SlideShare uma empresa Scribd logo
1 de 275
Baixar para ler offline
Fundamentals of Computational Fluid
            Dynamics
        Harvard Lomax and Thomas H. Pulliam
            NASA Ames Research Center
                    David W. Zingg
  University of Toronto Institute for Aerospace Studies
                    August 26, 1999
Contents
1 INTRODUCTION                                                                                                        1
  1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  .    1
  1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    .    2
      1.2.1 Problem Speci cation and Geometry Preparation . . . . . .                                             .    2
      1.2.2 Selection of Governing Equations and Boundary Conditions                                              .    3
      1.2.3 Selection of Gridding Strategy and Numerical Method . . .                                             .    3
      1.2.4 Assessment and Interpretation of Results . . . . . . . . . . .                                        .    4
  1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  .    4
  1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  .    5
2 CONSERVATION LAWS AND THE MODEL EQUATIONS                                                                           7
  2.1 Conservation Laws . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    7
  2.2 The Navier-Stokes and Euler Equations .         .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    8
  2.3 The Linear Convection Equation . . . .          .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12
      2.3.1 Di erential Form . . . . . . . . .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12
      2.3.2 Solution in Wave Space . . . . . .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13
  2.4 The Di usion Equation . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
      2.4.1 Di erential Form . . . . . . . . .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
      2.4.2 Solution in Wave Space . . . . . .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   15
  2.5 Linear Hyperbolic Systems . . . . . . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   16
  2.6 Problems . . . . . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   17
3 FINITE-DIFFERENCE APPROXIMATIONS                                                                                    21
  3.1 Meshes and Finite-Di erence Notation        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   21
  3.2 Space Derivative Approximations . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24
  3.3 Finite-Di erence Operators . . . . . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
      3.3.1 Point Di erence Operators . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
      3.3.2 Matrix Di erence Operators . .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
      3.3.3 Periodic Matrices . . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   29
      3.3.4 Circulant Matrices . . . . . . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   30
                                          iii
3.4 Constructing Di erencing Schemes of Any Order . . . . .          .   .   .   .   .   .   .   31
      3.4.1 Taylor Tables . . . . . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   31
      3.4.2 Generalization of Di erence Formulas . . . . . . .         .   .   .   .   .   .   .   34
      3.4.3 Lagrange and Hermite Interpolation Polynomials             .   .   .   .   .   .   .   35
      3.4.4 Practical Application of Pade Formulas . . . . . .         .   .   .   .   .   .   .   37
      3.4.5 Other Higher-Order Schemes . . . . . . . . . . . .         .   .   .   .   .   .   .   38
  3.5 Fourier Error Analysis . . . . . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   39
      3.5.1 Application to a Spatial Operator . . . . . . . . .        .   .   .   .   .   .   .   39
  3.6 Di erence Operators at Boundaries . . . . . . . . . . . .        .   .   .   .   .   .   .   43
      3.6.1 The Linear Convection Equation . . . . . . . . .           .   .   .   .   .   .   .   44
      3.6.2 The Di usion Equation . . . . . . . . . . . . . . .        .   .   .   .   .   .   .   46
  3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .   .   .   .   .   .   .   .   47
4 THE SEMI-DISCRETE APPROACH                                                                       51
  4.1 Reduction of PDE's to ODE's . . . . . . . . . . . . . . . . . . . . . .                      52
      4.1.1 The Model ODE's . . . . . . . . . . . . . . . . . . . . . . . .                        52
      4.1.2 The Generic Matrix Form . . . . . . . . . . . . . . . . . . . .                        53
  4.2 Exact Solutions of Linear ODE's . . . . . . . . . . . . . . . . . . . .                      54
      4.2.1 Eigensystems of Semi-Discrete Linear Forms . . . . . . . . . .                         54
      4.2.2 Single ODE's of First- and Second-Order . . . . . . . . . . . .                        55
      4.2.3 Coupled First-Order ODE's . . . . . . . . . . . . . . . . . . .                        57
      4.2.4 General Solution of Coupled ODE's with Complete Eigensystems                           59
  4.3 Real Space and Eigenspace . . . . . . . . . . . . . . . . . . . . . . . .                    61
      4.3.1 De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    61
      4.3.2 Eigenvalue Spectrums for Model ODE's . . . . . . . . . . . . .                         62
      4.3.3 Eigenvectors of the Model Equations . . . . . . . . . . . . . .                        63
      4.3.4 Solutions of the Model ODE's . . . . . . . . . . . . . . . . . .                       65
  4.4 The Representative Equation . . . . . . . . . . . . . . . . . . . . . .                      67
  4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 68
5 FINITE-VOLUME METHODS                                                                            71
  5.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 .   72
  5.2 Model Equations in Integral Form . . . . . . . . . . . . . . . . . . .                   .   73
      5.2.1 The Linear Convection Equation . . . . . . . . . . . . . . .                       .   73
      5.2.2 The Di usion Equation . . . . . . . . . . . . . . . . . . . . .                    .   74
  5.3 One-Dimensional Examples . . . . . . . . . . . . . . . . . . . . . .                     .   74
      5.3.1 A Second-Order Approximation to the Convection Equation                            .   75
      5.3.2 A Fourth-Order Approximation to the Convection Equation                            .   77
      5.3.3 A Second-Order Approximation to the Di usion Equation .                            .   78
  5.4 A Two-Dimensional Example . . . . . . . . . . . . . . . . . . . . .                      .   80
5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              83
6 TIME-MARCHING METHODS FOR ODE'S                                                                                              85
  6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           .    86
  6.2 Converting Time-Marching Methods to O E's . . . . . . . . . . . .                                                    .    87
  6.3 Solution of Linear O E's With Constant Coe cients . . . . . . . .                                                    .    88
       6.3.1 First- and Second-Order Di erence Equations . . . . . . . .                                                   .    89
       6.3.2 Special Cases of Coupled First-Order Equations . . . . . . .                                                  .    90
  6.4 Solution of the Representative O E's . . . . . . . . . . . . . . . .                                                 .    91
       6.4.1 The Operational Form and its Solution . . . . . . . . . . . .                                                 .    91
       6.4.2 Examples of Solutions to Time-Marching O E's . . . . . . .                                                    .    92
  6.5 The ; Relation . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 .    93
       6.5.1 Establishing the Relation . . . . . . . . . . . . . . . . . . . .                                             .    93
       6.5.2 The Principal -Root . . . . . . . . . . . . . . . . . . . . . .                                               .    95
       6.5.3 Spurious -Roots . . . . . . . . . . . . . . . . . . . . . . . .                                               .    95
       6.5.4 One-Root Time-Marching Methods . . . . . . . . . . . . . .                                                    .    96
  6.6 Accuracy Measures of Time-Marching Methods . . . . . . . . . . .                                                     .    97
       6.6.1 Local and Global Error Measures . . . . . . . . . . . . . . .                                                 .    97
       6.6.2 Local Accuracy of the Transient Solution (er j j er! ) . . .                                                  .    98
       6.6.3 Local Accuracy of the Particular Solution (er ) . . . . . . .                                                 .    99
       6.6.4 Time Accuracy For Nonlinear Applications . . . . . . . . . .                                                  .   100
       6.6.5 Global Accuracy . . . . . . . . . . . . . . . . . . . . . . . .                                               .   101
  6.7 Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . .                                               .   102
       6.7.1 The General Formulation . . . . . . . . . . . . . . . . . . . .                                               .   102
       6.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              .   103
       6.7.3 Two-Step Linear Multistep Methods . . . . . . . . . . . . .                                                   .   105
  6.8 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . . . .                                              .   106
  6.9 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . .                                                .   107
  6.10 Implementation of Implicit Methods . . . . . . . . . . . . . . . . . .                                              .   110
       6.10.1 Application to Systems of Equations . . . . . . . . . . . . .                                                .   110
       6.10.2 Application to Nonlinear Equations . . . . . . . . . . . . . .                                               .   111
       6.10.3 Local Linearization for Scalar Equations . . . . . . . . . . .                                               .   112
       6.10.4 Local Linearization for Coupled Sets of Nonlinear Equations                                                  .   115
  6.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          .   117
7 STABILITY OF LINEAR SYSTEMS                                                                                                  121
  7.1 Dependence on the Eigensystem        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   122
  7.2 Inherent Stability of ODE's . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   123
      7.2.1 The Criterion . . . . . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   123
      7.2.2 Complete Eigensystems .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   123
7.2.3 Defective Eigensystems . . . . . . . . . . . . . .         .   .   .   .   .   .   .   .   123
 7.3   Numerical Stability of O E 's . . . . . . . . . . . . . .        .   .   .   .   .   .   .   .   124
       7.3.1 The Criterion . . . . . . . . . . . . . . . . . . .        .   .   .   .   .   .   .   .   124
       7.3.2 Complete Eigensystems . . . . . . . . . . . . . .          .   .   .   .   .   .   .   .   125
       7.3.3 Defective Eigensystems . . . . . . . . . . . . . .         .   .   .   .   .   .   .   .   125
 7.4   Time-Space Stability and Convergence of O E's . . . .            .   .   .   .   .   .   .   .   125
 7.5   Numerical Stability Concepts in the Complex -Plane .             .   .   .   .   .   .   .   .   128
       7.5.1 -Root Traces Relative to the Unit Circle . . .             .   .   .   .   .   .   .   .   128
       7.5.2 Stability for Small t . . . . . . . . . . . . . . .        .   .   .   .   .   .   .   .   132
 7.6   Numerical Stability Concepts in the Complex h Plane              .   .   .   .   .   .   .   .   135
       7.6.1 Stability for Large h. . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   135
       7.6.2 Unconditional Stability, A-Stable Methods . . .            .   .   .   .   .   .   .   .   136
       7.6.3 Stability Contours in the Complex h Plane. . .             .   .   .   .   .   .   .   .   137
 7.7   Fourier Stability Analysis . . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   141
       7.7.1 The Basic Procedure . . . . . . . . . . . . . . .          .   .   .   .   .   .   .   .   141
       7.7.2 Some Examples . . . . . . . . . . . . . . . . . .          .   .   .   .   .   .   .   .   142
       7.7.3 Relation to Circulant Matrices . . . . . . . . . .         .   .   .   .   .   .   .   .   143
 7.8   Consistency . . . . . . . . . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   143
 7.9   Problems . . . . . . . . . . . . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   .   146
8 CHOICE OF TIME-MARCHING METHODS                                                                       149
 8.1 Sti ness De nition for ODE's . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   149
     8.1.1 Relation to -Eigenvalues . . . . . . . . . .         .   .   .   .   .   .   .   .   .   .   149
     8.1.2 Driving and Parasitic Eigenvalues . . . . . .        .   .   .   .   .   .   .   .   .   .   151
     8.1.3 Sti ness Classi cations . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   .   151
 8.2 Relation of Sti ness to Space Mesh Size . . . . . .        .   .   .   .   .   .   .   .   .   .   152
 8.3 Practical Considerations for Comparing Methods .           .   .   .   .   .   .   .   .   .   .   153
 8.4 Comparing the E ciency of Explicit Methods . . .           .   .   .   .   .   .   .   .   .   .   154
     8.4.1 Imposed Constraints . . . . . . . . . . . . .        .   .   .   .   .   .   .   .   .   .   154
     8.4.2 An Example Involving Di usion . . . . . . .          .   .   .   .   .   .   .   .   .   .   154
     8.4.3 An Example Involving Periodic Convection .           .   .   .   .   .   .   .   .   .   .   155
 8.5 Coping With Sti ness . . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   158
     8.5.1 Explicit Methods . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   158
     8.5.2 Implicit Methods . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   159
     8.5.3 A Perspective . . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   .   160
 8.6 Steady Problems . . . . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   .   160
 8.7 Problems . . . . . . . . . . . . . . . . . . . . . . . .   .   .   .   .   .   .   .   .   .   .   161
9 RELAXATION METHODS                                                                                            163
  9.1 Formulation of the Model Problem . . . . . . . . . . . . . .                          .   .   .   .   .   164
      9.1.1 Preconditioning the Basic Matrix . . . . . . . . . . .                          .   .   .   .   .   164
      9.1.2 The Model Equations . . . . . . . . . . . . . . . . . .                         .   .   .   .   .   166
  9.2 Classical Relaxation . . . . . . . . . . . . . . . . . . . . . .                      .   .   .   .   .   168
      9.2.1 The Delta Form of an Iterative Scheme . . . . . . . .                           .   .   .   .   .   168
      9.2.2 The Converged Solution, the Residual, and the Error                             .   .   .   .   .   168
      9.2.3 The Classical Methods . . . . . . . . . . . . . . . . .                         .   .   .   .   .   169
  9.3 The ODE Approach to Classical Relaxation . . . . . . . . .                            .   .   .   .   .   170
      9.3.1 The Ordinary Di erential Equation Formulation . . .                             .   .   .   .   .   170
      9.3.2 ODE Form of the Classical Methods . . . . . . . . .                             .   .   .   .   .   172
  9.4 Eigensystems of the Classical Methods . . . . . . . . . . . .                         .   .   .   .   .   173
      9.4.1 The Point-Jacobi System . . . . . . . . . . . . . . . .                         .   .   .   .   .   174
      9.4.2 The Gauss-Seidel System . . . . . . . . . . . . . . . .                         .   .   .   .   .   176
      9.4.3 The SOR System . . . . . . . . . . . . . . . . . . . .                          .   .   .   .   .   180
  9.5 Nonstationary Processes . . . . . . . . . . . . . . . . . . . .                       .   .   .   .   .   182
  9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    .   .   .   .   .   187
10 MULTIGRID                                                                                                    191
  10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
       10.1.1 Eigenvector and Eigenvalue Identi cation with Space Frequencies191
       10.1.2 Properties of the Iterative Method . . . . . . . . . . . . . . . 192
  10.2 The Basic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
  10.3 A Two-Grid Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
  10.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11 NUMERICAL DISSIPATION                                                                                        203
  11.1 One-Sided First-Derivative Space Di erencing         .   .   .   .   .   .   .   .   .   .   .   .   .   204
  11.2 The Modi ed Partial Di erential Equation . .         .   .   .   .   .   .   .   .   .   .   .   .   .   205
  11.3 The Lax-Wendro Method . . . . . . . . . . .          .   .   .   .   .   .   .   .   .   .   .   .   .   207
  11.4 Upwind Schemes . . . . . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   .   .   .   .   209
       11.4.1 Flux-Vector Splitting . . . . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   210
       11.4.2 Flux-Di erence Splitting . . . . . . . .      .   .   .   .   .   .   .   .   .   .   .   .   .   212
  11.5 Arti cial Dissipation . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   213
  11.6 Problems . . . . . . . . . . . . . . . . . . . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   214
12 SPLIT AND FACTORED FORMS                                                                                     217
  12.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
  12.2 Factoring Physical Representations | Time Splitting . . . . . . . . . 218
  12.3 Factoring Space Matrix Operators in 2{D . . . . . . . . . . . . . . . . 220
12.3.1 Mesh Indexing Convention . . . . . . . . . . .                                      .   .   .   .   .   .   .   .   .   220
         12.3.2 Data Bases and Space Vectors . . . . . . . . .                                      .   .   .   .   .   .   .   .   .   221
         12.3.3 Data Base Permutations . . . . . . . . . . . .                                      .   .   .   .   .   .   .   .   .   221
         12.3.4 Space Splitting and Factoring . . . . . . . . .                                     .   .   .   .   .   .   .   .   .   223
  12.4   Second-Order Factored Implicit Methods . . . . . . .                                       .   .   .   .   .   .   .   .   .   226
  12.5   Importance of Factored Forms in 2 and 3 Dimensions                                         .   .   .   .   .   .   .   .   .   226
  12.6   The Delta Form . . . . . . . . . . . . . . . . . . . . .                                   .   .   .   .   .   .   .   .   .   228
  12.7   Problems . . . . . . . . . . . . . . . . . . . . . . . . .                                 .   .   .   .   .   .   .   .   .   229
13 LINEAR ANALYSIS OF SPLIT AND FACTORED FORMS                                                                                          233
  13.1 The Representative Equation for Circulant Operators . . . . . . .                                                        .   .   233
  13.2 Example Analysis of Circulant Systems . . . . . . . . . . . . . . .                                                      .   .   234
       13.2.1 Stability Comparisons of Time-Split Methods . . . . . . .                                                         .   .   234
       13.2.2 Analysis of a Second-Order Time-Split Method . . . . . .                                                          .   .   237
  13.3 The Representative Equation for Space-Split Operators . . . . . .                                                        .   .   238
  13.4 Example Analysis of 2-D Model Equations . . . . . . . . . . . . .                                                        .   .   242
       13.4.1 The Unfactored Implicit Euler Method . . . . . . . . . . .                                                        .   .   242
       13.4.2 The Factored Nondelta Form of the Implicit Euler Method                                                           .   .   243
       13.4.3 The Factored Delta Form of the Implicit Euler Method . .                                                          .   .   243
       13.4.4 The Factored Delta Form of the Trapezoidal Method . . .                                                           .   .   244
  13.5 Example Analysis of the 3-D Model Equation . . . . . . . . . . .                                                         .   .   245
  13.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 .   .   247
A USEFUL RELATIONS AND DEFINITIONS FROM LINEAR AL-
  GEBRA                                           249
  A.1    Notation . . . . . . . . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   249
  A.2    De nitions . . . . . . . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   250
  A.3    Algebra . . . . . . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   251
  A.4    Eigensystems . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   251
  A.5    Vector and Matrix Norms        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   254
B SOME PROPERTIES OF TRIDIAGONAL MATRICES                                                                                               257
  B.1 Standard Eigensystem for Simple Tridiagonals . .                                      .   .   .   .   .   .   .   .   .   .   .   257
  B.2 Generalized Eigensystem for Simple Tridiagonals .                                     .   .   .   .   .   .   .   .   .   .   .   258
  B.3 The Inverse of a Simple Tridiagonal . . . . . . . .                                   .   .   .   .   .   .   .   .   .   .   .   259
  B.4 Eigensystems of Circulant Matrices . . . . . . . .                                    .   .   .   .   .   .   .   .   .   .   .   260
      B.4.1 Standard Tridiagonals . . . . . . . . . . .                                     .   .   .   .   .   .   .   .   .   .   .   260
      B.4.2 General Circulant Systems . . . . . . . . .                                     .   .   .   .   .   .   .   .   .   .   .   261
  B.5 Special Cases Found From Symmetries . . . . . .                                       .   .   .   .   .   .   .   .   .   .   .   262
  B.6 Special Cases Involving Boundary Conditions . .                                       .   .   .   .   .   .   .   .   .   .   .   263
C THE HOMOGENEOUS PROPERTY OF THE EULER EQUATIONS265
Chapter 1
INTRODUCTION

