SlideShare uma empresa Scribd logo
1 de 15
A Comparison of Hydrogen Gas Production of
Copper and Gold Catalysts for the Water-Gas
Shift Reaction
By: Roman Hodson (rh28397)
Mullins Research Group
Abstract
This experiment used gas chromatography (GC) to determine the H2 production rate for
the Water-Gas Shift Reaction (WGSR) using HiFUEL W220 commercial copper, gold supported
on vanadium oxide (Au/V2O5), and gold supported on cerium oxide (Au/CeO2) catalysts. The
results show that the gold catalysts on a per gram metal basis produced more H2 than the
commercial copper catalyst, which gives credence to the notion that nanoparticle sized gold
displays good catalytic activity for the WGSR. Both the Au/V2O5 and Au/CeO2 display similar
WGSR catalytic behavior.
Introduction
Catalysts are an important aspect of chemical reactions as they increase the rate of reaction
and lower the amount of free energy needed to reach the transition state for a reaction.1 A catalyst
provides an alternate pathway for a reaction with a lowered activation energy, and therefore
increases the rate of reaction with respect to the uncatalyzed process. Figure 1 provides a
hypothetical energy diagram for non-catalyzed and catalyzed pathways.
Figure 1. Activation Energy Barrier1
Catalysts have made their way into industrial processes, as they allow for the creation of products
with the addition of less energy to overcome the activation energy barrier. For example, industry
implements the Haber-Bosch process which uses an iron catalyst treated with potassium hydroxide
as a promoting agent to produce ammonia, an important compound in fertilizer.2 The overall
reaction for ammonia production is shown in Scheme I, and the flow scheme for the Haber-Bosch
process is outlined in Figure 2.2
N2(g) + 3H2 ↔ 2NH3 (g) ΔH = -92 kJ mol-1 (I)
Figure 2. Outline of Haber-Bosch process3
The Haber-Bosch process combines nitrogen from the air and hydrogen gas, derived mainly from
methane, in a reversible exothermic reaction.3 In addition, the creation of ammonia is performed
at high temperatures even though the reaction is exothermic, in order to overcome kinetic
limitations, as at lower temperatures the reaction proceeds at a slower rate.3 Also, the reaction is
held at high pressures, around 200 atm, so that the nitrogen and hydrogen molecules have a greater
chance of interacting, which ultimately increases the production rate of ammonia.3
In 2007, scientist Gerhard Ertl elucidated the mechanism and reaction energy diagram for
the synthesis of ammonia.2 The reaction energy diagram for the synthesis of ammonia is provided
in Figure 3.
Figure 3. Reaction energy diagram for synthesis of ammonia2
Scientific findings like Ertl’s provide better insight into reaction kinetics, which help to provide
information as to how to maximize products for reactions by using the least amount of energy
needed.
An increased rate of reaction can imply a lowered activation energy. However, when
comparing two catalysts, an increase in the observed rate of reaction may also indicate a greater
number of active sites. An active site is a location on a catalyst where the reactant or reactant binds,
which facilitates the reaction by providing a more suitable chemical environment for the reaction
to occur.4 For example, in biological processes, a substrate binds to an enzyme (the catalyst), which
facilitates a reaction.4 This induced fit model is shown in Figure 4.
Figure 4. Induced fit model4
While the number of active sites and lowered activation energy cannot be totally distinguished
from one another, Equations 1 and 2 relate the rate of production to the activation energy
𝑟𝑎𝑡𝑒 = 𝑘[ 𝐴][ 𝐵] (1)
𝑘 = 𝐴𝑒
−𝐸 𝑎
𝑅𝑇 (2)
where k is the rate constant (M-1s-1), [A] and [B] are the concentration of reactants (M), Ea is the
activation energy (kJ mol-1), R is a constant (0.0083145 kJ K-1 mol-1), T is the temperature (K),
and the rate is given in M s-1. By using an Arrhenius plot, the ln(k) versus 1/T is plotted, which
provides a linear fit with a slope of –Ea/R, from which the activation energy can be calculated. A
generalized Arrhenius plot is provided in Figure 5.
Figure 5. Ideal Arrhenius Plot5
For many years, gold was believed to not have any catalytic properties, as it is normally an
inert material.5 However, in recent years, gold has shown catalytic properties when the particle
sizes are on the nano-scale.6 Gold catalysis is normally performed using gold nanoparticles
deposited on a support material.6 Normally, the support material is a metal oxide which can have
catalytic properties of its own. A study by Wu et. al states that a metal oxide support with a metal
deposited on it creates new catalytic activity, which can be engineered geometrically to facilitate
oxidation, hydrogenation, and coupling reactions.7
One of the techniques used to deposit the gold nanoparticles on the support material is
known as strong electrostatic adsorption, which is based on attraction due to differences in
electrostatic charge.8 Strong electrostatic adsorption is a wet laboratory technique performed at a
