQE / 62 lm/W 
O with NP & 
sphere 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) 
● with NP 
■ w/o NP
Improved angular dependence 
• OLED with nanoparticles: Emission spectrum virtually angle-independent 
• Emitter power smoothed to Lambertian distribution 
• Nanoparticle layer ideal for white devices! 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) 
● with NP 
■ w/o NP
All-phosphorescent white OLED 
• S. Reineke et al., Nature 459, 234 (2009) 
• Novel emitter layer design 
• High-index substrate and higher-order electron 
transport layer
Ag 
ETL 
HTL 
ITO 
High-n (HI glass) 
Efficacy for white OLED 
S. Reineke et al., Nature 459, 234-238 (2009)
Highly efficient organic devices.
Outline 
• Introduction to organic 
semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
© Heliatek 
Organic Photovoltaics 
Homogeneous 
Surface
Novel applications possible 
Source: Solartension
Elementary processes in 
organic solar cells 
absorption 
exciton diffusion 
exciton separation 
charge transport 
charge extraction
The organic exciton separation problem 
GaAs exciton 
• Absorption leads to tightly bound 
(0.2 … 0.5 eV) excitons 
• Separation in electric field 
inefficient 
• Usual solar cell structure does 
not work 
Organic exciton 
S. E. Gledhill et al. J. Mat Res. 20, 3167 (2005) 
P. Würfel, CHIMIA 61, 770 (2007)
Exciton separation at a heterojunction 
Flat heterojunction (FHJ) bulk heterojunction (BHJ) 
C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) 
M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) 
J. J. Hall et al., Nature 376, 498 (1995) 
G. Yu et al. Science 270, 1789 (1995)
Exciton diffusion length 
Exciton diffusion length LD = (10 ±1) nm
Exciton separation at a heterojunction 
Flat heterojunction (FHJ) bulk heterojunction (BHJ) 
C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) 
M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) 
J. J. Hall et al., Nature 376, 498 (1995) 
G. Yu et al. Science 270, 1789 (1995) 
Energy loss is unavoidable!
Bulk heterojunction: Morphology control 
• Heterojunction is characterized by complex morphology 
• Ideally: columnar structure 
• Reality: disordered mixture with nanodomains
• Multi-scale approach needed for materials development 
• Connection between molecular structure and device 
performance very complex 
D. Andrienko 
How to find the “right” molecule?
The thiophene zoo... 
3T 4T 5T 6T 
University of Ulm 
Department Organic 
Chemistry II
Energy Levels vs. backbone length 
# thiophene 
units 
DCVnT: Fitzner et al., AFM 21, 897 (2011) 
DCVnT-Bu: Schüppel et al., PRB 77, 085311 (2008)
Influence of side chains on energy levels 
- Only weak effects of side chains in solution 
- Significant Energy shifts in thin films
The thiophene zoo... 
3T 4T 5T 6T 
University of Ulm 
Department Organic 
Chemistry II
DCV5T-Me: small differences, big effects 
DCV5T-Me(3,3) [D33] DCV5T-Me(1,1,5,5) [D15] 
6.9% 4.8% 
- almost identical 
molecular structure 
- identical stack 
Chris Elschner
GIWAXS single layers 
glass / DCV5Ts (30 nm) 
[D33] [D15] 
- broadened out of 
plane reflections 
@ RT 
- orientation of 
crystals spreads 
out, crystal size 
grows @ 110°C 
single layer 
pattern very 
similar !
Tsubstrate 
GIWAXS blends 
glass / DCV5Ts : C60 (30 nm, 2:1) 
RT 80°C 110°C 140°C 
[D15] 
[D33] 
D33 (top): best OSC @80°C, crystallization @110°C 
D15 (bottom): best OSC @≈110°C (?), crystallization @140°C
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
[D15] > 110°C 
[D33] > 80°C 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
- surface segregation of 
DCV → crystallinity 
→ roughness 
- OSC efficiency 
3 5 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 4 0 ° C 
q  <  q c r i t i c a l 
5 1 0 1 5 2 0 
3 0 0 
2 5 0 
2 0 0 
1 5 0 
1 0 0 
5 0 
0 
g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 1 0 ° C 
i n t e n s i t y ( a r b . u n i t s ) 
2 q ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
- surface segregation of 
DCV → crystallinity 
→ roughness 
- OSC efficiency 
[D15] > 110°C 
[D33] > 80°C 
Tsubstrate
8.3% certified DCV5T cell 
Rico Meerheim 
Christian Körner 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
8.3% certified DCV5T cell 
Rico Meerheim 
Christian Körner 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
Efficiency Outlook Single Cells 
T. Mueller et al. 
Main assumptions: 
 EQE 60% 
 FF 60% 
Max efficiency about 15%: 
10-12% in module
Higher Efficiency for Multijunction Cells 
M. Graetzel et al., Nature 488, 304 (2012) 
Shockley-Queisser limit for single 
junction: 31% 
Major gains only for 
Tandem junction: 42% 
Triple junction: 49% 
Lower currents/higher voltages 
reduce electrical losses 42 
31
first cell second cell 
e.gap 1.9eV 1.25eV ~21% 
o.gap ~770nm ~1300nm 
e.gap 2.1eV 1.5eV ~20% 
o.gap ~690nm ~1030nm 
e.gap 2.225eV 1.7eV ~19% 
o.gap ~645nm ~890nm 
T. Mueller et al. 
Efficiency Outlook for Tandem Cells 
Main assumptions: 
 EQE 60% 
 FF 60% 
>20% for tandem possible!