1.1     Motivation

The material in this book originated from attempts to understand and systemize nu-
merical solution techniques for the partial di erential equations governing the physics
of uid ow. As time went on and these attempts began to crystallize, underlying
constraints on the nature of the material began to form. The principal such constraint
was the demand for uni cation. Was there one mathematical structure which could
be used to describe the behavior and results of most numerical methods in common
use in the eld of uid dynamics? Perhaps the answer is arguable, but the authors
believe the answer is a rmative and present this book as justi cation for that be-
lief. The mathematical structure is the theory of linear algebra and the attendant
eigenanalysis of linear systems.
     The ultimate goal of the eld of computational uid dynamics (CFD) is to under-
stand the physical events that occur in the ow of uids around and within designated
objects. These events are related to the action and interaction of phenomena such
as dissipation, di usion, convection, shock waves, slip surfaces, boundary layers, and
turbulence. In the eld of aerodynamics, all of these phenomena are governed by
the compressible Navier-Stokes equations. Many of the most important aspects of
these relations are nonlinear and, as a consequence, often have no analytic solution.
This, of course, motivates the numerical solution of the associated partial di erential
equations. At the same time it would seem to invalidate the use of linear algebra for
the classi cation of the numerical methods. Experience has shown that such is not
the case.
     As we shall see in a later chapter, the use of numerical methods to solve partial
di erential equations introduces an approximation that, in e ect, can change the
form of the basic partial di erential equations themselves. The new equations, which
                                          1
2                                                    CHAPTER 1. INTRODUCTION
are the ones actually being solved by the numerical process, are often referred to as
the modi ed partial di erential equations. Since they are not precisely the same as
the original equations, they can, and probably will, simulate the physical phenomena
listed above in ways that are not exactly the same as an exact solution to the basic
partial di erential equation. Mathematically, these di erences are usually referred to
as truncation errors. However, the theory associated with the numerical analysis of
  uid mechanics was developed predominantly by scientists deeply interested in the
physics of uid ow and, as a consequence, these errors are often identi ed with a
particular physical phenomenon on which they have a strong e ect. Thus methods are
said to have a lot of arti cial viscosity" or said to be highly dispersive. This means
that the errors caused by the numerical approximation result in a modi ed partial
di erential equation having additional terms that can be identi ed with the physics
of dissipation in the rst case and dispersion in the second. There is nothing wrong,
of course, with identifying an error with a physical process, nor with deliberately
directing an error to a speci c physical process, as long as the error remains in some
engineering sense small". It is safe to say, for example, that most numerical methods
in practical use for solving the nondissipative Euler equations create a modi ed partial
di erential equation that produces some form of dissipation. However, if used and
interpreted properly, these methods give very useful information.
    Regardless of what the numerical errors are called, if their e ects are not thor-
oughly understood and controlled, they can lead to serious di culties, producing
answers that represent little, if any, physical reality. This motivates studying the
concepts of stability, convergence, and consistency. On the other hand, even if the
errors are kept small enough that they can be neglected (for engineering purposes),
the resulting simulation can still be of little practical use if ine cient or inappropriate
algorithms are used. This motivates studying the concepts of sti ness, factorization,
and algorithm development in general. All of these concepts we hope to clarify in
this book.

1.2      Background

The eld of computational uid dynamics has a broad range of applicability. Indepen-
dent of the speci c application under study, the following sequence of steps generally
must be followed in order to obtain a satisfactory solution.

1.2.1 Problem Speci cation and Geometry Preparation
The rst step involves the speci cation of the problem, including the geometry, ow
conditions, and the requirements of the simulation. The geometry may result from
1.2. BACKGROUND                                                                       3
measurements of an existing con guration or may be associated with a design study.
Alternatively, in a design context, no geometry need be supplied. Instead, a set
of objectives and constraints must be speci ed. Flow conditions might include, for
example, the Reynolds number and Mach number for the ow over an airfoil. The
requirements of the simulation include issues such as the level of accuracy needed, the
turnaround time required, and the solution parameters of interest. The rst two of
these requirements are often in con ict and compromise is necessary. As an example
of solution parameters of interest in computing the ow eld about an airfoil, one may
be interested in i) the lift and pitching moment only, ii) the drag as well as the lift
and pitching moment, or iii) the details of the ow at some speci c location.

1.2.2 Selection of Governing Equations and Boundary Con-
      ditions
Once the problem has been speci ed, an appropriate set of governing equations and
boundary conditions must be selected. It is generally accepted that the phenomena of
importance to the eld of continuum uid dynamics are governed by the conservation
of mass, momentum, and energy. The partial di erential equations resulting from
these conservation laws are referred to as the Navier-Stokes equations. However, in
the interest of e ciency, it is always prudent to consider solving simpli ed forms
of the Navier-Stokes equations when the simpli cations retain the physics which are
essential to the goals of the simulation. Possible simpli ed governing equations include
the potential- ow equations, the Euler equations, and the thin-layer Navier-Stokes
equations. These may be steady or unsteady and compressible or incompressible.
Boundary types which may be encountered include solid walls, in ow and out ow
boundaries, periodic boundaries, symmetry boundaries, etc. The boundary conditions
which must be speci ed depend upon the governing equations. For example, at a solid
wall, the Euler equations require ow tangency to be enforced, while the Navier-Stokes
equations require the no-slip condition. If necessary, physical models must be chosen
for processes which cannot be simulated within the speci ed constraints. Turbulence
is an example of a physical process which is rarely simulated in a practical context (at
the time of writing) and thus is often modelled. The success of a simulation depends
greatly on the engineering insight involved in selecting the governing equations and
physical models based on the problem speci cation.

1.2.3 Selection of Gridding Strategy and Numerical Method
Next a numerical method and a strategy for dividing the ow domain into cells, or
elements, must be selected. We concern ourselves here only with numerical meth-
ods requiring such a tessellation of the domain, which is known as a grid, or mesh.
4                                                  CHAPTER 1. INTRODUCTION
Many di erent gridding strategies exist, including structured, unstructured, hybrid,
composite, and overlapping grids. Furthermore, the grid can be altered based on
the solution in an approach known as solution-adaptive gridding. The numerical
methods generally used in CFD can be classi ed as nite-di erence, nite-volume,
  nite-element, or spectral methods. The choices of a numerical method and a grid-
ding strategy are strongly interdependent. For example, the use of nite-di erence
methods is typically restricted to structured grids. Here again, the success of a sim-
ulation can depend on appropriate choices for the problem or class of problems of
interest.

1.2.4 Assessment and Interpretation of Results
Finally, the results of the simulation must be assessed and interpreted. This step can
require post-processing of the data, for example calculation of forces and moments,
and can be aided by sophisticated ow visualization tools and error estimation tech-
niques. It is critical that the magnitude of both numerical and physical-model errors
be well understood.