pH where the electrostatic interaction between the catalyst and support material is strongest.8
Figure 6 shows the adsorption of metals based on the pH of solution, as indicated by the Jiao et. al
study.
Figure 6. Strong electrostatic adsorption8
Strong electrostatic adsorption consists of suspending a support material, such as V2O5
(vanadia) on which the gold can deposit, in solution of dissolved gold precursor. Then, by adjusting
the pH, the metal precursor can adsorb to the support material due to electrostatic interactions.8
Vanadia in solution forms hydroxyls on its surface when dissolved in water. Therefore, at pH
values above the isoelectric point, these hydroxyls become deprotonated, and the vanadia surface
becomes negatively charged. However, vanadia has a low isoelectric point, and its hydroxyls
become deprotonated at pH values near 3. By using a positively charged gold precursor, the gold
can deposit successfully onto the support material. In the case of the strong electrostatic adsorption
performed in this report, the gold precursor employed was Au(en)2Cl3.
These findings have led to the testing of nanoparticle sized gold as a catalyst with processes
such as the Water-Gas Shift Reaction (WGSR). The WGSR is an industrial process which converts
carbon monoxide and water into carbon dioxide and hydrogen gas, as shown in Scheme II.9
CO + H2O → H2 + CO2 (II)
The WGSR is an important industrial process, as it is a component of fuel processing for fuel cell
applications.10 Industrially, this process is carried out in two steps, each using a different metal
catalyst. The first stage of the process is carried out at high temperatures, ranging from 573-673
K, using an iron catalyst.9 However, this stage is thermodynamically hindered as the WGSR is an
exothermic process (∆H = -41.4kJ mol-1).9 To increase the production, a second lower temperature
step, ranging from 473-523 K, is run using a copper catalyst.9 This second step is kinetically
limited. Because of these thermodynamic and kinetic obstacles, gold has been tested as a catalyst
for the WGSR at lower temperatures in this particular experiment, and has shown good catalytic
activity.
The goal of this particular experiment is to compare the rate of H2 production for the WGSR
for Au/V2O5, Au/CeO2, and copper catalysts, as well as to determine the WGSR activation energy
for each catalyst. By calculating H2 production on a per gram basis for each catalyst, the rate of
production can be determined. This rate of production can then be used to determine the WGSR
activation energy for each catalyst.
Experimental
The first part of this experimental procedure consisted of depositing gold on to the support
materials through strong electrostatic adsorption (SEA). For the Au/V2O5 catalyst, the first step in
the SEA procedure was dissolving 43 mg of a Au(en)2Cl3 precursor in 150 mL H2O, and placing
the resulting solution in a roundbottom flask. Then, the pH was adjusted to a pH of 6 by the
addition of 1 M Na2CO3. After adjusting the pH, 2 g of vanadia was added to the solution, and was
stirred for 2 hours while keeping the pH near a value of 6. After the two hours passed, the solution
was then centrifuged, and its supernatant was discarded. The resulting solid was then washed and
centrifuged with deionized water three times, and was then placed in a vacuum oven at room
temperature overnight. The SEA procedure for the Au/CeO2 catalyst was the same for the
Au/V2O5, except the gold precursor was 1.66 mg of HAuCl4 in 35 mL H2O, with 1 g of the CeO2
support material.
After the synthesis of the catalysts, the WGSR was analyzed using the gas chromatogram
(GC). For the Au/V2O5 catalyst WGSR, 100 mg of the catalyst was loaded into a quartz tube and
placed in the reactor system, with a water trap placed at the base to collect water vapor. After
loading the catalyst, it underwent a pretreatment step where the temperature of the system was
raised to 300 oC at a ramp rate of 5 oC/min in a flow rate of 60 standard cubic centimeters per
minute (sccm) of H2 and 16 sccm of H2O. The temperature was held at 300 oC for a total of 2
hours. After the two hours passed, the system was cooled to 100 oC in an Ar flow of 131 sccm.
After the pretreatment steps, the WGSR was run. First, the flow rates of the gases were changed
to 3 sccm CO, 16 sccm H2O, and 131 sccm Ar, with 11.8 μL/min H2O. The effluent was then
sampled every 10 minutes at temperatures of 100 oC, 200 oC, and 300 oC, with its H2 production
observed on the chromatogram. This process was repeated for both the Au/CeO2 and copper
catalysts. After the chromatograms for each catalyst were collected, they were analyzed using
Origin software. By integrating the chromatogram peaks corresponding to the different products,
the values were converted into H2 production in units of cc/(g-Au-hr) using a calibration curve.
Results and Discussion
In the WGSR run in this report, an indicator of a good catalytic activity is determined by