P-i-n tandem cells: 
• Pn-junction is ideal 
recombination 
contact 
• optimizing 
interference pattern 
with conductive 
transparent layers 
=>optical engineering 
on nanometer layer 
thickness scale 
n 
- 
photoactive layer 2 
+ 
- 
p 
n 
photoactive layer 1 
p 
+ 
substrate foil 
Pin-tandem cells: 
doped layers are critical for optical optimization 
J. Drechsel et al., Appl.Phys.Lett. 86, 244102 (2005)
High-efficiency thiophene cells 
Jsc (mA/cm²) 4.80 
Voc (V) 2.79 
FF (%) 72.4 
PCE (%) 9.7 
Triple 
Jsc (mA/cm²) 7.39 
Voc (V) 1.88 
FF (%) 69.0 
PCE (%) 9.6 
Tandem 
Jsc (mA/cm²) 13.20 
Voc (V) 0.96 
FF (%) 65.8 
PCE (%) 8.3 
Single 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
EQE of triple cell (9.7%) 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
Small-Molecule OPV Record > 1cm²
Development of OPV Efficiencies 
diagram available under www.orgworld.de
Perovskites: the new kid on the block... 
diagram available under www.orgworld.de
Perovskite „record“ cell 
H. Zhou et al., Science 345, 542 (2014)
Strong hysteresis effects 
Forward „efficiency“ : 13.08% 
Reverse „efficiency“: 16.79% 
H. Zhou et al., Science 345, 542 (2014)
Perovskite cells: variation of HTL 
• p-doped HTL with 
different alignment 
• First fully vacuum 
processed cells: no 
hysteresis 
• L. Polander et al., 
Appl. Phys. Lett. 
Mat. 2, 081503 
(2014) 
Lauren Polander
Solar cell parameters 
• Optimum molecule: Spiro-MeO-TPD 
• No hysteresis observed 
• L. Polander et al., Appl. Phys. Lett. Mater. 2, 
081503 (2014)
Lifetime of ZnPc:C60 lab cells 
• Pin structures 
• Glass-glass 
encapsulated 
• Measured unter 2 suns 
(Roughly) extrapolated lifetime: 37 years! 
Christiane Falkenberg, PhD thesis, TU Dresden
• Heliatek’s foil-encapsulated solar 
films withstand lifetime tests well 
above PV industry standard 
• Degradation after damp-heat stress 
(85°C, 85% RH): below 3% 
• Based on commercially available 
barrier foils 
• Heliatek propriety encapsulation and 
sealing process 
• IEC standard damp heat test 
Heliatek reliability lab measurement of BDR-based stack, 80 cm² active area 
Management Presentation 
Lifetime of flexible module
Outdoor test: Singapore 
Courtesy: Heliatek 
Material Efficiency kWh/kWp Ratio to 
CIGS 
Ratio to 
c-Si 
CIGS 9.3% 136 1 
c-Si 15.2% 147 1.20 1 
mc-Si 8.5% 156 1.27 1.06 
Organic 8.6% 187 1.38 1.27 
February to April 2012 
300 tilt, NW orientation 
O-Factor: 27% relative to c-Si
Cost Calculation: Mass Production 
• 60m2/min production: ≈ 3 GW/year 
• P3HT active material, C60 (PCBM) 
• Ag/Pedot anode 
• Al cathode 
• 100% production yield 
C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
Cost distribution 
Total cost: 7.80 (±2) US$/m2 ≈ 0.05US$/Wattpeak ≈ 0.02US$/kWh* 
* if system cost can be scaled similarly 
C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
Organic Roll-to-Roll Coater 
14 Linear Organic Evaporators 
BL 
DC-Magnetron 
Lineare Ion Source 
2 Metal Evaporators 
Substrate Winder 
Interleaf Winder 
Port for Inert Substrate Load 
Lock 
cathode 
EBL 
HBL 
EML 
red 
EML 
green 
EML 
blue 
HTL 
ETL 
BL 
3-color-white pin OLED
Conclusions 
• Organic semiconductors: low mobility, but excellent optoelectronic 
properties 
• Organic LED have made tremendous progress; established product 
for smartphone displays 
• Remaining challenge for higher efficiency: Optical outcoupling 
• Internal modes can be outcoupled with suitable scattering structures 
• Organic solar cells: Efficiencies have grown dramatically 
• Tandem cells can be easily realized
Acknowledgment 
• L. Burtone, C. Elschner, L. Fang, A. Fischer, J. Fischer, H. Froeb, M. Furno, M. Gather, S. 
Hofmann, F. Holzmüller, D. Kasemann, C. Körner, B. Lüssem, R. Meerheim, J. Meiss, T. 
Menke, T. Meyer, T. Mönch, L. Müller-Meskamp , D. Ray, K. Vandewal, S. Reineke, M.K. 
Riede, C. Sachse , T. Schwab, N. Sergeeva, J. Widmer, S. Ullbrich (IAPP) 
• K. Fehse C. May, C. Kirchhof, M. Toerker, M. Hoffmann, S. Mogck, C. Lehmann, T. 
Wanski (FhG-COMEDD) 
• J. Blochwitz-Nimoth, J. Birnstock, T. Canzler, M. Hummert, S. Murano, M. Vehse, M. 
Hofmann, Q. Huang, G. He, G. Sorin (Novaled) 
• M. Pfeiffer, B. Männig, G. Schwartz, T. Müller, C. Uhrich, K. Walzer (Heliatek) 
• J. Amelung, M. Eritt (Ledon) 
• D. Gronarz (OES) 
• R. Fitzner, E. Brier, E. Reinold, A. Mishra, P. Bäuerle (Ulm) 
• D. Alloway, P.A. Lee, N. Armstrong (Tucson) 
• K. Schmidt-Zojer (Graz), J.-L. Bredas (Atlanta) 
• C. Tang (Rochester) 
• R. Coehoorn, P. Bobbert (Eindhoven) 
• T. Fritz (Jena) 
• P. Wei, B. Naab, Z. Bao (Stanford) 
• D. Wöhrle (Bremen), J. Salbeck (Kassel), H. Hartmann (Merseburg/Dresden) 
• C.J. Bloom, M. K. Elliott (CSU) 
• P. Erk et al. (BASF) 
• BMBF, SMWA, SMWK, DFG, EC, FCI, NEDO
Prof. Dr. Karl Leo 
Institut für Angewandte Photophysik 
Technische Universität Dresden 
01062 Dresden, Germany 
ph: +49-351-463-37533 or mobile: +49-175- 
540-7893 
Fax: +49-351-463-37065 
email: leo@iapp.de 
Web page: http://www.iapp.de
1 de 100