1.3     Overview

It should be clear that successful simulation of uid ows can involve a wide range of
issues from grid generation to turbulence modelling to the applicability of various sim-
pli ed forms of the Navier-Stokes equations. Many of these issues are not addressed
in this book. Some of them are presented in the books by Anderson, Tannehill, and
Pletcher 1] and Hirsch 2]. Instead we focus on numerical methods, with emphasis
on nite-di erence and nite-volume methods for the Euler and Navier-Stokes equa-
tions. Rather than presenting the details of the most advanced methods, which are
still evolving, we present a foundation for developing, analyzing, and understanding
such methods.
     Fortunately, to develop, analyze, and understand most numerical methods used to
  nd solutions for the complete compressible Navier-Stokes equations, we can make use
of much simpler expressions, the so-called model" equations. These model equations
isolate certain aspects of the physics contained in the complete set of equations. Hence
their numerical solution can illustrate the properties of a given numerical method
when applied to a more complicated system of equations which governs similar phys-
ical phenomena. Although the model equations are extremely simple and easy to
solve, they have been carefully selected to be representative, when used intelligently,
of di culties and complexities that arise in realistic two- and three-dimensional uid
  ow simulations. We believe that a thorough understanding of what happens when
1.4. NOTATION                                                                        5
numerical approximations are applied to the model equations is a major rst step in
making con dent and competent use of numerical approximations to the Euler and
Navier-Stokes equations. As a word of caution, however, it should be noted that,
although we can learn a great deal by studying numerical methods as applied to the
model equations and can use that information in the design and application of nu-
merical methods to practical problems, there are many aspects of practical problems
which can only be understood in the context of the complete physical systems.

1.4     Notation

The notation is generally explained as it is introduced. Bold type is reserved for real
physical vectors, such as velocity. The vector symbol ~ is used for the vectors (or
column matrices) which contain the values of the dependent variable at the nodes
of a grid. Otherwise, the use of a vector consisting of a collection of scalars should
be apparent from the context and is not identi ed by any special notation. For
example, the variable u can denote a scalar Cartesian velocity component in the Euler
and Navier-Stokes equations, a scalar quantity in the linear convection and di usion
equations, and a vector consisting of a collection of scalars in our presentation of
hyperbolic systems. Some of the abbreviations used throughout the text are listed
and de ned below.

      PDE       Partial di erential equation
      ODE       Ordinary di erential equation
      O E       Ordinary di erence equation
      RHS       Right-hand side
      P.S.      Particular solution of an ODE or system of ODE's
      S.S.      Fixed (time-invariant) steady-state solution
      k-D       k-dimensional space
        ~
        bc      Boundary conditions, usually a vector
      O( )      A term of order (i.e., proportional to)
6   CHAPTER 1. INTRODUCTION
Chapter 2
CONSERVATION LAWS AND
THE MODEL EQUATIONS
We start out by casting our equations in the most general form, the integral conserva-
tion-law form, which is useful in understanding the concepts involved in nite-volume
schemes. The equations are then recast into divergence form, which is natural for
  nite-di erence schemes. The Euler and Navier-Stokes equations are brie y discussed
in this Chapter. The main focus, though, will be on representative model equations,
in particular, the convection and di usion equations. These equations contain many
of the salient mathematical and physical features of the full Navier-Stokes equations.
The concepts of convection and di usion are prevalent in our development of nu-
merical methods for computational uid dynamics, and the recurring use of these
model equations allows us to develop a consistent framework of analysis for consis-
tency, accuracy, stability, and convergence. The model equations we study have two
properties in common. They are linear partial di erential equations (PDE's) with
coe cients that are constant in both space and time, and they represent phenomena
of importance to the analysis of certain aspects of uid dynamic problems.

2.1 Conservation Laws
Conservation laws, such as the Euler and Navier-Stokes equations and our model
equations, can be written in the following integral form:
           Z                  Z                     Z t2 I                       Z t2 Z
                      QdV ;                 QdV +                    n:FdSdt =                 PdV dt   (2.1)
            V (t2 )               V (t1 )            t1      S (t)                t1   V (t)
In this equation, Q is a vector containing the set of variables which are conserved,
e.g., mass, momentum, and energy, per unit volume. The equation is a statement of
                                                          7
8      CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
the conservation of these quantities in a nite region of space with volume V (t) and
surface area S (t) over a nite interval of time t2 ; t1 . In two dimensions, the region
of space, or cell, is an area A(t) bounded by a closed contour C (t). The vector n is
a unit vector normal to the surface pointing outward, F is a set of vectors, or tensor,
containing the ux of Q per unit area per unit time, and P is the rate of production
of Q per unit volume per unit time. If all variables are continuous in time, then Eq.
2.1 can be rewritten as
                         d Z QdV + I n:FdS = Z PdV                                (2.2)
                         dt V (t)       S (t)           V (t)
Those methods which make various numerical approximations of the integrals in Eqs.
2.1 and 2.2 and nd a solution for Q on that basis are referred to as nite-volume
methods. Many of the advanced codes written for CFD applications are based on the
 nite-volume concept.
    On the other hand, a partial derivative form of a conservation law can also be
derived. The divergence form of Eq. 2.2 is obtained by applying Gauss's theorem to
the ux integral, leading to
                                    @Q + r:F = P                                  (2.3)
                                     @t
where r: is the well-known divergence operator given, in Cartesian coordinates, by
                                                         !
                                       @ +j @ +k @ :
                               r: i @x @y @z                                      (2.4)
and i j, and k are unit vectors in the x y, and z coordinate directions, respectively.
Those methods which make various approximations of the derivatives in Eq. 2.3 and
 nd a solution for Q on that basis are referred to as nite-di erence methods.

2.2 The Navier-Stokes and Euler Equations
The Navier-Stokes equations form a coupled system of nonlinear PDE's describing
the conservation of mass, momentum and energy for a uid. For a Newtonian uid
in one dimension, they can be written as
                                  @Q + @E = 0                             (2.5)
                                   @t @x
with                 2 3            2
                                         u 3 2        0       3
                   6
                   6      7
                          7          6
                                     6          7 6
                                                7 6                     7
                                                                        7
                 Q=6
                   6     u7
                          7     E   =6
                                     6    u 2+p 7;6
                                                7 6        4 @u         7
                                                                        7         (2.6)
                   6      7          6          7 6        3 @x         7
                   4      5          4          5 4                     5
                         e               u(e + p)     4
                                                      3   u @u +
                                                            @x
                                                                   @T
                                                                   @x
2.2. THE NAVIER-STOKES AND EULER EQUATIONS                                            9
where is the uid density, u is the velocity, e is the total energy per unit volume, p is
the pressure, T is the temperature, is the coe cient of viscosity, and is the thermal
conductivity. The total energy e includes internal energy per unit volume (where
   is the internal energy per unit mass) and kinetic energy per unit volume u2=2.
These equations must be supplemented by relations between and and the uid
state as well as an equation of state, such as the ideal gas law. Details can be found
in Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Note that the convective
  uxes lead to rst derivatives in space, while the viscous and heat conduction terms
involve second derivatives. This form of the equations is called conservation-law or
conservative form. Non-conservative forms can be obtained by expanding derivatives
of products using the product rule or by introducing di erent dependent variables,
such as u and p. Although non-conservative forms of the equations are analytically
the same as the above form, they can lead to quite di erent numerical solutions in
terms of shock strength and shock speed, for example. Thus the conservative form is
appropriate for solving ows with features such as shock waves.
     Many ows of engineering interest are steady (time-invariant), or at least may be
treated as such. For such ows, we are often interested in the steady-state solution of
the Navier-Stokes equations, with no interest in the transient portion of the solution.
The steady solution to the one-dimensional Navier-Stokes equations must satisfy
                                         @E = 0                                   (2.7)
                                         @x
     If we neglect viscosity and heat conduction, the Euler equations are obtained. In
two-dimensional Cartesian coordinates, these can be written as
                                 @Q + @E + @F = 0                                 (2.8)
                                 @t @x @y
with                2 3 2 3               2
                      q1                        u 3            2
                                                                     v 3
              Q = 6 q2 7 = 6 u 7 E = 6 u uv p 7 F = 6 v2uv p 7
                    6 7 6 7               6 2+ 7               6          7
                    6 7 6 7
                    4 q3 5 4 v 5
                                          6
                                          4
                                                     7
                                                     5
                                                               6
                                                               4     + 7  5
                                                                                  (2.9)
                      q4       e            u(e + p)             v(e + p)
where u and v are the Cartesian velocity components. Later on we will make use of
the following form of the Euler equations as well:
                                 @Q + A @Q + B @Q = 0                            (2.10)
                                 @t      @x      @y
                  @E           @F
The matrices A = @Q and B = @Q are known as the ux Jacobians. The ux vectors
given above are written in terms of the primitive variables, , u, v, and p. In order
10      CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
to derive the ux Jacobian matrices, we must rst write the ux vectors E and F in
terms of the conservative variables, q1 , q2, q3 , and q4 , as follows:
                                 2                                  3
                      2
                          E1
                               3
                                 6                           q2     7
                      6
                      6        7 6
                               7 6
                                                                    7
                                                                    7
                      6        7 6                                2 7
                                                      3; q2 ; ;1 q3 7
                      6
                      6   E2   7 6
                               7 6     (    ; 1)q4 + 2 q1 2 q1 7
                                                             2


                 E   =6
                      6        7=6
                               7 6
                                                                    7
                                                                    7                          (2.11)
                      6        7 6
                               7 6                   q3 q2          7
                                                                    7
                      6
                      6   E3   7 6                    q1            7
                      6        7 6                                  7
                      4        5 6
                                 6                                  7
                                                                    7
                          E4     4
                                            q4 q2 ; ;1 q2 + q3 2
                                                           3   2q   5
                                             q1     2 q1   2   q1
                                                                2




                      2      3 2                             q3
                                                                                  3
                      6
                          F1 7 6                                                  7
                      6
                      6      7 6
                             7 6
                               6
                                                                                  7
                                                                                  7
                                                                                  7
                                                         q3 q2
                      6
                      6   F2 7 6
                             7 6                          q1                      7
                                                                                  7
                 F   =6
                      6
                      6
                             7=6
                             7 6                                                  7
                                                                                  7            (2.12)
                      6
                      6   F3 7 6
                             7 6
                             7 6     ( ; 1)q4 + 3;
                                                 2
                                                                  q3
                                                                   2
                                                                  q1   ;        2 7
                                                                            ;1 q2 7
                                                                            2 q1 7
                      6      7 6                                                  7
                      4      5 6
                               4
                                                                                  7
                                                                                  5
                          F4                q4 q 3   ;   ;1 q2 2 3
                                                             2q
                                                                       +   q3
                                                                            3
                                             q1          2        q1       q1
                                                                            2


We have assumed that the pressure satis es p = ( ; 1) e ; (u2 + v2)=2] from the
ideal gas law, where is the ratio of speci c heats, cp=cv . From this it follows that
the ux Jacobian of E can be written in terms of the conservative variables as
                   2                                                                       3
                   6
                               0                     1                     0          0    7
                   6
                   6                                                                       7
                                                                                           7
                   6       a21                    q
                                           (3 ; ) q2              (1 ; ) q3           ;1   7
                   6
             @Ei = 6                               1                     q1                7
                                                                                           7
        A=         6                                                                       7   (2.13)
             @qj 6 6
                       ; q2 q1
                            q                  q                      q2              0
                                                                                           7
                                                                                           7
                   6
                   6
                   6     q1 3                  q3
                                                1                     q1                   7
                                                                                           7
                                                                                           7
                   6                                                                       7
                   4                                                                  q2   5
                           a41                  a42                    a43            q1
where
                                   !                          !2
               a21 =      ; 1 q3 2 ; 3 ;                 q2
                          2 q1         2                 q1
2.2. THE NAVIER-STOKES AND EULER EQUATIONS                                                   11

                              2         !3          !2         !3            !        !
               a41 = (    ; 1)4    q2        + q3         q2    5;      q4       q2
                                   q1          q1         q1            q1       q1
                               !             2      !2           !2 3
              a42 =       q4 ; ; 1 43 q2                  + q3      5
                          q1        2       q1              q1
                                      !    !
              a43 = ;( ; 1) q q    q2 q3                                                  (2.14)
                                    1    1
and in terms of the primitive variables as
                     2                                                  3
                     6
                           0            1           0            0      7
                     6
                     6                                                  7
                                                                        7
                     6
                     6    a21 (3 ; )u (1 ; )v ( ; 1)                    7
                                                                        7
                   A=6
                     6
                     6
                                                                        7
                                                                        7
                                                                        7                 (2.15)
                     6
                     6    ;uv           v           u            0      7
                                                                        7
                     6                                                  7
                     4                                                  5
                          a41       a42             a43           u
where
                          a21 =         ; 1 v2 ; 3 ; u2
                                        2          2
                          a41 = ( ; 1)u(u2 + v2) ; ue