the rate of production of H2. The H2 rate of production of the catalysts on a per gram basis is shown
in Figures 1-3.
Figure 1. H2 rate of production of Cu commercial catalyst
Figure 2. H2 rate of production of Au/CeO2 catalyst
0
500
1000
1500
2000
2500
0 50 100 150 200 250 300 350
H2RateofProduction(cc/(g-Cu-hr))
Temperature (°C)
100 C
200 C
300 C
0
1000
2000
3000
4000
5000
6000
7000
0 50 100 150 200 250 300 350
H2RateofProduction(cc/(g-Au-hr))
Temperature (°C)
100 C
200 C
300 C
Figure 3. H2 rate of production of Au/V2O5 catalyst
Figures 1-3 show that the Au/V2O5 catalyst produces the most H2 on a per gram basis, and that the
commercial copper catalyst produces the least H2 on a per gram basis. Figures 4-6 provide the
Arrhenius plots used to find the activation energies of the reactions, shown in Table 1.
Figure 4. Copper catalyst Arrhenius plot
0
2000
4000
6000
8000
10000
12000
14000
0 50 100 150 200 250 300 350
H2RateofProduction(cc/(g-Au-hr))
Temperature (°C)
100 C
200 C
300 C
y = -4683.8x + 16.103
R² = 0.9024
2
3
4
5
6
7
8
9
10
0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029
ln(k)
1/T (Kelvin)
Figure 5. Au/CeO2 catalyst Arrhenius plot
Figure 6. Au/V2O5 catalyst Arrhenius plot
y = -3722.8x + 15.305
R² = 0.9938
2
3
4
5
6
7
8
9
10
0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029
ln(k)
1/T (Kelvin)
y = -4751.7x + 17.807
R² = 0.9922
2
3
4
5
6
7
8
9
10
0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029
ln(k)
1/T (Kelvin)
Table 1. Activation energies of catalysts
Catalyst Activation Energy (kJ mol-1)
Copper 38.94346
Au/CeO2 30.95322
Au/V2O5 39.51039
Table 1 shows that the activation energy of the Au/CeO2 catalyst is the lowest, and the activation
energy of Au/V2O5 is the highest. However, the R2 value for the copper catalyst is not close to 1,
which means that the activation energy calculated from the Arrhenius plot in Figure 4 is not
reliable. While the activation energy for Au/V2O5 is greater than the activation energy for
Au/CeO2, the H2 rate of production is greater for Au/V2O5 than that of Au/CeO2. A greater H2 rate
of production indicates a greater number of active sites. On another note, the activation energies
are similar to the activation energy found in literature, of 40 kJ mol-1.11 In essence, these results
are promising as they show that the gold catalysts are more productive than the commercial copper
catalyst on a per gram basis.
Conclusion
The data from this experiment provides good information concerning the WGSR. The
results show that on a per gram basis, the gold catalysts have a greater H2 production rate than the
commercial copper catalyst, which strengthens the argument that gold nanoparticles are a viable
option as catalysts. In addition, the greatest activation energy was found to be for the Au/V2O5,
and the smallest activation energy was found to be for the Au/CeO2 catalyst. However, the
Au/V2O5 catalyst may have more active sites, as the H2 production rate observed over Au/V2O5 is
higher than Au/CeO2.
References
1. Jim Clark. (n.d.). The Effect of Catalysts on Reaction Rates. Retrieved March 23, 2015, from
http://www.chemguide.co.uk/physical/basicrates/catalyst.html
2. The Essential Chemical Industry. (n.d.). Catalysis in Industry. Retrieved March 23, 2015,
from http://www.essentialchemicalindustry.org/processes/catalysis-in-industry.html
3. ChemGuide. (n.d.). Haber Process [Image]. Retrieved from
http://www.chemguide.co.uk/physical/equilibria/haber.html
4. Campbell, N. Biology. 4th ed. Menlo Park, California: Benjamin/Cummings, 1996
5. Gonzaga. (n.d.). Chemical Kinetics: Temperature Effects. Retrieved March 23, 2015, from
http://guweb2.gonzaga.edu/faculty/cronk/CHEM240pub/L22-index.cfm
6. Oak Ridge National Library. (n.d.). Catalytic Gold Nanoclusters Promise Rich Chemical
Yields. Retrieved March 23, 2015, from http://www.ornl.gov/ornl/news/features/2014/catalytic-
gold-nanoclusters-promise-rich-chemical-yields
7. Wu, Z.; Jiang, D.; Mann, A.; Mullins, D.; Qiao, Z.-A.; Allard, L.; Zeng, C.; Jin, R.; Overbury,
S. Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2-Supported
Au25(SCH2CH2Ph)18Nanoclusters. J. Am. Chem. Soc. 2014, 136(16), 6111.
8. Jiao, L., & Regalbuto, J. R. (2008). The synthesis of highly dispersed noble and base metals on
silica via strong electrostatic adsorption: I. Amorphous silica. Journal of Catalysis, (260), 329-
341.
9. Gong, J., Mullen, G. M., Mullins, C. B., Pan, M., & Yan, T. (2013). The Effects of Adsorbed
Water on Gold Catalysis and Surface Chemistry. Top Catalysis, 56, 1499-1511.
10. Center for Catalyst Design. (n.d.). Water-Gas Shift Reaction. Retrieved March 23, 2015,
from https://engineering.purdue.edu/CCD/index.php?page=wgs
11. Meunier, F. C., Reid, D., Goguet, A., Shekhtman, S., Hardacre, C., Burch, R., . . . Flytzani-
Stephanopoulos, M. (2007). Quantitative analysis of the reactivity of formate species seen by
DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: First unambiguous evidence of the
minority role of formates as reaction intermediates. Journal of Catalysis, 247(2), 277-287.