Recomendados

How gallium nitride can save energy, purify water, be used in cancer therapy ... por
How gallium nitride can save energy, purify water, be used in cancer therapy ...How gallium nitride can save energy, purify water, be used in cancer therapy ...
How gallium nitride can save energy, purify water, be used in cancer therapy ...Sociedade Brasileira de Pesquisa em Materiais
5.1K visualizações66 slides
Luminescent materials for biomedical applications: the example of nanothermom... por
Luminescent materials for biomedical applications: the example of nanothermom...Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...Sociedade Brasileira de Pesquisa em Materiais
4.4K visualizações43 slides
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material. por
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material. Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material.
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material. Sociedade Brasileira de Pesquisa em Materiais
3.2K visualizações1 slide
Mid-IR Pulse Generation Using Cr2+:ZnSe por
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeChelsey Crosse
1.9K visualizações31 slides
Probing Molecular Electronic Structure Using High Harmonic Generation Tomography por
Probing Molecular Electronic Structure Using High Harmonic Generation TomographyProbing Molecular Electronic Structure Using High Harmonic Generation Tomography
Probing Molecular Electronic Structure Using High Harmonic Generation TomographyChelsey Crosse
1.4K visualizações42 slides
Models for Heterogeneous Catalysts: complex materials at the atomic level. por
Models for Heterogeneous Catalysts: complex materials at the atomic level.Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.Sociedade Brasileira de Pesquisa em Materiais
2K visualizações55 slides

Mais conteúdo relacionado

Mais procurados

Organic Photovoltaics Thin-Film Processing Considerations por
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
3K visualizações40 slides
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor... por
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Pawan Kumar
56 visualizações11 slides
Graphene Field Effect Transistor por
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect TransistorAhmed AlAskalany
8.5K visualizações49 slides
PPT thesis defense_nikhil por
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhilNikhil Jain
8K visualizações70 slides
Dye sensitized solar cells por
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cellssaromemarzadeh
5K visualizações38 slides
APS march meeting 2012 por
APS march meeting 2012APS march meeting 2012
APS march meeting 2012Po-Chun Yeh
1.4K visualizações26 slides

Mais procurados(20)

Organic Photovoltaics Thin-Film Processing Considerations por cdtpv
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
cdtpv3K visualizações
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor... por Pawan Kumar
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Pawan Kumar56 visualizações
Graphene Field Effect Transistor por Ahmed AlAskalany
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect Transistor
Ahmed AlAskalany8.5K visualizações
PPT thesis defense_nikhil por Nikhil Jain
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhil
Nikhil Jain8K visualizações
Dye sensitized solar cells por saromemarzadeh
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
saromemarzadeh5K visualizações
APS march meeting 2012 por Po-Chun Yeh
APS march meeting 2012APS march meeting 2012
APS march meeting 2012
Po-Chun Yeh1.4K visualizações
Graphene transistors and two-dimensional electronics por Giuseppe Iannaccone
Graphene transistors and two-dimensional electronicsGraphene transistors and two-dimensional electronics
Graphene transistors and two-dimensional electronics
Giuseppe Iannaccone4.1K visualizações
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES por ijrap
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESSimulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
ijrap619 visualizações
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit... por Pawan Kumar
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Pawan Kumar60 visualizações
Ldb Convergenze Parallele_sorba_01 por laboratoridalbasso
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso670 visualizações
OPV Patents - Organext por Julie Leroy
OPV Patents - OrganextOPV Patents - Organext
OPV Patents - Organext
Julie Leroy737 visualizações
Graphene-based Biosensors por Mohamed Labadi
Graphene-based BiosensorsGraphene-based Biosensors
Graphene-based Biosensors
Mohamed Labadi5.9K visualizações
Soft x-ray nanoanalytical tools for thin film organic electronics por Trinity College Dublin
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
Trinity College Dublin990 visualizações
Ptf V8 por guest502601
Ptf V8Ptf V8
Ptf V8
guest502601414 visualizações
Q045068996 por IJERA Editor
Q045068996Q045068996
Q045068996
IJERA Editor160 visualizações
Application of Graphene in electronics por Chinmay Chepurwar
Application of Graphene in electronicsApplication of Graphene in electronics
Application of Graphene in electronics
Chinmay Chepurwar24.7K visualizações
Graphene Based Sensors !!!!!!! por Samrat Mazumdar
Graphene Based Sensors !!!!!!!Graphene Based Sensors !!!!!!!
Graphene Based Sensors !!!!!!!
Samrat Mazumdar3.9K visualizações
ZnO-Nanostructures_Presentation por jeanpierrecf6
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentation
jeanpierrecf610.3K visualizações
Copper (775) - an optics, 2PPE, and Bulk state simulation study por Po-Chun Yeh
Copper (775) - an optics, 2PPE, and Bulk state simulation studyCopper (775) - an optics, 2PPE, and Bulk state simulation study
Copper (775) - an optics, 2PPE, and Bulk state simulation study
Po-Chun Yeh643 visualizações

Similar a Highly efficient organic devices.