                          a42 =         e ; ; 1 (3u2 + v2 )
                                            2
                          a43 = (1 ; )uv                                       (2.16)
Derivation of the two forms of B = @F=@Q is similar. The eigenvalues of the ux
Jacobian matrices are purely real. This is the de ning feature of hyperbolic systems
of PDE's, which are further discussed in Section 2.5. The homogeneous property of
the Euler equations is discussed in Appendix C.
    The Navier-Stokes equations include both convective and di usive uxes. This
motivates the choice of our two scalar model equations associated with the physics
of convection and di usion. Furthermore, aspects of convective phenomena associ-
ated with coupled systems of equations such as the Euler equations are important in
developing numerical methods and boundary conditions. Thus we also study linear
hyperbolic systems of PDE's.
12       CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
2.3 The Linear Convection Equation
2.3.1 Di erential Form
The simplest linear model for convection and wave propagation is the linear convection
equation given by the following PDE:
                                    @u + a @u = 0                               (2.17)
                                    @t @x
Here u(x t) is a scalar quantity propagating with speed a, a real constant which may
be positive or negative. The manner in which the boundary conditions are speci ed
separates the following two phenomena for which this equation is a model:
     (1) In one type, the scalar quantity u is given on one boundary, corresponding
         to a wave entering the domain through this in ow" boundary. No bound-
         ary condition is speci ed at the opposite side, the out ow" boundary. This
         is consistent in terms of the well-posedness of a 1st-order PDE. Hence the
         wave leaves the domain through the out ow boundary without distortion or
         re ection. This type of phenomenon is referred to, simply, as the convection
         problem. It represents most of the usual" situations encountered in convect-
         ing systems. Note that the left-hand boundary is the in ow boundary when
         a is positive, while the right-hand boundary is the in ow boundary when a is
         negative.
   (2) In the other type, the ow being simulated is periodic. At any given time,
        what enters on one side of the domain must be the same as that which is
        leaving on the other. This is referred to as the biconvection problem. It is
        the simplest to study and serves to illustrate many of the basic properties of
        numerical methods applied to problems involving convection, without special
        consideration of boundaries. Hence, we pay a great deal of attention to it in
        the initial chapters.
   Now let us consider a situation in which the initial condition is given by u(x 0) =
u0(x), and the domain is in nite. It is easy to show by substitution that the exact
solution to the linear convection equation is then
                                   u(x t) = u0(x ; at)                            (2.18)
The initial waveform propagates unaltered with speed jaj to the right if a is positive
and to the left if a is negative. With periodic boundary conditions, the waveform
travels through one boundary and reappears at the other boundary, eventually re-
turning to its initial position. In this case, the process continues forever without any
2.3. THE LINEAR CONVECTION EQUATION                                                13
change in the shape of the solution. Preserving the shape of the initial condition
u0(x) can be a di cult challenge for a numerical method.

2.3.2 Solution in Wave Space
We now examine the biconvection problem in more detail. Let the domain be given
by 0 x 2 . We restrict our attention to initial conditions in the form
                                   u(x 0) = f (0)ei x                           (2.19)
where f (0) is a complex constant, and is the wavenumber. In order to satisfy the
periodic boundary conditions, must be an integer. It is a measure of the number of
wavelengths within the domain. With such an initial condition, the solution can be
written as
                                   u(x t) = f (t)ei x                           (2.20)
where the time dependence is contained in the complex function f (t). Substituting
this solution into the linear convection equation, Eq. 2.17, we nd that f (t) satis es
the following ordinary di erential equation (ODE)
                                      df = ;ia f                                (2.21)
                                       dt
which has the solution
                                   f (t) = f (0)e;ia t                          (2.22)
Substituting f (t) into Eq. 2.20 gives the following solution
                          u(x t) = f (0)ei (x;at) = f (0)ei( x;!t)              (2.23)
where the frequency, !, the wavenumber, , and the phase speed, a, are related by
                                          != a                                  (2.24)
   The relation between the frequency and the wavenumber is known as the dispersion
relation. The linear relation given by Eq. 2.24 is characteristic of wave propagation
in a nondispersive medium. This means that the phase speed is the same for all
wavenumbers. As we shall see later, most numerical methods introduce some disper-
sion that is, in a simulation, waves with di erent wavenumbers travel at di erent
speeds.
   An arbitrary initial waveform can be produced by summing initial conditions of
the form of Eq. 2.19. For M modes, one obtains
                                         M
                                         X
                              u(x 0) =         fm (0)ei mx                      (2.25)
                                         m=1
14     CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
where the wavenumbers are often ordered such that 1 2                   M . Since the
wave equation is linear, the solution is obtained by summing solutions of the form of
Eq. 2.23, giving
                                        M
                                        X
                             u(x t) =         fm (0)ei m(x;at)                   (2.26)
                                        m=1
Dispersion and dissipation resulting from a numerical approximation will cause the
shape of the solution to change from that of the original waveform.

2.4 The Di usion Equation
2.4.1 Di erential Form
Di usive uxes are associated with molecular motion in a continuum uid. A simple
linear model equation for a di usive process is
                                       @u = @ 2 u                                (2.27)
                                       @t     @x2
where is a positive real constant. For example, with u representing the tempera-
ture, this parabolic PDE governs the di usion of heat in one dimension. Boundary
conditions can be periodic, Dirichlet (speci ed u), Neumann (speci ed @u=@x), or
mixed Dirichlet/Neumann.
   In contrast to the linear convection equation, the di usion equation has a nontrivial
steady-state solution, which is one that satis es the governing PDE with the partial
derivative in time equal to zero. In the case of Eq. 2.27, the steady-state solution
must satisfy
                                         @2u = 0                                 (2.28)
                                         @x2
Therefore, u must vary linearly with x at steady state such that the boundary con-
ditions are satis ed. Other steady-state solutions are obtained if a source term g(x)
is added to Eq. 2.27, as follows:
                                         " 2             #
                                 @u =     @u     ; g(x)                          (2.29)
                                 @t       @x2
giving a steady state-solution which satis es
                                    @ 2 u ; g(x) = 0                             (2.30)
                                    @x2
2.4. THE DIFFUSION EQUATION                                                       15
   In two dimensions, the di usion equation becomes
                                    "                     #
                           @u = @ 2 u + @ 2 u ; g(x y)                         (2.31)
                           @t         @x2 @y2
where g(x y) is again a source term. The corresponding steady equation is
                              @ 2 u + @ 2 u ; g(x y) = 0                       (2.32)
                              @x2 @y2
While Eq. 2.31 is parabolic, Eq. 2.32 is elliptic. The latter is known as the Poisson
equation for nonzero g, and as Laplace's equation for zero g.

2.4.2 Solution in Wave Space
We now consider a series solution to Eq. 2.27. Let the domain be given by 0 x
with boundary conditions u(0) = ua, u( ) = ub. It is clear that the steady-state
solution is given by a linear function which satis es the boundary conditions, i.e.,
h(x) = ua + (ub ; ua)x= . Let the initial condition be
                                       M
                                       X
                         u(x 0) =          fm(0) sin m x + h(x)                (2.33)
                                     m=1
where must be an integer in order to satisfy the boundary conditions. A solution
of the form                     M
                               X
                      u(x t) = fm(t) sin mx + h(x)                        (2.34)
                                     m=1
satis es the initial and boundary conditions. Substituting this form into Eq. 2.27
gives the following ODE for fm :
                                   dfm = ; 2 f                              (2.35)
                                    dt       m m
and we nd
                                 fm(t) = fm(0)e; 2 t
                                                 m                          (2.36)
Substituting fm(t) into equation 2.34, we obtain
                                 M
                                 X
                      u(x t) =         fm (0)e; 2 t sin m x + h(x)
                                                m                              (2.37)
                                 m=1
The steady-state solution (t ! 1) is simply h(x). Eq. 2.37 shows that high wavenum-
ber components (large m) of the solution decay more rapidly than low wavenumber
components, consistent with the physics of di usion.
16           CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
2.5 Linear Hyperbolic Systems
The Euler equations, Eq. 2.8, form a hyperbolic system of partial di erential equa-
tions. Other systems of equations governing convection and wave propagation phe-
nomena, such as the Maxwell equations describing the propagation of electromagnetic
waves, are also of hyperbolic type. Many aspects of numerical methods for such sys-
tems can be understood by studying a one-dimensional constant-coe cient linear
system of the form
                                    @u + A @u = 0                              (2.38)
                                    @t     @x
where u = u(x t) is a vector of length m and A is a real m m matrix. For
conservation laws, this equation can also be written in the form
                                     @u + @f = 0                               (2.39)
                                     @t @x
                                    @f
where f is the ux vector and A = @u is the ux Jacobian matrix. The entries in the
  ux Jacobian are
                                          @f
                                    aij = @ui                                  (2.40)
                                            j
The ux Jacobian for the Euler equations is derived in Section 2.2.
   Such a system is hyperbolic if A is diagonalizable with real eigenvalues.1 Thus
                                       = X ;1AX                                (2.41)
where is a diagonal matrix containing the eigenvalues of A, and X is the matrix
of right eigenvectors. Premultiplying Eq. 2.38 by X ;1 , postmultiplying A by the
product XX ;1, and noting that X and X ;1 are constants, we obtain
                                                  z }| {
                                    @X ;1u      @ X ;1AX X ;1u
                            @t +            @x      =0                      (2.42)
With w = X ;1u, this can be rewritten as
                                 @w + @w = 0                                (2.43)
                                  @t       @x
When written in this manner, the equations have been decoupled into m scalar equa-
tions of the form
                                @wi + @wi = 0                               (2.44)
                                         i
                                 @t        @x
     1   See Appendix A for a brief review of some basic relations and de nitions from linear algebra.
2.6. PROBLEMS                                                                       17
The elements of w are known as characteristic variables. Each characteristic variable
satis es the linear convection equation with the speed given by the corresponding
eigenvalue of A.
    Based on the above, we see that a hyperbolic system in the form of Eq. 2.38 has a
solution given by the superposition of waves which can travel in either the positive or
negative directions and at varying speeds. While the scalar linear convection equation
is clearly an excellent model equation for hyperbolic systems, we must ensure that
our numerical methods are appropriate for wave speeds of arbitrary sign and possibly
widely varying magnitudes.
    The one-dimensional Euler equations can also be diagonalized, leading to three
equations in the form of the linear convection equation, although they remain non-
linear, of course. The eigenvalues of the ux Jacobian matrix, or wave speeds, are
                                                                    q
u u + c, and u ; c, where u is the local uid velocity, and c = p= is the local
speed of sound. The speed u is associated with convection of the uid, while u + c
and u ; c are associated with sound waves. Therefore, in a supersonic ow, where
juj > c, all of the wave speeds have the same sign. In a subsonic ow, where juj < c,
wave speeds of both positive and negative sign are present, corresponding to the fact
that sound waves can travel upstream in a subsonic ow.
    The signs of the eigenvalues of the matrix A are also important in determining
suitable boundary conditions. The characteristic variables each satisfy the linear con-
vection equation with the wave speed given by the corresponding eigenvalue. There-
fore, the boundary conditions can be speci ed accordingly. That is, characteristic
variables associated with positive eigenvalues can be speci ed at the left boundary,
which corresponds to in ow for these variables. Characteristic variables associated
with negative eigenvalues can be speci ed at the right boundary, which is the in-
  ow boundary for these variables. While other boundary condition treatments are
possible, they must be consistent with this approach.

2.6 Problems
  1. Show that the 1-D Euler equations can be written in terms of the primitive
     variables R = u p]T as follows:
                                @R + M @R = 0
                                @t      @x
     where
                                   2           3
                                     u      0
                             M = 6 0 u ;1 7
                                   4           5
                                     0 p u
18       CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
        Assume an ideal gas, p = ( ; 1)(e ; u2=2).
     2. Find the eigenvalues and eigenvectors of the matrix M derived in question 1.
     3. Derive the ux Jacobian matrix A = @E=@Q for the 1-D Euler equations result-
        ing from the conservative variable formulation (Eq. 2.5). Find its eigenvalues
        and compare with those obtained in question 2.
     4. Show that the two matrices M and A derived in questions 1 and 3, respectively,
        are related by a similarity transform. (Hint: make use of the matrix S =
        @Q=@R.)
     5. Write the 2-D di usion equation, Eq. 2.31, in the form of Eq. 2.2.
     6. Given the initial condition u(x 0) = sin x de ned on 0 x 2 , write it in the
        form of Eq. 2.25, that is, nd the necessary values of fm (0). (Hint: use M = 2
        with 1 = 1 and 2 = ;1.) Next consider the same initial condition de ned
        only at x = 2 j=4, j = 0 1 2 3. Find the values of fm(0) required to reproduce
        the initial condition at these discrete points using M = 4 with m = m ; 1.
     7. Plot the rst three basis functions used in constructing the exact solution to
        the di usion equation in Section 2.4.2. Next consider a solution with boundary
        conditions ua = ub = 0, and initial conditions from Eq. 2.33 with fm(0) = 1
        for 1 m 3, fm (0) = 0 for m > 3. Plot the initial condition on the domain
        0 x . Plot the solution at t = 1 with = 1.
     8. Write the classical wave equation @ 2 u=@t2 = c2 @ 2 u=@x2 as a rst-order system,
        i.e., in the form
                                     @U + A @U = 0
                                      @t       @x
        where U = @u=@x @u=@t]T . Find the eigenvalues and eigenvectors of A.
     9. The Cauchy-Riemann equations are formed from the coupling of the steady
        compressible continuity (conservation of mass) equation
                                      @ u+@ v =0
                                      @x @y
        and the vorticity de nition
                                    ! = ; @x + @u = 0
                                          @v
                                                @y
2.6. PROBLEMS                                                               19
    where ! = 0 for irrotational ow. For isentropic and homenthalpic ow, the
    system is closed by the relation