Mais conteúdo relacionado

Mais procurados

Measurements of differential capacitance in room temperature
Measurements of differential capacitance in room temperatureMeasurements of differential capacitance in room temperature
Measurements of differential capacitance in room temperatureSandra Amorim
 
Harcourt-Essen Reaction
Harcourt-Essen ReactionHarcourt-Essen Reaction
Harcourt-Essen ReactionRafia Aslam
 
Fac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) ComplexesFac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) ComplexesRafia Aslam
 
Chemistry revision form 5=form 5 topics
Chemistry revision form 5=form 5 topicsChemistry revision form 5=form 5 topics
Chemistry revision form 5=form 5 topicsMRSMPC
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Arash Nasiri
 
AP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesAP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesJane Hamze
 
Pollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoPollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoimplax
 
Chemical Reactions: Thermochemistry
Chemical Reactions: ThermochemistryChemical Reactions: Thermochemistry
Chemical Reactions: Thermochemistryulcerd
 
IA Design and interesting reseach questions
IA Design and interesting reseach questionsIA Design and interesting reseach questions
IA Design and interesting reseach questionsLawrence kok
 
1.4 rate of reaction(1.2d)...biology
1.4 rate of reaction(1.2d)...biology1.4 rate of reaction(1.2d)...biology
1.4 rate of reaction(1.2d)...biologypre u
 
A simple simulation model for oxidative coupling of methane
A simple simulation model for oxidative coupling of methaneA simple simulation model for oxidative coupling of methane
A simple simulation model for oxidative coupling of methaneAlexander Decker
 
AP Chemistry Chapter 5 Sample Exercise
AP Chemistry Chapter 5 Sample ExerciseAP Chemistry Chapter 5 Sample Exercise
AP Chemistry Chapter 5 Sample ExerciseJane Hamze
 
Reaction rates (Examville.com)
Reaction rates (Examville.com)Reaction rates (Examville.com)
Reaction rates (Examville.com)JSlinkyNY
 

Mais procurados (18)

Measurements of differential capacitance in room temperature
Measurements of differential capacitance in room temperatureMeasurements of differential capacitance in room temperature
Measurements of differential capacitance in room temperature
 
Ferrous and non-ferrous extractive metallurgy
Ferrous and non-ferrous extractive metallurgyFerrous and non-ferrous extractive metallurgy
Ferrous and non-ferrous extractive metallurgy
 
Harcourt-Essen Reaction
Harcourt-Essen ReactionHarcourt-Essen Reaction
Harcourt-Essen Reaction
 
Fac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) ComplexesFac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) Complexes
 
Chemistry revision form 5=form 5 topics
Chemistry revision form 5=form 5 topicsChemistry revision form 5=form 5 topics
Chemistry revision form 5=form 5 topics
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
 
Thermo Lecture no.5
Thermo Lecture no.5Thermo Lecture no.5
Thermo Lecture no.5
 
AP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesAP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample Exercises
 
Pollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoPollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over mono
 
gaseous state
gaseous stategaseous state
gaseous state
 
Chemical Reactions: Thermochemistry
Chemical Reactions: ThermochemistryChemical Reactions: Thermochemistry
Chemical Reactions: Thermochemistry
 
IA Design and interesting reseach questions
IA Design and interesting reseach questionsIA Design and interesting reseach questions
IA Design and interesting reseach questions
 
1.4 rate of reaction(1.2d)...biology
1.4 rate of reaction(1.2d)...biology1.4 rate of reaction(1.2d)...biology
1.4 rate of reaction(1.2d)...biology
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
Ellingham diagram
Ellingham diagramEllingham diagram
Ellingham diagram
 
A simple simulation model for oxidative coupling of methane
A simple simulation model for oxidative coupling of methaneA simple simulation model for oxidative coupling of methane
A simple simulation model for oxidative coupling of methane
 
AP Chemistry Chapter 5 Sample Exercise
AP Chemistry Chapter 5 Sample ExerciseAP Chemistry Chapter 5 Sample Exercise
AP Chemistry Chapter 5 Sample Exercise
 