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor por
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
2.2K visualizações61 slides
nanothiland2016 por
nanothiland2016nanothiland2016
nanothiland2016KL Woon
468 visualizações30 slides
Dssc (Dye sensitized solar cell) por
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Preeti Choudhary
1.5K visualizações34 slides
Energy storage phosphors @ Phosphor Global Summit 2019 por
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Philippe Smet
387 visualizações39 slides
Transparent conducting oxides for thin film PV por
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVUniversity of Liverpool
5K visualizações44 slides
Transparent Conducting Oxides for Thin Film PV por
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVcdtpv
2.1K visualizações44 slides

Similar a Highly efficient organic devices.(20)

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor por cdtpv
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
cdtpv2.2K visualizações
nanothiland2016 por KL Woon
nanothiland2016nanothiland2016
nanothiland2016
KL Woon468 visualizações
Dssc (Dye sensitized solar cell) por Preeti Choudhary
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)
Preeti Choudhary1.5K visualizações
Energy storage phosphors @ Phosphor Global Summit 2019 por Philippe Smet
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
Philippe Smet387 visualizações
Transparent conducting oxides for thin film PV por University of Liverpool
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
University of Liverpool5K visualizações
Transparent Conducting Oxides for Thin Film PV por cdtpv
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
cdtpv2.1K visualizações
Nanotechnology Progess And Pitfalls por phackettualberta
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfalls
phackettualberta629 visualizações
The Materials Project and computational materials discovery por Anubhav Jain
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
Anubhav Jain665 visualizações
Transparent Electronics por Indrani Jangete
Transparent ElectronicsTransparent Electronics
Transparent Electronics
Indrani Jangete980 visualizações
Transparent Electronics por Indrani Jangete
Transparent ElectronicsTransparent Electronics
Transparent Electronics
Indrani Jangete215 visualizações
Thermally Activated Delayed Fluorescence (TADF) por BISWAJIT KUMAR BARMAN
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)
BISWAJIT KUMAR BARMAN1.2K visualizações
Dye Sensitized Solar cell (DSSC) por shashank chetty
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
shashank chetty44K visualizações
Lecture 7 oms por AllenHermann
Lecture 7 omsLecture 7 oms
Lecture 7 oms
AllenHermann561 visualizações
Pvd final 17 etmm10 mahfooz por Mahfooz Alam
Pvd final 17 etmm10 mahfoozPvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfooz
Mahfooz Alam38 visualizações
Organic Photovoltaic Devices (OPVs) por cdtpv
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)
cdtpv1.3K visualizações
Developments in organic solar cells por Akinola Oyedele
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
Akinola Oyedele15.6K visualizações
DSSC characterization using EIS por chaudharichetan
DSSC characterization using EISDSSC characterization using EIS
DSSC characterization using EIS
chaudharichetan214 visualizações
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL por Amin Salehi
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETLSuppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Amin Salehi268 visualizações
Optical Imaging Probe development por Chalermchai Pilapong
Optical Imaging Probe developmentOptical Imaging Probe development
Optical Imaging Probe development
Chalermchai Pilapong6.5K visualizações

Mais de Sociedade Brasileira de Pesquisa em Materiais

Challenges in Processing of Materials to Reduce Weight of Structural Components. por
Challenges in Processing of Materials to Reduce Weight of Structural Components.Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.Sociedade Brasileira de Pesquisa em Materiais
536 visualizações70 slides
Bioinspired strategies for bone regeneration. por
Bioinspired strategies for bone regeneration.Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.Sociedade Brasileira de Pesquisa em Materiais
273 visualizações72 slides
Sirius: The New Brazilian Synchrotron Light Source. por
Sirius: The New Brazilian Synchrotron Light Source.Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.Sociedade Brasileira de Pesquisa em Materiais
962 visualizações65 slides
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019). por
Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).Sociedade Brasileira de Pesquisa em Materiais
519 visualizações4 slides
Hybrid inorganic/organic semiconductor structures for opto-electronics. por
Hybrid inorganic/organic semiconductor structures for opto-electronics.Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.Sociedade Brasileira de Pesquisa em Materiais
810 visualizações62 slides
Watching flowers through a silicon glass. por
Watching flowers through a silicon glass.Watching flowers through a silicon glass.
Watching flowers through a silicon glass.Sociedade Brasileira de Pesquisa em Materiais
188 visualizações119 slides

Mais de Sociedade Brasileira de Pesquisa em Materiais(20)

Último

Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...ILRI
7 visualizações6 slides
Oral_Presentation_by_Fatma (2).pdf por
Oral_Presentation_by_Fatma (2).pdfOral_Presentation_by_Fatma (2).pdf
Oral_Presentation_by_Fatma (2).pdffatmaalmrzqi
8 visualizações7 slides
Generative AI to Accelerate Discovery of Materials por
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsDeakin University
7 visualizações47 slides
ALGAL PRODUCTS.pptx por
ALGAL PRODUCTS.pptxALGAL PRODUCTS.pptx
ALGAL PRODUCTS.pptxRASHMI M G
7 visualizações17 slides
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx por
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxCyanobacteria as a Biofertilizer (BY- Ayushi).pptx
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxAyushiKardam
5 visualizações13 slides
INTRODUCTION TO PLANT SYSTEMATICS.pptx por
INTRODUCTION TO PLANT SYSTEMATICS.pptxINTRODUCTION TO PLANT SYSTEMATICS.pptx
INTRODUCTION TO PLANT SYSTEMATICS.pptxRASHMI M G
5 visualizações19 slides

Último(20)

Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... por ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI7 visualizações
Oral_Presentation_by_Fatma (2).pdf por fatmaalmrzqi
Oral_Presentation_by_Fatma (2).pdfOral_Presentation_by_Fatma (2).pdf
Oral_Presentation_by_Fatma (2).pdf
fatmaalmrzqi8 visualizações
Generative AI to Accelerate Discovery of Materials por Deakin University
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of Materials
Deakin University7 visualizações
ALGAL PRODUCTS.pptx por RASHMI M G
ALGAL PRODUCTS.pptxALGAL PRODUCTS.pptx
ALGAL PRODUCTS.pptx
RASHMI M G 7 visualizações
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx por AyushiKardam
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxCyanobacteria as a Biofertilizer (BY- Ayushi).pptx
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx
AyushiKardam5 visualizações
INTRODUCTION TO PLANT SYSTEMATICS.pptx por RASHMI M G
INTRODUCTION TO PLANT SYSTEMATICS.pptxINTRODUCTION TO PLANT SYSTEMATICS.pptx
INTRODUCTION TO PLANT SYSTEMATICS.pptx
RASHMI M G 5 visualizações
ELECTRON TRANSPORT CHAIN por DEEKSHA RANI
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
DEEKSHA RANI18 visualizações
Exploring the nature and synchronicity of early cluster formation in the Larg... por Sérgio Sacani
Exploring the nature and synchronicity of early cluster formation in the Larg...Exploring the nature and synchronicity of early cluster formation in the Larg...
Exploring the nature and synchronicity of early cluster formation in the Larg...
Sérgio Sacani1.5K visualizações
Indian council for child welfare por RenuWaghmare2
Indian council for child welfareIndian council for child welfare
Indian council for child welfare
RenuWaghmare211 visualizações
Presentation on experimental laboratory animal- Hamster por Kanika13641
Presentation on experimental laboratory animal- HamsterPresentation on experimental laboratory animal- Hamster
Presentation on experimental laboratory animal- Hamster
Kanika136416 visualizações
Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitor... por Trustlife
Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitor...Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitor...
Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitor...
Trustlife184 visualizações
IMMUNODIAGNOSTICS KITS.pdf por vetrivel303632
IMMUNODIAGNOSTICS KITS.pdfIMMUNODIAGNOSTICS KITS.pdf
IMMUNODIAGNOSTICS KITS.pdf
vetrivel30363231 visualizações
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto... por Sérgio Sacani
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Proto...
Sérgio Sacani787 visualizações
A giant thin stellar stream in the Coma Galaxy Cluster por Sérgio Sacani
A giant thin stellar stream in the Coma Galaxy ClusterA giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy Cluster
Sérgio Sacani23 visualizações
NU-543 Class II Type A2 Biosafety Cabinet por Gaia Science Pte Ltd
NU-543 Class II Type A2 Biosafety CabinetNU-543 Class II Type A2 Biosafety Cabinet
NU-543 Class II Type A2 Biosafety Cabinet
Gaia Science Pte Ltd5 visualizações
Determination of color fastness to rubbing(wet and dry condition) by crockmeter. por ShadmanSakib63
Determination of color fastness to rubbing(wet and dry condition) by crockmeter.Determination of color fastness to rubbing(wet and dry condition) by crockmeter.
Determination of color fastness to rubbing(wet and dry condition) by crockmeter.
ShadmanSakib638 visualizações
BLOTTING TECHNIQUES SPECIAL por MuhammadImranMirza2
BLOTTING TECHNIQUES SPECIALBLOTTING TECHNIQUES SPECIAL
BLOTTING TECHNIQUES SPECIAL
MuhammadImranMirza214 visualizações
Assessment and Evaluation GROUP 3.pdf por kimberlyndelgado18
Assessment and Evaluation GROUP 3.pdfAssessment and Evaluation GROUP 3.pdf
Assessment and Evaluation GROUP 3.pdf
kimberlyndelgado1812 visualizações
ZEBRA FISH: as model organism.pptx por mahimachoudhary0807
ZEBRA FISH: as model organism.pptxZEBRA FISH: as model organism.pptx
ZEBRA FISH: as model organism.pptx
mahimachoudhary080714 visualizações

Highly efficient organic devices.