                         = 1 ; ; 1 u2 + v2 ; 1
                                                     1
                                                     ;1
                               2
    Note that the variables have been nondimensionalized. Combining the two
    PDE's, we have
                                @f (q) + @g(q) = 0
                                  @x       @y
    where
                    q= u  v       f = ;v u        g = ;u
                                                       ;
                                                          v

    One approach to solving these equations is to add a time-dependent term and
     nd the steady solution of the following equation:
                                @q + @f + @g = 0
                                @t @x @y
    (a) Find the ux Jacobians of f and g with respect to q.
    (b) Determine the eigenvalues of the ux Jacobians.
    (c) Determine the conditions (in terms of and u) under which the system is
        hyperbolic, i.e., has real eigenvalues.
    (d) Are the above uxes homogeneous? (See Appendix C.)
20   CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
¡ ¢ 
¦  
 H ‰B d 4 Y H h 5 D h H h H H 2 2 5B D T D 5 2 h 2 T Y 7 d H D H F D H 2 n H h 5 D Y R Y DB 7 d H  H d R ` n YB F D q 5 2 5B
  †X‚QW6IkGÆQI6QIÅ8EGVG¢I¬I¢–9W6GeIW‰II6IkG‘IwGE9W6s‚I8U…EIG‘¢Å8EGD
r 4 H  Y 2B 2 i ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y YB H 4 T  Y h 2 T H 7B D F D 5 ‰ ` 2B by 5 b 2B F Y H 7 D Y Hy  7B Y H F
 –Q†WIEe™j’   p™WI8EvX‰CcIWvXuQVUWeIV9XGŽW¢†…IXx„88oX‚Q9Š‚6XI9X‚Iut
                        ¶ Ã ¹ » ´ » Ã
                         9Q”av–ÄÂ                    ± Á ¶ ± À ± ¿ ¹ ½ ¼ ± » ¹ ¶ ¹
                                                      ‘ej)6¾hfv6egº¸                                        · ¶ ´ ² ± ³ ²
                                                                                                               ewµ”±                          °                 ¯ ®
                                                                                                                                                                    c­
                                                                                                                         ’ 2 5B D T 4By   T y T 4B D 4 T d
                                                                                                                          ‹8EGVQXEII¢›VgXW6¢WI
          ` 2B Y 5y d 5 H bB D 4B d D Y H d iy R h 2 R ` 2B H ‰ D R 5 F DB
           IX‚8X98‰8EW6EWGfQ‚¬EIIpIrIEQ†9p8IWEC@ QGfx‚«VƒW6Gf¢ŠªQ6¢U‚XISQ©¢‚Iv@            7 H DY i Y 2 TB Y H Dd T  h H 4 T  YB R P H 2 T H Y R H
    YB Y iy T 2 T i 4 T d R 4 4 T ` 2B @ 5yy 5q H F D q 5 F 4 R 7 2B t 2 5 Y T H d YB F D d 5 ¤ ’ Y 2 5B D T R P H h H 7 d 5q Y 2 T d
    XWx„¢U¢6VGI6Q¢IECcXX¢•9IWŠ¢ƒI…AX§‹8WVgWwXpG8UeQp8XWVUSQAQ9W8•fI¢WGD
        H F D q 5 Y D 2 HB 4 ¨ H 5 4 Hy ‰ TB d T b 5 D 2B h H ‰ d 5 Y ‰ T YB 2 5B D TB d T b 4B d D H 7 5 H ` H F D yy T ’ 7 d 5qB 2 R YB }   œ
         pGpVvGo6XQ9‡˜6”XIVƒWV¢CGoEwQ†W¢WI¢§E8XWVƒ‚¢V”XWW698Q¢vIW¢XV¢‰W8•„II˜Xhƒxp3ž
 ¢†lŸš¢£x†™lƒIu§8E˜”Wp8XvuEwCcI‚›¢s‡ƒxp3V¢†lŸš¢£x†™lƒ#QEX¢Q3V‚uuX‹E¢V‚QWoXB
                 „ ‡yx x ¢ œ { ‡  H F t ’ ¦’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t }   œž    „ ‡yx x ¢ œ { ‡  h Hyy T 4r 5 Y T 2B Yy T b d H D 2
               h H 4 T  YB R P H F DB @ F Y H 7 2 TB Y H D d T  7 d 5qB 2 R T 5 D h H 7 d 5q Y 2 T d D H ‰ 2 T 4 }   œ ž    y ž  ‚ œ 2
                Q6¢U‚XISQG„CW6#¢ƒ‚QW‚¢Š¡‚8•EpI††GAQ9W8•fI¢GW9†rVgƒxp3v¢WŸ‡cxUeXB
     Y H D T 2B h d 5 5 4 d T H 2ByB b d R 4 y T d H 2 H ` 2B h H Y Y H d  — H Y H F Y H 7 q 5 Y H Y Y Ty 4 y T d H 2 H ` H DB R P D T F D D 4 T
      6GVIXI‚8˜6Š¢QIXEXx‚I6›¢G6IQ¢‰EeQ‚WQ‚I˜‡‘QI‚Q9vVf6WWVƒQ›VGQpQ8uG„ISCVUW‘‡¢šq
       H F D H ŒB Y T F  7 H H ™ ’ 7 H D Y i Y 2 TB Y H D d T  T 2B h H D 2 H Y H d  YB @ 5y H ‰ y TB d H D T 7 H F D q 5 yy
        pG…QEW¢II#6…w‰QW‚x‚e¢XW6G‚VŠeXAQWS6W6WIEsEQ†˜¢ƒ‚QGld‘IWj¢vE™i
                                           ’ — d H D  T F  2B h H Y Y R 4 YB h H ‰ yyB @ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h r H DB 2 n H Y H F
                                            If6GpVU•‰X6W‚IQ‚XIu†hXEC•I8EGV#X˜gWpI¢uQpQW6h„I3–G„IUuWQpGD
           ` 2B iy   T d 5q Y HB ` H D T d D ” ’ “ d H D  T F  2B h H D T H d D H d T Y H bB D T bB d H h H 7B D ’ Y H bB D T bB d H h y TB D T 
            pXxEIp¢u8••6X86GVWGx€˜CQG˜¢U•‰Xe6GVQWWW¢u68„GVVE‚QIf#EGp6Q¢EGl¢„W6Ih¢XGVIWY
              2 5 YB d H D  T F  YB F D 2B YB Y T F  7 H d R “ ’ Y H bB D T bB d H h H 7B D d 5 Y H bB D T bB d H h y TB D T  Y 5 D d H F DB
               8‘X™QG˜¢U•EIG‰XfXWVUI9Q™p™Q68„GVVE‚QIw9XGC8fQ8„GVV„WQpm¢XGVIWdWf6IG„QH
             h HBy   T H ‰ 2 T 4 H Y H F t ’ h H D 2 H Y H d  YB Y H bB D T bB d H h y TB D d T  5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB
              6XEII¢#sr¢gŽ‚QIu†‹QWoQW6WIuEwQ¢EWVVEW6Ij¢XG‚VUWI8XWV#X˜gWIIVŽQpQW6h„Ih
  r H DB 2 n q 5 D  H 4 2 5 4 H F D t d H D  T F 4 YB F D 2 1 ’ H d H F h H ŒB Y T F  7 H F 4 T 5 d   T H F D YB YB F t ’ h H by 5
   ‡G„IUm¢p6QI¢QwIGUQ6GpVUƒfEIG3ŠVWQpQ6X‚¢UI9Q†ƒ¢oWpI¢aIGuXCEIuŠ‹68E¢WY
         H ‰ 2 T 4 F 4B F @ Y 2 5B D T R P H H 4 2 H d H gB h q 5 D H Y T Y H 4 R h 5 d  F 4B F @ ˆ ‡ ‚x } { … „y ‚  €  { ~ } {yx
          †rVg)ƒEICwp8XWVUSQ9QI6W6h„IŠ¢w6‚‰wQQpI˜‚IrƒEIC9QU|‡d†x|xƒG¢93‡d|zkT
            5 D ` 2B h T Hy t D — H 2 h H D T 7B — 5 d   T H d T Y H bB D T bB d H h H 7B D H F t ’ Y 2 5B D T R P H y TB D 2 H d H gB h i d T 2B
             WwIEI¢QXpQx‡I#QGldEpg‚II¢™W¢vQ¢EGl¢„W6If9XWfIuj6I8EGVUS6†VƒGo6WQsEp–‚¢UEIh
   r d 5 q 5 7 H D Y i Y T ` 2B 4 R h 5 d  i ‰ H d H F D t D Y d n Y H bB D T bB d H h y TB D T  Y H F D H D T 7B — 5 d   T 2 T 4 H 2
    f8ˆ¢pQGfx‚depXQpI˜‚Io6WQpGhQ‚WI™Q¢EGl¢„W6ImVƒGlUW…pGuGV#X˜gWIp¢k¢gwI85
 t8„Q8„GVIWQWEfjQI8EGVIx6QpQW6h„IwpXG„IW6WfIG™¢E8‚eQIWdI¢9„WI¢QI¢GEIwXW™WQpGD
                 iy H bB D T 2 d H Dy i ’ Y 2 5B D T R P H H 4 2 H d H gB h ` 2B Dy R Y H d H F D H by 5 Y 2 H F D h 2 T iy Y R 5 H 2 T Dy R 7B Y H Y H F
      H D T 7B — 5 d   T 2 T 4 H 2 “ ’ H 7B D h 2 T H 4 T  Y F D 5 ‰ 5 D D 4 H  Y H d F DB @ Y H bB D T bB d H h y TB D d T  2B T D 2 5
       GV#X˜gWIp¢–¢g•I”V#EG…I¢C6¢U‚‘G¢†Gˆ‡Q†WQ‚…G„CvQ¢EWVVEW6Ix¢ƒW‚¢UwX¢GS¢Q4
    Y 2 5B D T R P H y H h 5 7 d R 5 t @ 5 q hB R q i h T H D Y 2 R ` 2B 2 d H b 5 ` Y 2 5B D T R P H H F D F DB @ 2 5 7 7 5 4 2
     p8XWVUSQ€QIx9wI8vusIrXIIpVgGfIIeIEIW68c8aI8XWVUSQ#IGGECA89#86)31
                                                                   0                ' )          %                        (    '     $                              %
                                                               £                           $                           #!                                     
                                                                                                                                  ©
                                                                                                                                   ¨          ¦ §¥           ¤      £
’ D 2 H 2 5  — H 2
                                                             QoQI8†˜‡‰¢T ¢W•Š„‰‚XI¢IXW‚Xp9Wf6WQpGoQ‚¢U
                                                                                  7 5 dq DB F YB R ` 2B D YB h 5 D Y H Y H F D 2 H d T
  F DB @ h H Y 5y 4 2 H iyy T R Y R YB h 2 T D B d 4 Y d H  R Y T Y i T @y T YB H 7B D t d H F D H ` 5 D h H Y R 2 H F @ D R
   WECÅQ‚8X6IQEE¢UWp…X¬I¢9˜XW6W‚Q†IW–xgŠ„¢‘EŽ#EGjQ6IG‡88W¬6WIÆQpC‘pI‰
t D B d 4 Y ‰ R Y T Y T d T H   T Y H 4B h 2B H 4 T  Y h 2 T H 7B D H F D F D 5 ‰ t H 2 5y T h H Y R 2 H F @ D T F D H 4B D 5
 QpX‚Q‚IIW‘C¢‘¢Qsp¢uQ6XIpXwQ¢U‚I¢9XWupGeG¢†pVI8E¢6WI‰QICulUG6XGVfò
                                                         ü ¢í
                                                        ¡‚£Ý            ä ç ñ õ ø Þà ß î þ ø ßæ
                                                                         ¡†p«˜‚˜‘¬‘|mÝ
                                                    ¤ý ü
                                                    ¥Icï
ç ’ ¥
 8¥ pšæ                            ü í Ý ä ç ß îû þ ø ù æ
                                  ¡‚xÿˆs‘XŽÆ™ê ‚mÝ                      ä ç ß î þ ø ßæ
                                                                         ¾s…¬‘|vÝ
                                    ý ü ï Ý ä ç ñ û õ ø ìù æ
                                     IgUðˆë|x©9ú‚mÝ                     ä ç ñ õ ø Þæ
                                                                         ¡†p«‹•mÝ
                         Û Y @ 5yy 5q Y T YB ` 2B — H h 2B D B d 4 Y d H  R Y h 2 T D B d 4 Y ‰ R Y d 5q 2 5B D 2 H b 2 5 4 H F
                          QCcXE8•u¢CX–IE˜‡IIE‘pX‚QW‚Q†IW‰I¢fpEW6WII‚u8•†¢XGo68o8QwIut
                                                                                   ’ Y R 5B b ‰ 5 ` 2B 2 T H 7 H F D H ÷ T 7 hy R 5 F
                                                                                    6I8E˜o8‘pXI¢Q#uIW¢¢#XI8pWY
Dx‡Wo8Qu¢Q˜EC‡p‚¢WW6QQp96#EG‡#8‚#EºƒXpC•e6W8†WpI#6IGV#8•©QWp†‚¢ƒs–8£vì
   — H D 2 5 4 y T 4 5y t ç i d T Y Y H 4 H 2 Y H 7B D H 7 5 Y YB F 4B F @æ Y H Y 5  d R  d H F D 5 d 5q h H Y R H d T ö à õ à êà
 2 H F ™ ’ i T @ d TyB 7B Y T 2B â h 2 T á d 5q h H Y R H d T ö h 2 T õ d H D T ô ’ D R 5 F ` R 5 d F D Þ î ä ñ D T F
  Qpª•8g•v¢XX9XW–†X#†I¢Ž‘¢•Q‚IuW¢j†I¢6GV˜vgp¢I8I8‚IG•‘óe™VIGD
 HD 5 ò
 W¢f‘’   pwWp8Xv†XeCcI‚™¢s–XdpXQVUWaIGu…p¢A†EdIEQ¢U‚wIWuXk…‘W6IC@
               ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t Þ 2B ` 2B 4 T  Y H F D Þ î h 2 T ß 2B ` 2B 4 T  Y H F D YB ß î H d H F
ç   pšæ
    ’ ¥                                              ñ ì ä Þ î ì ä ï
                                                      ›ª€…‹ða3Þ                   ä ¡Þ
ç ¦’ ¥
 cEpšæ                                                        ß î ê ä í
                                                               …S«uxß             ä      ß
                                                                            hB d ` h H 4 T  YB R P H 2 T 2 5 2 H F t ’ ì ž   è   YB
                                                                            X‚86Q¢IWXpx6¢¢Qpujv•s¢€é¢wEŠÞ
  d 5q D T F D h 2 T t ê ž   è   YB ß d 5q — H h 2B F Y H 7 H F t ’ h H 7 R Y Y T YB d H F D 5 H F D 2 5 H 4 2 H h 2 H  H
   ¢•uVUG‰I¢ëUˆc¢€é¢wXC¢•e‡IpX‚Q9apu•‹6#I‚W¢CEf6IGVwpG8…QpQII6s6Ih
 t h H D 5 2 H h YB Hy ‰ TB d T b H 2 5 iy 2 5 2 H F ™ ’ ç Þ à ßæ Ý ä Ý H Y T 4 ã r ¦ H F D iyB d T 7B d  d H hB Y 2 5 4 H
  hQGVIQI™XwXI¢XW¢Vwp8„I8kQpªu–‚W˜•måe‘W¢QÏÔ6eIWd„XWVdEWI6IX‚I8Q‘v@
   Y d H D  T F 4 y T d H b H Y D Y d n H F D d 5 ¤ ’ â à á à ß h 2 T t Þ Y Hy ‰ TB d T b D 2 H h 2 H  H h 2B H F D q 5 Y 2 5B D 4 2 Rq H d
    W6GpVUƒh¢WQ¢6W•‚‚UfIWj8Ujpƒ†G˜dIVp–jQEI¢XW¢VŠoQpIQ†QIpX™pG‹¢vI8EG6pI•‘‚¢T
t Hy  7 T — H d 5q t Ý t Y Hy ‰ TB d T b D 2 H h 2 H  H h H F D ty T d H 2 H ` 2 1 ’ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H DB 2
 ¢Xp#¢p–Š8•˜˜˜QQEI¢XW¢VCoQII6s6IIW˜ŸVGQpQ83”6I8XWV#X˜gWIIVuQI6WQsEpG„IUn
                              ’ Y H 4 T  Y y T 2 5B D T D R  7 5 4 h 2 T y T 4B Y i F
                               Q6Q¢IWhVU8XWVƒ˜I#¢Q‰I¢˜¢QXWxojÜ                               Û ¦’ ¥ H d R `B
                                                                                              8„puWI¢Xv¤
                                                                                                  x
                                                                                                               y
 Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
  u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç                                                                                                  8 
’ 7 d 5qB 2 R YB ` 2B 4 T  Y H F D t ß î d 5 Þ î 2 5 D B d 4 Y ‰ R Y 5 2 YB H d H F D 2 H F
                                 †‚8•EpIuX–IEQ¢U‚uIGU˜…C8Š…‰8fpX‚Q‚IIW–IuEa‚QIW‰6Iª™
ç 9’ ¥
 ¢%pšæ              ’ 4D
                     ¢W6H      à ï Ý 6 4 ü ï Ý ä ï Ý
                                ˜UÅ85cUªaë‘î                                 à í ß 6 4 üí ß ä í ß
                                                                              sxr'5‚xªCx…î                                           à ïÞ 6 4 ü ï
                                                                                                                                      I3r75c3Þ         ä ïÞ
                                                                                                                                                        a3…î
                                                                         D T F D F 4 R Y h H 2 n H h YB F 4B F @ t î y 5 ‰ 7 i
                                                                          VUW†ƒI‚QpU6IuE†ƒEICIe˜8†…x‚Y
 H F D YB 2 5B D  H 4 — H H 2 5 H F t ’ ` 2B 2 T H 7 H YB 4 H d  Y DB H 2B 7 d H D H h 5 D h H Y R H d T Y i T @ d H F D “ ’
  pGXk8EGp6Q˜‡‘p8‘IuuIIEI¢g9‘WEQ6WIWE…pX9WQW6IWk6WI‘‚¢wxc•QpG™…S(
y 5 ‰ 7 i Y H F D 2B h HB d d T 4 D 5 2 YB 2 5B D T 7B — 5 d   T H F D q 5 ç d H h d 5 h 2 Tæ H d R D T 2 H YB 4 H d  H F D D R
 8sw˜fuIGŽE‰6X‚W¢QC¢IuXd8XWVdE˜c‚II¢upG§¢•ƒ6IW8‰I¢š9WIWVUuWEQ6WIuIWupI‰
ç ’ ¥
 8“ pšæ                                                         0 
                                                              ¥21¥ (                                  à 321 (
                                                                                                            0
                                  t Hy  7 T — H d 5q t D T F D F 4 R Y H bB D T bB d H h T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h
                                   ¢Xp#¢p–u8•pglUG‰ƒIWu8„GVV„WQp–9Wd8XWV#X˜gWIIVw6IQ‚QsEI‘T
 D 2 H Y H d  H d 5 D h H Y R YB ( y 5 ‰ 7 i Y H F D D T F D 2 T H 7 H @ YB F D i  ’ H R PB 2 R D 5 2 YB DB ç 2 5B D  H 4 — H H 2
  oQ‚QWpQW‘GaQWp§Eu)¢s…xfvIWmlUGu¢g9•v›XIWv'VISXIpv¢p§E§E›ë8XWpQ6˜‡€I85
  F DB @æ D R ‰ i F  5 Y 5yB F  H 7 T Y H F D Y @ 5yy 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h d 5q 2 5B D T D 5 2 H F
   WEC•pI…Sp8W8EXIpf9¢G‘IW”CsEX8•”p8XWVdE˜c‚II¢™QI6W6h„Iˆ8•‘8XWVƒ¢p™Iut
          ’ ß 5 D D 4 H  Y H d F DB @ Ý q 5 H bB D T bB d H h D Y d n H F D D 2 H Y H d  H d 5 D h H Y R H ‰ D 5 2 yyB
           ˜9W‘‡Q†W6W‰GEC‰vV8EWVVE‚QI‘‚‚UIGfoQW6WI6W–G‰Q‚Is‘¢phXEC@  ‘ISut                                                   Ý Y R F
’ Y H bB D T bB d H h Y Y H d  — H 5 D h H Y R d H b H 2 H d T Y Hy ‰ TB d T b D 2 H h 2 H  H h 2 5 Y D B d 4 Y ‰ R Y D — H D YB F D 2
 QQ¢EWVVEW6IuW6WI˜‡dGQ‚IQ¢6IaW¢fQEI¢XW¢VoQIpQ†QI¢GpEWQ‚II‚x‡GCXpG31
                                                                                         