Reaction rates (Examville.com)
Reaction rates (Examville.com)Reaction rates (Examville.com)
Reaction rates (Examville.com)
 

Semelhante a Gold and Copper Catalysts for Hydrogen Production

Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Pengcheng Li
 
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx CatalystRemoval of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalystinventy
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...Ary Assuncao
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)52900339
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...52900339
 
ET Presentation - 2019BCHE024.pptx
ET Presentation - 2019BCHE024.pptxET Presentation - 2019BCHE024.pptx
ET Presentation - 2019BCHE024.pptxSartajSagroo
 
Aq31101108
Aq31101108Aq31101108
Aq31101108IJMER
 
Hydrogen Production ppt.pptx
Hydrogen Production ppt.pptxHydrogen Production ppt.pptx
Hydrogen Production ppt.pptxMdHelalHossain6
 
Formulation and operation of a Nickel based methanation catalyst
Formulation and operation of a Nickel based methanation catalystFormulation and operation of a Nickel based methanation catalyst
Formulation and operation of a Nickel based methanation catalystSakib Shahriar
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...IJRESJOURNAL
 
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...Science Padayatchi
 
plasma arc reactor
plasma arc reactor plasma arc reactor
plasma arc reactor Sagar Savale
 
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysis
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysisHYDROGEN : HYDROGEN production, electolysis,photoelectrolysis
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysisbrijsharma3371
 
Madkour-1986-Journal_of_Chemical_Technology_and_Biotechnology
Madkour-1986-Journal_of_Chemical_Technology_and_BiotechnologyMadkour-1986-Journal_of_Chemical_Technology_and_Biotechnology
Madkour-1986-Journal_of_Chemical_Technology_and_BiotechnologyAl Baha University
 
Madkour 1986-journal of-chemical_technology_and_biotechnology
Madkour 1986-journal of-chemical_technology_and_biotechnologyMadkour 1986-journal of-chemical_technology_and_biotechnology
Madkour 1986-journal of-chemical_technology_and_biotechnologyAl Baha University
 

Semelhante a Gold and Copper Catalysts for Hydrogen Production (20)

silver
silversilver
silver
 
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
 
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx CatalystRemoval of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
 
10.1007_s10008-015-2847-2
10.1007_s10008-015-2847-210.1007_s10008-015-2847-2
10.1007_s10008-015-2847-2
 
nitrate
nitratenitrate
nitrate
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
 
ET Presentation - 2019BCHE024.pptx
ET Presentation - 2019BCHE024.pptxET Presentation - 2019BCHE024.pptx
ET Presentation - 2019BCHE024.pptx
 
Aq31101108
Aq31101108Aq31101108
Aq31101108
 
Hydrogen Production ppt.pptx
Hydrogen Production ppt.pptxHydrogen Production ppt.pptx
Hydrogen Production ppt.pptx
 
Formulation and operation of a Nickel based methanation catalyst
Formulation and operation of a Nickel based methanation catalystFormulation and operation of a Nickel based methanation catalyst
Formulation and operation of a Nickel based methanation catalyst
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
 
c3ra40511g
c3ra40511gc3ra40511g
c3ra40511g
 
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...
Synthesis and-optimisation-of-ir o-2-electrocatalysts-by-adams-fusion-method-...
 
plasma arc reactor
plasma arc reactor plasma arc reactor
plasma arc reactor
 
Fuel Cell
Fuel CellFuel Cell
Fuel Cell
 
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysis
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysisHYDROGEN : HYDROGEN production, electolysis,photoelectrolysis
HYDROGEN : HYDROGEN production, electolysis,photoelectrolysis
 
Madkour-1986-Journal_of_Chemical_Technology_and_Biotechnology
Madkour-1986-Journal_of_Chemical_Technology_and_BiotechnologyMadkour-1986-Journal_of_Chemical_Technology_and_Biotechnology
Madkour-1986-Journal_of_Chemical_Technology_and_Biotechnology
 
Madkour 1986-journal of-chemical_technology_and_biotechnology
Madkour 1986-journal of-chemical_technology_and_biotechnologyMadkour 1986-journal of-chemical_technology_and_biotechnology
Madkour 1986-journal of-chemical_technology_and_biotechnology
 