  • 1. Highly Efficient Organic Devices Karl Leo* Institut für Angewandte Photophysik, TU Dresden, 01062 Dresden, Germany, www.iapp.de * currently: KAUST, Thuwal, Saudi-Arabia XIII Brazilian MRS Meeting 2014 João Pessoa 30.9.2014
  • 2. Acknowledgments • Johannes Widmer • Christian Körner • Chris Elschner • Christoph Schünemann • Wolfgang Tress • Martin Hermenau • Toni Müller • Max Tietze • Selina Olthof • Malte Gather • Simone Hofmann • Tobias Schwab • Moritz Riede Hong-Wei Chang Chung-Chih Wu Xuanhua Li Fengxian Xie Wallace Choy Martin Pfeiffer Karsten Walzer Christian Uhrich Roland Fitzner Egon Reinold Peter Bäuerle University of Ulm Department Organic Chemistry II
  • 3. King Abdullah University of Science and Technology - KAUST
  • 4. King Abdullah University of Science and Technology (KAUST) Solar and Photovoltaics Engineering Research Center (SPERC)
  • 5. Outline • Introduction to Organic Semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 6. Organic Semiconductors • Large area & flexible substrates possible • Large variety: millions of molecules, mostly carbon • Low cost: approx. 1g/m2 active material Photovoltaic cells Organic materials Transistors and memory Organic light emitting diodes
  • 7. Polymers vs small molecules • Polymers: deposition from solution • Small molecules (oligomers): vacuum or solution • OLED: Polymer lost the race (for the moment…) • Solar Cells: Polymer and small molecules on par
  • 8. Some people drink organic semiconductors….. 350 400 450 500 550 600 650 700 3,4 3,2 3,0 2,8 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 Absorption Wellenlänge
  • 9. Carbon: the influence of dimensionality Source: Castro Neto, Geim et al. Van der Waals-coupling: Narrow bands 104 m ob ility 0D 2D covalent broad bands 2D 101 10-2 1D covalent: broad bands 1D
  • 10. Mobility in Organic Semiconductors Typical OLED today! Source: IBM J. Res. Dev.
  • 11. Single crystal electroluminescence • Williams&Schadt 1969 • 100μm Anthracene crystal, 100V voltage
  • 12. First OLED C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
  • 13. First White OLED J. Kido et al, Appl. Phys. Lett. 64, 813 (1993)
  • 14. Time 1st wave: small OLED Display Progression of Organic Products 3rd wave: OLED lighting 2nd wave: OLED TV 4th wave: OPV 5th wave: Organic Electronics
  • 15. OLED Displays on the Market Passive Matrix Philips OLED Shaver • 2013 market: Approx. 10 billion $ (Idtechex) • 100% small molecule OLED • 99% Asian Manufacturers Active Matrix Kodak Camera Samsung phone Nokia phone LG OLED TV
  • 16. iWatch: flexible OLED display Oled-display.net • OLED: ideal for flexible devices • Thin-film encapsulation is challenging • Usual approach: Plastic film coated with multilayer encapsulation system • Diffusion rates must be 106 times lower than for food encapsulation
  • 17. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 18. The pin-OLED structure p i n p-HTL Electron Blocker Hole Blocker Emitter Anode Cathode n-ETL • Device operates in flat-band condition • Carriers are injected through thin space-charge layers
  • 19. AOB F F F F N N N N F4-TCNQ N N N N N N N N Zn S CN CN S Bu Bu S C60 ZnPc S Bu Bu S CN CN DCV5T-Bu Cathode n-doped ETL Photovoltaic active Layer p-doped HTL Anode n i p B. Maennig et al., Appl. Phys. A 79, 1 (2004) M. Riede et al., Nanotechnology 19, 424001 (2008) 4P-TPD Di-NPD 2-TNATA The p-i-n Concept for Organic Solar Cells
  • 20. Basics of Doping: p-doping Inorganic Organic · broad bands · small correlation energies (e-h » 4meV) · hydrogen model works · hopping transport · large correlation (e-h » 0.5 eV) · polaron effects important
  • 21. Quartz monitors Co-evaporation of doped films Substrate Dopant Matrix p » 10-4 Pa Tevap= 100..400 oC TSubs= -50..150 oC d = 25..1000 nm rM» 1 Å/s Dopant/Matrix ratio of 1:2000 achieved
  • 22. UPS/XPS study of doping process • MeO-TPD doped with F4-TCNQ • Molar doping ratio is varied S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 23. Fermi level shift and conductivity change • MeO-TPD doped with F4- TCNQ • Fermi level shift observed in UPS and XPS • Fermi level shifts first very quickly, slope >>kT • Then saturation S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 24. Origin of Saturation: tail states • Fermi level shift is caused by tail states of Gaussian • Distance to HOMO level depends on material • Distance correlates with disorder: smaller in ZnPC, larger in amorphous materials S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 25. Model assuming deep traps • Deep traps with concentration Nt • Energy Et • NA<<Nt: only traps are filled • NA>>Nt: Normal doping M. Tietze et al., Phys. Rev. B86, 025320 (2012)
  • 26. Trap model and experiment • Model describes Fermi level shift reasonably well • Experiment more “smeared out”: broadening of trap state • Concentration and energy of traps can be determined precisely M. Tietze et al., Phys. Rev. B86, 025320 (2012)
  • 27. Molecular n-type doping: a challenge N N N N N N N N Zn N N 3 3.5 Electron Affinity [eV] 4 4.5 OLED OSC C60 NTCDA ZnPc BPhen TCNQ require stronger donors air sensitive donors air stable donors Dopand Matrix Alternative solution: metallic dopants Li, Cs (Kido et al.): unstable at higher temperature
  • 28. Air stable n-dopants • Usual n-dopant are not stable in air • Here: Iodine splits off when evaporated • Strong n-dopant in C60 P. Wei et al., JACS, dx.doi.org/10.1021/ja211382x
  • 29. All-organic device: Red pin OLED at 2.4V Best devices: 1.89V ≈ thermodynamic limit + 20%
  • 30. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 31. Highly Efficient OLEDs Singlet/Triplet ratio Rad. efficiency •The quantum efficiency of OLEDs is given by •The luminous efficacy is defined as [1] Meerheim, PhD Thesis 2009 Charge Balance Outcoupling efficiency Driving voltage Except for outcoupling, everything is close to optimum!
  • 32. Spin Statistics: Phosphorescent Emitters are needed (Thompson & Forrest) hole electron exciton + + + + Triplet Triplet Triplet Singlet • e-h-recombination: 75% triplet- and 25% singlet-excitons • Phosphorescent emitters: triplets are used as well due to spin-orbit coupling by heavy metals (Ir, Pt, Cu…) • ≈ 100% internal quantum efficiency reached