                                                                                 Þ
ç $’ ¥
 ¢%pšæ                                                                                        ä
                                                                                              #˜!Ý
                                                                                     Ý
                                    H Y R H @   ã “ q 5 i h R D Y H F D 2B H bB D T bB d H h H 7B D i d T 2B h d 5 H F D d 5
                                     ‚Iu•uY u”¢ppG‚uIWeX8„GVV„WQp#EG#‚¢UEIW¢wpGŠ8U¤
                                                   ß                                            Þ                           ß 
ç ’ ¥
 o— pšæ                            ’ 4D
                                    ¢W6H      à                ä  
                                                                eÝ ¥                       à               ä 
                                                                                                              eÝ        à                   ä 
                                                                                                                                               eÝ 
                                                   Ý 
                                                                                                 Ý                          Ý 
                                                      iy ‰ T H ` 2 T F 4 d H D 2B H Y R H @ H 7B D d 5 H 4 T  Y 2B Y H bB D T bB d H
                                                      „I¢Q8I¢Uƒ‚QWSEa‚Iw•™9XWŠ8wQ¢U‚eXCQ¢EWVVEW6Ih
y TB D d T  d 5q Y R F t ’ Y 2 5B D 2 H b 2 5 4 y T R Y R H F D 5 D ` 2B h d 5 4 4
 ¢ƒW‚¢I‘8•#ISu©QI8EGoQ¢o8QC¢U‚IIGeWAIEIW¢QQVT Q‚WQ‚I˜‡WV#68„GVVE‚Qã                     h H Y Y H d  — H H d T Y H bB D T bB d H
                                  ’ D 2 H 7 H ` 2 T d d T hB d ` H 7B Dr H 4 T 
                                   goQ9Q¢I¢G‚¢X‚89XGŸ‡6¢U˜”                                                         Û   p‚I8Ev¤
                                                                                                                          ’ ¥ H d R `B
                                    x             j+2         j+1            j                   j-1     j-2
                                                          ©         ©                                          ©
                                                                                                                                     n-1
                                                                                                        ∆t
                                                                                                                                      n
                                                                        ∆x
                                                                                                                                     n+1
                                  Points
                                  Node
                                  Grid or
                                                                                                                                      t
                                                                                                                                          ¨
 ¥                                         Ó × Ò Ë É Ë ×
                                            u‡§™IawÓ                         Ì Ç Ó Ì Í Ì Ñ Ñ Ò ÖÕ Ì Ë Ò Ó Ò Ñ Ö Ó É Ú Ì È Ú Ì Ù Ð ¦Ð
                                                                              ”…ˆfˆ”vԐŸˆmQfÔv™™‰€™˜v†º8§xÎ
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg
Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg

Mais conteúdo relacionado

Mais procurados

Discrete Mathematics - Mathematics For Computer Science
Discrete Mathematics -  Mathematics For Computer ScienceDiscrete Mathematics -  Mathematics For Computer Science
Discrete Mathematics - Mathematics For Computer ScienceRam Sagar Mourya
 
A buffer overflow study attacks and defenses (2002)
A buffer overflow study   attacks and defenses (2002)A buffer overflow study   attacks and defenses (2002)
A buffer overflow study attacks and defenses (2002)Aiim Charinthip
 
Eui math-course-2012-09--19
Eui math-course-2012-09--19Eui math-course-2012-09--19
Eui math-course-2012-09--19Leo Vivas
 
Vector spaces, vector algebras, and vector geometries
Vector spaces, vector algebras, and vector geometriesVector spaces, vector algebras, and vector geometries
Vector spaces, vector algebras, and vector geometriesRichard Smith
 
Hub location models in public transport planning
Hub location models in public transport planningHub location models in public transport planning
Hub location models in public transport planningsanazshn
 
M152 notes
M152 notesM152 notes
M152 noteswfei
 
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid Mateos
 
Differential Equations for Engineers
Differential Equations for EngineersDifferential Equations for Engineers
Differential Equations for Engineersamelslideshare
 
Math trigonometry-notes
Math trigonometry-notesMath trigonometry-notes
Math trigonometry-notesEmman C
 
Trignometry notes notes
Trignometry notes notesTrignometry notes notes
Trignometry notes notesShivang Jindal
 
Applied Stochastic Processes
Applied Stochastic ProcessesApplied Stochastic Processes
Applied Stochastic Processeshuutung96
 

Mais procurados (16)

Discrete Mathematics - Mathematics For Computer Science
Discrete Mathematics -  Mathematics For Computer ScienceDiscrete Mathematics -  Mathematics For Computer Science
Discrete Mathematics - Mathematics For Computer Science
 
A buffer overflow study attacks and defenses (2002)
A buffer overflow study   attacks and defenses (2002)A buffer overflow study   attacks and defenses (2002)
A buffer overflow study attacks and defenses (2002)
 
Eui math-course-2012-09--19
Eui math-course-2012-09--19Eui math-course-2012-09--19
Eui math-course-2012-09--19
 
Vector spaces, vector algebras, and vector geometries
Vector spaces, vector algebras, and vector geometriesVector spaces, vector algebras, and vector geometries
Vector spaces, vector algebras, and vector geometries
 
Hub location models in public transport planning
Hub location models in public transport planningHub location models in public transport planning
Hub location models in public transport planning
 