Gold and Copper Catalysts for Hydrogen Production

  • 1. A Comparison of Hydrogen Gas Production of Copper and Gold Catalysts for the Water-Gas Shift Reaction By: Roman Hodson (rh28397) Mullins Research Group
  • 2. Abstract This experiment used gas chromatography (GC) to determine the H2 production rate for the Water-Gas Shift Reaction (WGSR) using HiFUEL W220 commercial copper, gold supported on vanadium oxide (Au/V2O5), and gold supported on cerium oxide (Au/CeO2) catalysts. The results show that the gold catalysts on a per gram metal basis produced more H2 than the commercial copper catalyst, which gives credence to the notion that nanoparticle sized gold displays good catalytic activity for the WGSR. Both the Au/V2O5 and Au/CeO2 display similar WGSR catalytic behavior. Introduction Catalysts are an important aspect of chemical reactions as they increase the rate of reaction and lower the amount of free energy needed to reach the transition state for a reaction.1 A catalyst provides an alternate pathway for a reaction with a lowered activation energy, and therefore increases the rate of reaction with respect to the uncatalyzed process. Figure 1 provides a hypothetical energy diagram for non-catalyzed and catalyzed pathways. Figure 1. Activation Energy Barrier1
  • 3. Catalysts have made their way into industrial processes, as they allow for the creation of products with the addition of less energy to overcome the activation energy barrier. For example, industry implements the Haber-Bosch process which uses an iron catalyst treated with potassium hydroxide as a promoting agent to produce ammonia, an important compound in fertilizer.2 The overall reaction for ammonia production is shown in Scheme I, and the flow scheme for the Haber-Bosch process is outlined in Figure 2.2 N2(g) + 3H2 ↔ 2NH3 (g) ΔH = -92 kJ mol-1 (I) Figure 2. Outline of Haber-Bosch process3 The Haber-Bosch process combines nitrogen from the air and hydrogen gas, derived mainly from methane, in a reversible exothermic reaction.3 In addition, the creation of ammonia is performed at high temperatures even though the reaction is exothermic, in order to overcome kinetic limitations, as at lower temperatures the reaction proceeds at a slower rate.3 Also, the reaction is
  • 4. held at high pressures, around 200 atm, so that the nitrogen and hydrogen molecules have a greater chance of interacting, which ultimately increases the production rate of ammonia.3 In 2007, scientist Gerhard Ertl elucidated the mechanism and reaction energy diagram for the synthesis of ammonia.2 The reaction energy diagram for the synthesis of ammonia is provided in Figure 3. Figure 3. Reaction energy diagram for synthesis of ammonia2 Scientific findings like Ertl’s provide better insight into reaction kinetics, which help to provide information as to how to maximize products for reactions by using the least amount of energy needed. An increased rate of reaction can imply a lowered activation energy. However, when comparing two catalysts, an increase in the observed rate of reaction may also indicate a greater
  • 5. number of active sites. An active site is a location on a catalyst where the reactant or reactant binds, which facilitates the reaction by providing a more suitable chemical environment for the reaction to occur.4 For example, in biological processes, a substrate binds to an enzyme (the catalyst), which facilitates a reaction.4 This induced fit model is shown in Figure 4. Figure 4. Induced fit model4 While the number of active sites and lowered activation energy cannot be totally distinguished from one another, Equations 1 and 2 relate the rate of production to the activation energy 𝑟𝑎𝑡𝑒 = 𝑘[ 𝐴][ 𝐵] (1) 𝑘 = 𝐴𝑒 −𝐸 𝑎 𝑅𝑇 (2) where k is the rate constant (M-1s-1), [A] and [B] are the concentration of reactants (M), Ea is the activation energy (kJ mol-1), R is a constant (0.0083145 kJ K-1 mol-1), T is the temperature (K),
  • 6. and the rate is given in M s-1. By using an Arrhenius plot, the ln(k) versus 1/T is plotted, which provides a linear fit with a slope of –Ea/R, from which the activation energy can be calculated. A generalized Arrhenius plot is provided in Figure 5. Figure 5. Ideal Arrhenius Plot5 For many years, gold was believed to not have any catalytic properties, as it is normally an inert material.5 However, in recent years, gold has shown catalytic properties when the particle sizes are on the nano-scale.6 Gold catalysis is normally performed using gold nanoparticles deposited on a support material.6 Normally, the support material is a metal oxide which can have catalytic properties of its own. A study by Wu et. al states that a metal oxide support with a metal deposited on it creates new catalytic activity, which can be engineered geometrically to facilitate oxidation, hydrogenation, and coupling reactions.7 One of the techniques used to deposit the gold nanoparticles on the support material is known as strong electrostatic adsorption, which is based on attraction due to differences in electrostatic charge.8 Strong electrostatic adsorption is a wet laboratory technique performed at a pH where the electrostatic interaction between the catalyst and support material is strongest.8