  • 33. Outcoupling Efficiency •Different index of refraction of organic, glas and air •Total reflection at interfaces •80% of all light is trapped in flat device: ξ≈0.2
  • 34. Distribution of Power in Modes 3 •Outcoupled modes •Substrate modes (1) •Organic modes (2) •Plasmonic losses (3)
  • 35. Substrate Modes: Outcoupling easily achieved SSoouurrccee:: TTeemmiiccoonn 3
  • 36. Waveguide Modes Glass ITO Organics Cathode Emitting Center M. Furno et al.
  • 37. Surface Plasmon Modes Glass ITO Organics Cathode M. Furno et al. Emitting Center High Losses due to Coupling to Metal!
  • 38. Distribution of power into different modes • Calculations by Mauro Furno (M. Furno et al. Proc. SPIE 7617, 761716 (2010); Phys. Rev. B 85, 115205 (2012)) • Model includes Purcell effect • Model can be tested by variation of electron transport layer thickness R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 39. Ag (100) Bphen (x) Cs BAlq (10) NPB:Ir(MDQ)2(20) Spiro-TAD (10) MeO-TPD (36) NDP-2 ITO (90) High-n (HI) glass Experiment: High Index Glass R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 40. Ag (100) Bphen (x) Cs BAlq (10) NPB:Ir(MDQ)2(20) Spiro-TAD (10) Up to 54 % EQE (104 lm/W) reached for red OLEDs MeO-TPD (36) NDP-2 ITO (90) High-n (HI) glass Experiment: High Index Glass R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 41. Fabrication of gratings Wallace Choy et al., University of Hongkong
  • 42. OLED on periodically structured substrates  1D grating  Bottom- and top-emitting OLED Tobias Schwab
  • 43. Efficiency Enhancement for Bottom-Emitting OLEDs  EQE increase: Λ = 0.7μm → 1.26 x EQEplanar  increased luminance  comparable leakage [1] Fuchs et al., Optics Express, Vol. 21, Issue 14, pp. 16319-16330 (2013)
  • 44. Bragg Scattering: Theory periodic structure → lattice constant additional intensity to air cone: → reciprocal lattice constant  high order m  large G [1] [1] Salt et al., PRB (2000) Cornelius Fuchs
  • 45. Mode analysis for p-polarization
  • 46. Mode analysis for p-polarization
  • 47. Mode analysis for p-polarization
  • 48. Mode analysis for p-polarization
  • 49. Outcoupling with nanoparticle layers • Polymer film with TiO2 scattering particles • Easy and low-cost preparation • Comparatively smooth layers (RMS=4.5nm) integrated below ITO electrode • Reasonable overlap with waveguide mode (blue) • Small overlap with plasmon mode (red) Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
  • 50. White translucent OLED with NP scattering • White OLED tandem stack • Blue-red triplet harvesting unit • Combined with green phosphorescent unit Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
  • 51. White translucent OLED with NP scattering • Outcoupling without NP layer: EQE 22% / 32 lm/W • With NP layer: 33% EQE / 46 lm/W • With NP and outcoupling sphere: 46% EQE / 62 lm/W O with NP & sphere Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) ● with NP ■ w/o NP
  • 52. Improved angular dependence • OLED with nanoparticles: Emission spectrum virtually angle-independent • Emitter power smoothed to Lambertian distribution • Nanoparticle layer ideal for white devices! Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) ● with NP ■ w/o NP
  • 53. All-phosphorescent white OLED • S. Reineke et al., Nature 459, 234 (2009) • Novel emitter layer design • High-index substrate and higher-order electron transport layer
  • 54. Ag ETL HTL ITO High-n (HI glass) Efficacy for white OLED S. Reineke et al., Nature 459, 234-238 (2009)
  • 56. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 57. © Heliatek Organic Photovoltaics Homogeneous Surface
  • 58. Novel applications possible Source: Solartension
  • 59. Elementary processes in organic solar cells absorption exciton diffusion exciton separation charge transport charge extraction
  • 60. The organic exciton separation problem GaAs exciton • Absorption leads to tightly bound (0.2 … 0.5 eV) excitons • Separation in electric field inefficient • Usual solar cell structure does not work Organic exciton S. E. Gledhill et al. J. Mat Res. 20, 3167 (2005) P. Würfel, CHIMIA 61, 770 (2007)
  • 61. Exciton separation at a heterojunction Flat heterojunction (FHJ) bulk heterojunction (BHJ) C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) J. J. Hall et al., Nature 376, 498 (1995) G. Yu et al. Science 270, 1789 (1995)
  • 62. Exciton diffusion length Exciton diffusion length LD = (10 ±1) nm
  • 63. Exciton separation at a heterojunction Flat heterojunction (FHJ) bulk heterojunction (BHJ) C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) J. J. Hall et al., Nature 376, 498 (1995) G. Yu et al. Science 270, 1789 (1995) Energy loss is unavoidable!
  • 64. Bulk heterojunction: Morphology control • Heterojunction is characterized by complex morphology • Ideally: columnar structure • Reality: disordered mixture with nanodomains
  • 65. • Multi-scale approach needed for materials development • Connection between molecular structure and device performance very complex D. Andrienko How to find the “right” molecule?
  • 66. The thiophene zoo... 3T 4T 5T 6T University of Ulm Department Organic Chemistry II
  • 67. Energy Levels vs. backbone length # thiophene units DCVnT: Fitzner et al., AFM 21, 897 (2011) DCVnT-Bu: Schüppel et al., PRB 77, 085311 (2008)
  • 68. Influence of side chains on energy levels - Only weak effects of side chains in solution - Significant Energy shifts in thin films
  • 69. The thiophene zoo... 3T 4T 5T 6T University of Ulm Department Organic Chemistry II
  • 70. DCV5T-Me: small differences, big effects DCV5T-Me(3,3) [D33] DCV5T-Me(1,1,5,5) [D15] 6.9% 4.8% - almost identical molecular structure - identical stack Chris Elschner
  • 71. GIWAXS single layers glass / DCV5Ts (30 nm) [D33] [D15] - broadened out of plane reflections @ RT - orientation of crystals spreads out, crystal size grows @ 110°C single layer pattern very similar !
  • 72. Tsubstrate GIWAXS blends glass / DCV5Ts : C60 (30 nm, 2:1) RT 80°C 110°C 140°C [D15] [D33] D33 (top): best OSC @80°C, crystallization @110°C D15 (bottom): best OSC @≈110°C (?), crystallization @140°C
  • 73. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) Tsubstrate
  • 74. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) Tsubstrate