M152 notes
M152 notesM152 notes
M152 notes
 
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
 
t
tt
t
 
Differential Equations for Engineers
Differential Equations for EngineersDifferential Equations for Engineers
Differential Equations for Engineers
 
Math trigonometry-notes
Math trigonometry-notesMath trigonometry-notes
Math trigonometry-notes
 
Trignometry notes notes
Trignometry notes notesTrignometry notes notes
Trignometry notes notes
 
Applied Stochastic Processes
Applied Stochastic ProcessesApplied Stochastic Processes
Applied Stochastic Processes
 
Oop c++ tutorial
Oop c++ tutorialOop c++ tutorial
Oop c++ tutorial
 
Di11 1
Di11 1Di11 1
Di11 1
 
MSC-2013-12
MSC-2013-12MSC-2013-12
MSC-2013-12
 
Nb
NbNb
Nb
 

Destaque

2D CFD simulation of intracranial aneurysm
2D CFD simulation of intracranial aneurysm2D CFD simulation of intracranial aneurysm
2D CFD simulation of intracranial aneurysmwalshb88
 
3D CFD simulation of intracranial aneurysm
3D CFD simulation of intracranial aneurysm3D CFD simulation of intracranial aneurysm
3D CFD simulation of intracranial aneurysmwalshb88
 
Welcome to SimScale
Welcome to SimScaleWelcome to SimScale
Welcome to SimScaleSijia Ma
 
Velocite aerodynamics consulting
Velocite aerodynamics consultingVelocite aerodynamics consulting
Velocite aerodynamics consultingVictor Major
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)Vicente Mataix Ferrándiz
 
CFD Best Practices & Key Features
CFD Best Practices & Key FeaturesCFD Best Practices & Key Features
CFD Best Practices & Key FeaturesDesign World
 
openFoam Hangout on Air #2 - Cloud Simulation, presentation by Dacolt
openFoam Hangout on Air #2 - Cloud Simulation, presentation by DacoltopenFoam Hangout on Air #2 - Cloud Simulation, presentation by Dacolt
openFoam Hangout on Air #2 - Cloud Simulation, presentation by DacoltJulien de Charentenay
 
CFD analysis of Flow across an Aerofoil
CFD analysis of Flow across an AerofoilCFD analysis of Flow across an Aerofoil
CFD analysis of Flow across an AerofoilJJ Technical Solutions
 
OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingJibran Haider
 
CFD analysis of aerofoil
CFD analysis of aerofoilCFD analysis of aerofoil
CFD analysis of aerofoilNeel Thakkar
 
Cfd introduction
Cfd introductionCfd introduction
Cfd introductionSantosh V
 
Computational fluid dynamics approach, conservation equations and
Computational fluid dynamics approach, conservation equations andComputational fluid dynamics approach, conservation equations and
Computational fluid dynamics approach, conservation equations andlavarchanamn
 
Computational fluid dynamics
Computational fluid dynamicsComputational fluid dynamics
Computational fluid dynamicsRavi Choudhary
 

Destaque (20)

2D CFD simulation of intracranial aneurysm
2D CFD simulation of intracranial aneurysm2D CFD simulation of intracranial aneurysm
2D CFD simulation of intracranial aneurysm
 
3D CFD simulation of intracranial aneurysm
3D CFD simulation of intracranial aneurysm3D CFD simulation of intracranial aneurysm
3D CFD simulation of intracranial aneurysm
 
Welcome to SimScale
Welcome to SimScaleWelcome to SimScale
Welcome to SimScale
 
Mesh generation in CFD
Mesh generation in CFDMesh generation in CFD
Mesh generation in CFD
 
Best practices in CFD
Best practices in CFDBest practices in CFD
Best practices in CFD
 
Velocite aerodynamics consulting
Velocite aerodynamics consultingVelocite aerodynamics consulting
Velocite aerodynamics consulting
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
 
Cfd ppt
Cfd pptCfd ppt
Cfd ppt
 
07 mesh
07 mesh07 mesh
07 mesh
 
CFD Best Practices & Key Features
CFD Best Practices & Key FeaturesCFD Best Practices & Key Features
CFD Best Practices & Key Features
 
openFoam Hangout on Air #2 - Cloud Simulation, presentation by Dacolt
openFoam Hangout on Air #2 - Cloud Simulation, presentation by DacoltopenFoam Hangout on Air #2 - Cloud Simulation, presentation by Dacolt
openFoam Hangout on Air #2 - Cloud Simulation, presentation by Dacolt
 
CFD analysis of Flow across an Aerofoil
CFD analysis of Flow across an AerofoilCFD analysis of Flow across an Aerofoil
CFD analysis of Flow across an Aerofoil
 
Cfd notes 1
Cfd notes 1Cfd notes 1
Cfd notes 1
 
CFD - OpenFOAM
CFD - OpenFOAMCFD - OpenFOAM
CFD - OpenFOAM
 
CFD For Offshore Applications
CFD For Offshore ApplicationsCFD For Offshore Applications
CFD For Offshore Applications
 
OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on training
 
CFD analysis of aerofoil
CFD analysis of aerofoilCFD analysis of aerofoil
CFD analysis of aerofoil
 
Cfd introduction
Cfd introductionCfd introduction
Cfd introduction
 
Computational fluid dynamics approach, conservation equations and
Computational fluid dynamics approach, conservation equations andComputational fluid dynamics approach, conservation equations and
Computational fluid dynamics approach, conservation equations and
 
Computational fluid dynamics
Computational fluid dynamicsComputational fluid dynamics
Computational fluid dynamics
 

Semelhante a Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg

Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamicsFundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamicsAghilesh V
 
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...Olga Lednichenko
 
Location In Wsn
Location In WsnLocation In Wsn
Location In Wsnnetfet
 
The Dissertation
The DissertationThe Dissertation
The Dissertationphooji
 
Methods for Applied Macroeconomic Research.pdf
Methods for Applied Macroeconomic Research.pdfMethods for Applied Macroeconomic Research.pdf
Methods for Applied Macroeconomic Research.pdfComrade15
 
Lecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationLecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationErnst Schrama
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notespolariton
 
Applied mathematics I for enginering
Applied mathematics  I for engineringApplied mathematics  I for enginering
Applied mathematics I for engineringgeletameyu
 
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...Robert Mencl
 
Lecture notes on hybrid systems
Lecture notes on hybrid systemsLecture notes on hybrid systems
Lecture notes on hybrid systemsAOERA
 
Stochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning PerspectiveStochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning Perspectivee2wi67sy4816pahn
 
I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2NovoConsult S.A.C
 
Discrete math mathematics for computer science 2
Discrete math   mathematics for computer science 2Discrete math   mathematics for computer science 2
Discrete math mathematics for computer science 2Xavient Information Systems
 

Semelhante a Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg (20)

Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamicsFundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
 
Queueing 3
Queueing 3Queueing 3
Queueing 3
 
Queueing 2
Queueing 2Queueing 2
Queueing 2
 
Transport
TransportTransport
Transport
 
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...
Elementray college-algebra-free-pdf-download-olga-lednichenko-math-for-colleg...
 
Grafx
GrafxGrafx
Grafx
 
Location In Wsn
Location In WsnLocation In Wsn
Location In Wsn
 
The Dissertation
The DissertationThe Dissertation
The Dissertation
 
Methods for Applied Macroeconomic Research.pdf
Methods for Applied Macroeconomic Research.pdfMethods for Applied Macroeconomic Research.pdf
Methods for Applied Macroeconomic Research.pdf
 
Lecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationLecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determination
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
 
Applied mathematics I for enginering
Applied mathematics  I for engineringApplied mathematics  I for enginering
Applied mathematics I for enginering
 
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...
Reconstruction of Surfaces from Three-Dimensional Unorganized Point Sets / Ro...
 
Lecture notes on hybrid systems
Lecture notes on hybrid systemsLecture notes on hybrid systems
Lecture notes on hybrid systems
 
Stochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning PerspectiveStochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning Perspective
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2
 
Thats How We C
Thats How We CThats How We C
Thats How We C
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Discrete math mathematics for computer science 2
Discrete math   mathematics for computer science 2Discrete math   mathematics for computer science 2
Discrete math mathematics for computer science 2
 

Mais de Rohit Bapat

Resume-Rohit_Vijay_Bapat_December_2016
Resume-Rohit_Vijay_Bapat_December_2016Resume-Rohit_Vijay_Bapat_December_2016
Resume-Rohit_Vijay_Bapat_December_2016Rohit Bapat
 
मर्म Poems by grace
मर्म   Poems by graceमर्म   Poems by grace
मर्म Poems by graceRohit Bapat
 
Coordinate transformations
Coordinate transformationsCoordinate transformations
Coordinate transformationsRohit Bapat
 
Open gl programming guide
Open gl programming guideOpen gl programming guide
Open gl programming guideRohit Bapat
 
Modern introduction to_grid-generation
Modern introduction to_grid-generationModern introduction to_grid-generation
Modern introduction to_grid-generationRohit Bapat
 
Photoshop tutorial
Photoshop tutorialPhotoshop tutorial
Photoshop tutorialRohit Bapat
 
Vtk point cloud important
Vtk point cloud importantVtk point cloud important
Vtk point cloud importantRohit Bapat
 
माणसाचं आयुष्य
माणसाचं आयुष्यमाणसाचं आयुष्य
माणसाचं आयुष्यRohit Bapat
 

Mais de Rohit Bapat (13)

Resume-Rohit_Vijay_Bapat_December_2016
Resume-Rohit_Vijay_Bapat_December_2016Resume-Rohit_Vijay_Bapat_December_2016
Resume-Rohit_Vijay_Bapat_December_2016
 
मर्म Poems by grace
मर्म   Poems by graceमर्म   Poems by grace
मर्म Poems by grace
 
Coordinate transformations
Coordinate transformationsCoordinate transformations
Coordinate transformations
 
Csharp ebook
Csharp ebookCsharp ebook
Csharp ebook
 
Open gl programming guide
Open gl programming guideOpen gl programming guide
Open gl programming guide
 
Cpp essentials
Cpp essentialsCpp essentials
Cpp essentials
 
Modern introduction to_grid-generation
Modern introduction to_grid-generationModern introduction to_grid-generation
Modern introduction to_grid-generation
 
Fourier
FourierFourier
Fourier
 
Photoshop tutorial
Photoshop tutorialPhotoshop tutorial
Photoshop tutorial
 
Vtk point cloud important
Vtk point cloud importantVtk point cloud important
Vtk point cloud important
 
मात्र
मात्रमात्र
मात्र
 
माणसाचं आयुष्य
माणसाचं आयुष्यमाणसाचं आयुष्य
माणसाचं आयुष्य
 
काल
कालकाल
काल
 

Último

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 

Último (20)