  • 7. Figure 6 shows the adsorption of metals based on the pH of solution, as indicated by the Jiao et. al study. Figure 6. Strong electrostatic adsorption8 Strong electrostatic adsorption consists of suspending a support material, such as V2O5 (vanadia) on which the gold can deposit, in solution of dissolved gold precursor. Then, by adjusting the pH, the metal precursor can adsorb to the support material due to electrostatic interactions.8 Vanadia in solution forms hydroxyls on its surface when dissolved in water. Therefore, at pH values above the isoelectric point, these hydroxyls become deprotonated, and the vanadia surface becomes negatively charged. However, vanadia has a low isoelectric point, and its hydroxyls become deprotonated at pH values near 3. By using a positively charged gold precursor, the gold can deposit successfully onto the support material. In the case of the strong electrostatic adsorption performed in this report, the gold precursor employed was Au(en)2Cl3. These findings have led to the testing of nanoparticle sized gold as a catalyst with processes such as the Water-Gas Shift Reaction (WGSR). The WGSR is an industrial process which converts carbon monoxide and water into carbon dioxide and hydrogen gas, as shown in Scheme II.9 CO + H2O → H2 + CO2 (II)
  • 8. The WGSR is an important industrial process, as it is a component of fuel processing for fuel cell applications.10 Industrially, this process is carried out in two steps, each using a different metal catalyst. The first stage of the process is carried out at high temperatures, ranging from 573-673 K, using an iron catalyst.9 However, this stage is thermodynamically hindered as the WGSR is an exothermic process (∆H = -41.4kJ mol-1).9 To increase the production, a second lower temperature step, ranging from 473-523 K, is run using a copper catalyst.9 This second step is kinetically limited. Because of these thermodynamic and kinetic obstacles, gold has been tested as a catalyst for the WGSR at lower temperatures in this particular experiment, and has shown good catalytic activity. The goal of this particular experiment is to compare the rate of H2 production for the WGSR for Au/V2O5, Au/CeO2, and copper catalysts, as well as to determine the WGSR activation energy for each catalyst. By calculating H2 production on a per gram basis for each catalyst, the rate of production can be determined. This rate of production can then be used to determine the WGSR activation energy for each catalyst. Experimental The first part of this experimental procedure consisted of depositing gold on to the support materials through strong electrostatic adsorption (SEA). For the Au/V2O5 catalyst, the first step in the SEA procedure was dissolving 43 mg of a Au(en)2Cl3 precursor in 150 mL H2O, and placing the resulting solution in a roundbottom flask. Then, the pH was adjusted to a pH of 6 by the addition of 1 M Na2CO3. After adjusting the pH, 2 g of vanadia was added to the solution, and was stirred for 2 hours while keeping the pH near a value of 6. After the two hours passed, the solution was then centrifuged, and its supernatant was discarded. The resulting solid was then washed and
  • 9. centrifuged with deionized water three times, and was then placed in a vacuum oven at room temperature overnight. The SEA procedure for the Au/CeO2 catalyst was the same for the Au/V2O5, except the gold precursor was 1.66 mg of HAuCl4 in 35 mL H2O, with 1 g of the CeO2 support material. After the synthesis of the catalysts, the WGSR was analyzed using the gas chromatogram (GC). For the Au/V2O5 catalyst WGSR, 100 mg of the catalyst was loaded into a quartz tube and placed in the reactor system, with a water trap placed at the base to collect water vapor. After loading the catalyst, it underwent a pretreatment step where the temperature of the system was raised to 300 oC at a ramp rate of 5 oC/min in a flow rate of 60 standard cubic centimeters per minute (sccm) of H2 and 16 sccm of H2O. The temperature was held at 300 oC for a total of 2 hours. After the two hours passed, the system was cooled to 100 oC in an Ar flow of 131 sccm. After the pretreatment steps, the WGSR was run. First, the flow rates of the gases were changed to 3 sccm CO, 16 sccm H2O, and 131 sccm Ar, with 11.8 μL/min H2O. The effluent was then sampled every 10 minutes at temperatures of 100 oC, 200 oC, and 300 oC, with its H2 production observed on the chromatogram. This process was repeated for both the Au/CeO2 and copper catalysts. After the chromatograms for each catalyst were collected, they were analyzed using Origin software. By integrating the chromatogram peaks corresponding to the different products, the values were converted into H2 production in units of cc/(g-Au-hr) using a calibration curve. Results and Discussion In the WGSR run in this report, an indicator of a good catalytic activity is determined by the rate of production of H2. The H2 rate of production of the catalysts on a per gram basis is shown in Figures 1-3.