  • 75. Interpretation RT intermediate temp. high temp. [D15] > 110°C [D33] > 80°C - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) - surface segregation of DCV → crystallinity → roughness - OSC efficiency 3 5 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 4 0 ° C q < q c r i t i c a l 5 1 0 1 5 2 0 3 0 0 2 5 0 2 0 0 1 5 0 1 0 0 5 0 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 1 0 ° C i n t e n s i t y ( a r b . u n i t s ) 2 q ( ° ) Tsubstrate
  • 76. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) - surface segregation of DCV → crystallinity → roughness - OSC efficiency [D15] > 110°C [D33] > 80°C Tsubstrate
  • 77. 8.3% certified DCV5T cell Rico Meerheim Christian Körner R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 78. 8.3% certified DCV5T cell Rico Meerheim Christian Körner R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 79. Efficiency Outlook Single Cells T. Mueller et al. Main assumptions:  EQE 60%  FF 60% Max efficiency about 15%: 10-12% in module
  • 80. Higher Efficiency for Multijunction Cells M. Graetzel et al., Nature 488, 304 (2012) Shockley-Queisser limit for single junction: 31% Major gains only for Tandem junction: 42% Triple junction: 49% Lower currents/higher voltages reduce electrical losses 42 31
  • 81. first cell second cell e.gap 1.9eV 1.25eV ~21% o.gap ~770nm ~1300nm e.gap 2.1eV 1.5eV ~20% o.gap ~690nm ~1030nm e.gap 2.225eV 1.7eV ~19% o.gap ~645nm ~890nm T. Mueller et al. Efficiency Outlook for Tandem Cells Main assumptions:  EQE 60%  FF 60% >20% for tandem possible!
  • 82. P-i-n tandem cells: • Pn-junction is ideal recombination contact • optimizing interference pattern with conductive transparent layers =>optical engineering on nanometer layer thickness scale n - photoactive layer 2 + - p n photoactive layer 1 p + substrate foil Pin-tandem cells: doped layers are critical for optical optimization J. Drechsel et al., Appl.Phys.Lett. 86, 244102 (2005)
  • 83. High-efficiency thiophene cells Jsc (mA/cm²) 4.80 Voc (V) 2.79 FF (%) 72.4 PCE (%) 9.7 Triple Jsc (mA/cm²) 7.39 Voc (V) 1.88 FF (%) 69.0 PCE (%) 9.6 Tandem Jsc (mA/cm²) 13.20 Voc (V) 0.96 FF (%) 65.8 PCE (%) 8.3 Single R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 84. EQE of triple cell (9.7%) R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 86. Development of OPV Efficiencies diagram available under www.orgworld.de
  • 87. Perovskites: the new kid on the block... diagram available under www.orgworld.de
  • 88. Perovskite „record“ cell H. Zhou et al., Science 345, 542 (2014)
  • 89. Strong hysteresis effects Forward „efficiency“ : 13.08% Reverse „efficiency“: 16.79% H. Zhou et al., Science 345, 542 (2014)
  • 90. Perovskite cells: variation of HTL • p-doped HTL with different alignment • First fully vacuum processed cells: no hysteresis • L. Polander et al., Appl. Phys. Lett. Mat. 2, 081503 (2014) Lauren Polander
  • 91. Solar cell parameters • Optimum molecule: Spiro-MeO-TPD • No hysteresis observed • L. Polander et al., Appl. Phys. Lett. Mater. 2, 081503 (2014)
  • 92. Lifetime of ZnPc:C60 lab cells • Pin structures • Glass-glass encapsulated • Measured unter 2 suns (Roughly) extrapolated lifetime: 37 years! Christiane Falkenberg, PhD thesis, TU Dresden
  • 93. • Heliatek’s foil-encapsulated solar films withstand lifetime tests well above PV industry standard • Degradation after damp-heat stress (85°C, 85% RH): below 3% • Based on commercially available barrier foils • Heliatek propriety encapsulation and sealing process • IEC standard damp heat test Heliatek reliability lab measurement of BDR-based stack, 80 cm² active area Management Presentation Lifetime of flexible module
  • 94. Outdoor test: Singapore Courtesy: Heliatek Material Efficiency kWh/kWp Ratio to CIGS Ratio to c-Si CIGS 9.3% 136 1 c-Si 15.2% 147 1.20 1 mc-Si 8.5% 156 1.27 1.06 Organic 8.6% 187 1.38 1.27 February to April 2012 300 tilt, NW orientation O-Factor: 27% relative to c-Si
  • 95. Cost Calculation: Mass Production • 60m2/min production: ≈ 3 GW/year • P3HT active material, C60 (PCBM) • Ag/Pedot anode • Al cathode • 100% production yield C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
  • 96. Cost distribution Total cost: 7.80 (±2) US$/m2 ≈ 0.05US$/Wattpeak ≈ 0.02US$/kWh* * if system cost can be scaled similarly C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
  • 97. Organic Roll-to-Roll Coater 14 Linear Organic Evaporators BL DC-Magnetron Lineare Ion Source 2 Metal Evaporators Substrate Winder Interleaf Winder Port for Inert Substrate Load Lock cathode EBL HBL EML red EML green EML blue HTL ETL BL 3-color-white pin OLED
  • 98. Conclusions • Organic semiconductors: low mobility, but excellent optoelectronic properties • Organic LED have made tremendous progress; established product for smartphone displays • Remaining challenge for higher efficiency: Optical outcoupling • Internal modes can be outcoupled with suitable scattering structures • Organic solar cells: Efficiencies have grown dramatically • Tandem cells can be easily realized
  • 99. Acknowledgment • L. Burtone, C. Elschner, L. Fang, A. Fischer, J. Fischer, H. Froeb, M. Furno, M. Gather, S. Hofmann, F. Holzmüller, D. Kasemann, C. Körner, B. Lüssem, R. Meerheim, J. Meiss, T. Menke, T. Meyer, T. Mönch, L. Müller-Meskamp , D. Ray, K. Vandewal, S. Reineke, M.K. Riede, C. Sachse , T. Schwab, N. Sergeeva, J. Widmer, S. Ullbrich (IAPP) • K. Fehse C. May, C. Kirchhof, M. Toerker, M. Hoffmann, S. Mogck, C. Lehmann, T. Wanski (FhG-COMEDD) • J. Blochwitz-Nimoth, J. Birnstock, T. Canzler, M. Hummert, S. Murano, M. Vehse, M. Hofmann, Q. Huang, G. He, G. Sorin (Novaled) • M. Pfeiffer, B. Männig, G. Schwartz, T. Müller, C. Uhrich, K. Walzer (Heliatek) • J. Amelung, M. Eritt (Ledon) • D. Gronarz (OES) • R. Fitzner, E. Brier, E. Reinold, A. Mishra, P. Bäuerle (Ulm) • D. Alloway, P.A. Lee, N. Armstrong (Tucson) • K. Schmidt-Zojer (Graz), J.-L. Bredas (Atlanta) • C. Tang (Rochester) • R. Coehoorn, P. Bobbert (Eindhoven) • T. Fritz (Jena) • P. Wei, B. Naab, Z. Bao (Stanford) • D. Wöhrle (Bremen), J. Salbeck (Kassel), H. Hartmann (Merseburg/Dresden) • C.J. Bloom, M. K. Elliott (CSU) • P. Erk et al. (BASF) • BMBF, SMWA, SMWK, DFG, EC, FCI, NEDO
  • 100. Prof. Dr. Karl Leo Institut für Angewandte Photophysik Technische Universität Dresden 01062 Dresden, Germany ph: +49-351-463-37533 or mobile: +49-175- 540-7893 Fax: +49-351-463-37065 email: leo@iapp.de Web page: http://www.iapp.de