  • 10. Figure 1. H2 rate of production of Cu commercial catalyst Figure 2. H2 rate of production of Au/CeO2 catalyst 0 500 1000 1500 2000 2500 0 50 100 150 200 250 300 350 H2RateofProduction(cc/(g-Cu-hr)) Temperature (°C) 100 C 200 C 300 C 0 1000 2000 3000 4000 5000 6000 7000 0 50 100 150 200 250 300 350 H2RateofProduction(cc/(g-Au-hr)) Temperature (°C) 100 C 200 C 300 C
  • 11. Figure 3. H2 rate of production of Au/V2O5 catalyst Figures 1-3 show that the Au/V2O5 catalyst produces the most H2 on a per gram basis, and that the commercial copper catalyst produces the least H2 on a per gram basis. Figures 4-6 provide the Arrhenius plots used to find the activation energies of the reactions, shown in Table 1. Figure 4. Copper catalyst Arrhenius plot 0 2000 4000 6000 8000 10000 12000 14000 0 50 100 150 200 250 300 350 H2RateofProduction(cc/(g-Au-hr)) Temperature (°C) 100 C 200 C 300 C y = -4683.8x + 16.103 R² = 0.9024 2 3 4 5 6 7 8 9 10 0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029 ln(k) 1/T (Kelvin)
  • 12. Figure 5. Au/CeO2 catalyst Arrhenius plot Figure 6. Au/V2O5 catalyst Arrhenius plot y = -3722.8x + 15.305 R² = 0.9938 2 3 4 5 6 7 8 9 10 0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029 ln(k) 1/T (Kelvin) y = -4751.7x + 17.807 R² = 0.9922 2 3 4 5 6 7 8 9 10 0.0015 0.0017 0.0019 0.0021 0.0023 0.0025 0.0027 0.0029 ln(k) 1/T (Kelvin)
  • 13. Table 1. Activation energies of catalysts Catalyst Activation Energy (kJ mol-1) Copper 38.94346 Au/CeO2 30.95322 Au/V2O5 39.51039 Table 1 shows that the activation energy of the Au/CeO2 catalyst is the lowest, and the activation energy of Au/V2O5 is the highest. However, the R2 value for the copper catalyst is not close to 1, which means that the activation energy calculated from the Arrhenius plot in Figure 4 is not reliable. While the activation energy for Au/V2O5 is greater than the activation energy for Au/CeO2, the H2 rate of production is greater for Au/V2O5 than that of Au/CeO2. A greater H2 rate of production indicates a greater number of active sites. On another note, the activation energies are similar to the activation energy found in literature, of 40 kJ mol-1.11 In essence, these results are promising as they show that the gold catalysts are more productive than the commercial copper catalyst on a per gram basis. Conclusion The data from this experiment provides good information concerning the WGSR. The results show that on a per gram basis, the gold catalysts have a greater H2 production rate than the commercial copper catalyst, which strengthens the argument that gold nanoparticles are a viable option as catalysts. In addition, the greatest activation energy was found to be for the Au/V2O5, and the smallest activation energy was found to be for the Au/CeO2 catalyst. However, the
  • 14. Au/V2O5 catalyst may have more active sites, as the H2 production rate observed over Au/V2O5 is higher than Au/CeO2. References 1. Jim Clark. (n.d.). The Effect of Catalysts on Reaction Rates. Retrieved March 23, 2015, from http://www.chemguide.co.uk/physical/basicrates/catalyst.html 2. The Essential Chemical Industry. (n.d.). Catalysis in Industry. Retrieved March 23, 2015, from http://www.essentialchemicalindustry.org/processes/catalysis-in-industry.html 3. ChemGuide. (n.d.). Haber Process [Image]. Retrieved from http://www.chemguide.co.uk/physical/equilibria/haber.html 4. Campbell, N. Biology. 4th ed. Menlo Park, California: Benjamin/Cummings, 1996 5. Gonzaga. (n.d.). Chemical Kinetics: Temperature Effects. Retrieved March 23, 2015, from http://guweb2.gonzaga.edu/faculty/cronk/CHEM240pub/L22-index.cfm 6. Oak Ridge National Library. (n.d.). Catalytic Gold Nanoclusters Promise Rich Chemical Yields. Retrieved March 23, 2015, from http://www.ornl.gov/ornl/news/features/2014/catalytic- gold-nanoclusters-promise-rich-chemical-yields 7. Wu, Z.; Jiang, D.; Mann, A.; Mullins, D.; Qiao, Z.-A.; Allard, L.; Zeng, C.; Jin, R.; Overbury, S. Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2-Supported Au25(SCH2CH2Ph)18Nanoclusters. J. Am. Chem. Soc. 2014, 136(16), 6111.
  • 15. 8. Jiao, L., & Regalbuto, J. R. (2008). The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica. Journal of Catalysis, (260), 329- 341. 9. Gong, J., Mullen, G. M., Mullins, C. B., Pan, M., & Yan, T. (2013). The Effects of Adsorbed Water on Gold Catalysis and Surface Chemistry. Top Catalysis, 56, 1499-1511. 10. Center for Catalyst Design. (n.d.). Water-Gas Shift Reaction. Retrieved March 23, 2015, from https://engineering.purdue.edu/CCD/index.php?page=wgs 11. Meunier, F. C., Reid, D., Goguet, A., Shekhtman, S., Hardacre, C., Burch, R., . . . Flytzani- Stephanopoulos, M. (2007). Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates. Journal of Catalysis, 247(2), 277-287.