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 

Fundamentals of computational_fluid_dynamics_-_h._lomax__t._pulliam__d._zingg

  • 1. Fundamentals of Computational Fluid Dynamics Harvard Lomax and Thomas H. Pulliam NASA Ames Research Center David W. Zingg University of Toronto Institute for Aerospace Studies August 26, 1999
  • 2.
  • 3. Contents 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Problem Speci cation and Geometry Preparation . . . . . . . 2 1.2.2 Selection of Governing Equations and Boundary Conditions . 3 1.2.3 Selection of Gridding Strategy and Numerical Method . . . . 3 1.2.4 Assessment and Interpretation of Results . . . . . . . . . . . . 4 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 CONSERVATION LAWS AND THE MODEL EQUATIONS 7 2.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Navier-Stokes and Euler Equations . . . . . . . . . . . . . . . . . 8 2.3 The Linear Convection Equation . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Di erential Form . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Solution in Wave Space . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The Di usion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Di erential Form . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Solution in Wave Space . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Linear Hyperbolic Systems . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 FINITE-DIFFERENCE APPROXIMATIONS 21 3.1 Meshes and Finite-Di erence Notation . . . . . . . . . . . . . . . . . 21 3.2 Space Derivative Approximations . . . . . . . . . . . . . . . . . . . . 24 3.3 Finite-Di erence Operators . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Point Di erence Operators . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Matrix Di erence Operators . . . . . . . . . . . . . . . . . . . 25 3.3.3 Periodic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.4 Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . . . 30 iii
  • 4. 3.4 Constructing Di erencing Schemes of Any Order . . . . . . . . . . . . 31 3.4.1 Taylor Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.2 Generalization of Di erence Formulas . . . . . . . . . . . . . . 34 3.4.3 Lagrange and Hermite Interpolation Polynomials . . . . . . . 35 3.4.4 Practical Application of Pade Formulas . . . . . . . . . . . . . 37 3.4.5 Other Higher-Order Schemes . . . . . . . . . . . . . . . . . . . 38 3.5 Fourier Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.1 Application to a Spatial Operator . . . . . . . . . . . . . . . . 39 3.6 Di erence Operators at Boundaries . . . . . . . . . . . . . . . . . . . 43 3.6.1 The Linear Convection Equation . . . . . . . . . . . . . . . . 44 3.6.2 The Di usion Equation . . . . . . . . . . . . . . . . . . . . . . 46 3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 THE SEMI-DISCRETE APPROACH 51 4.1 Reduction of PDE's to ODE's . . . . . . . . . . . . . . . . . . . . . . 52 4.1.1 The Model ODE's . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.2 The Generic Matrix Form . . . . . . . . . . . . . . . . . . . . 53 4.2 Exact Solutions of Linear ODE's . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Eigensystems of Semi-Discrete Linear Forms . . . . . . . . . . 54 4.2.2 Single ODE's of First- and Second-Order . . . . . . . . . . . . 55 4.2.3 Coupled First-Order ODE's . . . . . . . . . . . . . . . . . . . 57 4.2.4 General Solution of Coupled ODE's with Complete Eigensystems 59 4.3 Real Space and Eigenspace . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Eigenvalue Spectrums for Model ODE's . . . . . . . . . . . . . 62 4.3.3 Eigenvectors of the Model Equations . . . . . . . . . . . . . . 63 4.3.4 Solutions of the Model ODE's . . . . . . . . . . . . . . . . . . 65 4.4 The Representative Equation . . . . . . . . . . . . . . . . . . . . . . 67 4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 FINITE-VOLUME METHODS 71 5.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Model Equations in Integral Form . . . . . . . . . . . . . . . . . . . . 73 5.2.1 The Linear Convection Equation . . . . . . . . . . . . . . . . 73 5.2.2 The Di usion Equation . . . . . . . . . . . . . . . . . . . . . . 74 5.3 One-Dimensional Examples . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.1 A Second-Order Approximation to the Convection Equation . 75 5.3.2 A Fourth-Order Approximation to the Convection Equation . 77 5.3.3 A Second-Order Approximation to the Di usion Equation . . 78 5.4 A Two-Dimensional Example . . . . . . . . . . . . . . . . . . . . . . 80
  • 5. 5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 TIME-MARCHING METHODS FOR ODE'S 85 6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 Converting Time-Marching Methods to O E's . . . . . . . . . . . . . 87 6.3 Solution of Linear O E's With Constant Coe cients . . . . . . . . . 88 6.3.1 First- and Second-Order Di erence Equations . . . . . . . . . 89 6.3.2 Special Cases of Coupled First-Order Equations . . . . . . . . 90 6.4 Solution of the Representative O E's . . . . . . . . . . . . . . . . . 91 6.4.1 The Operational Form and its Solution . . . . . . . . . . . . . 91 6.4.2 Examples of Solutions to Time-Marching O E's . . . . . . . . 92 6.5 The ; Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.5.1 Establishing the Relation . . . . . . . . . . . . . . . . . . . . . 93 6.5.2 The Principal -Root . . . . . . . . . . . . . . . . . . . . . . . 95 6.5.3 Spurious -Roots . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5.4 One-Root Time-Marching Methods . . . . . . . . . . . . . . . 96 6.6 Accuracy Measures of Time-Marching Methods . . . . . . . . . . . . 97 6.6.1 Local and Global Error Measures . . . . . . . . . . . . . . . . 97 6.6.2 Local Accuracy of the Transient Solution (er j j er! ) . . . . 98 6.6.3 Local Accuracy of the Particular Solution (er ) . . . . . . . . 99 6.6.4 Time Accuracy For Nonlinear Applications . . . . . . . . . . . 100 6.6.5 Global Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.7 Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . 102 6.7.1 The General Formulation . . . . . . . . . . . . . . . . . . . . . 102 6.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.7.3 Two-Step Linear Multistep Methods . . . . . . . . . . . . . . 105 6.8 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . . . . . 106 6.9 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.10 Implementation of Implicit Methods . . . . . . . . . . . . . . . . . . . 110 6.10.1 Application to Systems of Equations . . . . . . . . . . . . . . 110 6.10.2 Application to Nonlinear Equations . . . . . . . . . . . . . . . 111 6.10.3 Local Linearization for Scalar Equations . . . . . . . . . . . . 112 6.10.4 Local Linearization for Coupled Sets of Nonlinear Equations . 115 6.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7 STABILITY OF LINEAR SYSTEMS 121 7.1 Dependence on the Eigensystem . . . . . . . . . . . . . . . . . . . . . 122 7.2 Inherent Stability of ODE's . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.1 The Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.2 Complete Eigensystems . . . . . . . . . . . . . . . . . . . . . . 123
  • 6. 7.2.3 Defective Eigensystems . . . . . . . . . . . . . . . . . . . . . . 123 7.3 Numerical Stability of O E 's . . . . . . . . . . . . . . . . . . . . . . 124 7.3.1 The Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3.2 Complete Eigensystems . . . . . . . . . . . . . . . . . . . . . . 125 7.3.3 Defective Eigensystems . . . . . . . . . . . . . . . . . . . . . . 125 7.4 Time-Space Stability and Convergence of O E's . . . . . . . . . . . . 125 7.5 Numerical Stability Concepts in the Complex -Plane . . . . . . . . . 128 7.5.1 -Root Traces Relative to the Unit Circle . . . . . . . . . . . 128 7.5.2 Stability for Small t . . . . . . . . . . . . . . . . . . . . . . . 132 7.6 Numerical Stability Concepts in the Complex h Plane . . . . . . . . 135 7.6.1 Stability for Large h. . . . . . . . . . . . . . . . . . . . . . . . 135 7.6.2 Unconditional Stability, A-Stable Methods . . . . . . . . . . . 136 7.6.3 Stability Contours in the Complex h Plane. . . . . . . . . . . 137 7.7 Fourier Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 141 7.7.1 The Basic Procedure . . . . . . . . . . . . . . . . . . . . . . . 141 7.7.2 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.7.3 Relation to Circulant Matrices . . . . . . . . . . . . . . . . . . 143 7.8 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8 CHOICE OF TIME-MARCHING METHODS 149 8.1 Sti ness De nition for ODE's . . . . . . . . . . . . . . . . . . . . . . 149 8.1.1 Relation to -Eigenvalues . . . . . . . . . . . . . . . . . . . . 149 8.1.2 Driving and Parasitic Eigenvalues . . . . . . . . . . . . . . . . 151 8.1.3 Sti ness Classi cations . . . . . . . . . . . . . . . . . . . . . . 151 8.2 Relation of Sti ness to Space Mesh Size . . . . . . . . . . . . . . . . 152 8.3 Practical Considerations for Comparing Methods . . . . . . . . . . . 153 8.4 Comparing the E ciency of Explicit Methods . . . . . . . . . . . . . 154 8.4.1 Imposed Constraints . . . . . . . . . . . . . . . . . . . . . . . 154 8.4.2 An Example Involving Di usion . . . . . . . . . . . . . . . . . 154 8.4.3 An Example Involving Periodic Convection . . . . . . . . . . . 155 8.5 Coping With Sti ness . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.5.1 Explicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.5.2 Implicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . 159 8.5.3 A Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.6 Steady Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
  • 7. 9 RELAXATION METHODS 163 9.1 Formulation of the Model Problem . . . . . . . . . . . . . . . . . . . 164 9.1.1 Preconditioning the Basic Matrix . . . . . . . . . . . . . . . . 164 9.1.2 The Model Equations . . . . . . . . . . . . . . . . . . . . . . . 166 9.2 Classical Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 9.2.1 The Delta Form of an Iterative Scheme . . . . . . . . . . . . . 168 9.2.2 The Converged Solution, the Residual, and the Error . . . . . 168 9.2.3 The Classical Methods . . . . . . . . . . . . . . . . . . . . . . 169 9.3 The ODE Approach to Classical Relaxation . . . . . . . . . . . . . . 170 9.3.1 The Ordinary Di erential Equation Formulation . . . . . . . . 170 9.3.2 ODE Form of the Classical Methods . . . . . . . . . . . . . . 172 9.4 Eigensystems of the Classical Methods . . . . . . . . . . . . . . . . . 173 9.4.1 The Point-Jacobi System . . . . . . . . . . . . . . . . . . . . . 174 9.4.2 The Gauss-Seidel System . . . . . . . . . . . . . . . . . . . . . 176 9.4.3 The SOR System . . . . . . . . . . . . . . . . . . . . . . . . . 180 9.5 Nonstationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . 182 9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10 MULTIGRID 191 10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.1.1 Eigenvector and Eigenvalue Identi cation with Space Frequencies191 10.1.2 Properties of the Iterative Method . . . . . . . . . . . . . . . 192 10.2 The Basic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.3 A Two-Grid Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 10.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 11 NUMERICAL DISSIPATION 203 11.1 One-Sided First-Derivative Space Di erencing . . . . . . . . . . . . . 204 11.2 The Modi ed Partial Di erential Equation . . . . . . . . . . . . . . . 205 11.3 The Lax-Wendro Method . . . . . . . . . . . . . . . . . . . . . . . . 207 11.4 Upwind Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 11.4.1 Flux-Vector Splitting . . . . . . . . . . . . . . . . . . . . . . . 210 11.4.2 Flux-Di erence Splitting . . . . . . . . . . . . . . . . . . . . . 212 11.5 Arti cial Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 12 SPLIT AND FACTORED FORMS 217 12.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 12.2 Factoring Physical Representations | Time Splitting . . . . . . . . . 218 12.3 Factoring Space Matrix Operators in 2{D . . . . . . . . . . . . . . . . 220
  • 8. 12.3.1 Mesh Indexing Convention . . . . . . . . . . . . . . . . . . . . 220 12.3.2 Data Bases and Space Vectors . . . . . . . . . . . . . . . . . . 221 12.3.3 Data Base Permutations . . . . . . . . . . . . . . . . . . . . . 221 12.3.4 Space Splitting and Factoring . . . . . . . . . . . . . . . . . . 223 12.4 Second-Order Factored Implicit Methods . . . . . . . . . . . . . . . . 226 12.5 Importance of Factored Forms in 2 and 3 Dimensions . . . . . . . . . 226 12.6 The Delta Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 12.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13 LINEAR ANALYSIS OF SPLIT AND FACTORED FORMS 233 13.1 The Representative Equation for Circulant Operators . . . . . . . . . 233 13.2 Example Analysis of Circulant Systems . . . . . . . . . . . . . . . . . 234 13.2.1 Stability Comparisons of Time-Split Methods . . . . . . . . . 234 13.2.2 Analysis of a Second-Order Time-Split Method . . . . . . . . 237 13.3 The Representative Equation for Space-Split Operators . . . . . . . . 238 13.4 Example Analysis of 2-D Model Equations . . . . . . . . . . . . . . . 242 13.4.1 The Unfactored Implicit Euler Method . . . . . . . . . . . . . 242 13.4.2 The Factored Nondelta Form of the Implicit Euler Method . . 243 13.4.3 The Factored Delta Form of the Implicit Euler Method . . . . 243 13.4.4 The Factored Delta Form of the Trapezoidal Method . . . . . 244 13.5 Example Analysis of the 3-D Model Equation . . . . . . . . . . . . . 245 13.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 A USEFUL RELATIONS AND DEFINITIONS FROM LINEAR AL- GEBRA 249 A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 A.2 De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 A.3 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 A.4 Eigensystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 A.5 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . 254 B SOME PROPERTIES OF TRIDIAGONAL MATRICES 257 B.1 Standard Eigensystem for Simple Tridiagonals . . . . . . . . . . . . . 257 B.2 Generalized Eigensystem for Simple Tridiagonals . . . . . . . . . . . . 258 B.3 The Inverse of a Simple Tridiagonal . . . . . . . . . . . . . . . . . . . 259 B.4 Eigensystems of Circulant Matrices . . . . . . . . . . . . . . . . . . . 260 B.4.1 Standard Tridiagonals . . . . . . . . . . . . . . . . . . . . . . 260 B.4.2 General Circulant Systems . . . . . . . . . . . . . . . . . . . . 261 B.5 Special Cases Found From Symmetries . . . . . . . . . . . . . . . . . 262 B.6 Special Cases Involving Boundary Conditions . . . . . . . . . . . . . 263
  • 9. C THE HOMOGENEOUS PROPERTY OF THE EULER EQUATIONS265
  • 10. Chapter 1 INTRODUCTION 1.1 Motivation The material in this book originated from attempts to understand and systemize nu- merical solution techniques for the partial di erential equations governing the physics of uid ow. As time went on and these attempts began to crystallize, underlying constraints on the nature of the material began to form. The principal such constraint was the demand for uni cation. Was there one mathematical structure which could be used to describe the behavior and results of most numerical methods in common use in the eld of uid dynamics? Perhaps the answer is arguable, but the authors believe the answer is a rmative and present this book as justi cation for that be- lief. The mathematical structure is the theory of linear algebra and the attendant eigenanalysis of linear systems. The ultimate goal of the eld of computational uid dynamics (CFD) is to under- stand the physical events that occur in the ow of uids around and within designated objects. These events are related to the action and interaction of phenomena such as dissipation, di usion, convection, shock waves, slip surfaces, boundary layers, and turbulence. In the eld of aerodynamics, all of these phenomena are governed by the compressible Navier-Stokes equations. Many of the most important aspects of these relations are nonlinear and, as a consequence, often have no analytic solution. This, of course, motivates the numerical solution of the associated partial di erential equations. At the same time it would seem to invalidate the use of linear algebra for the classi cation of the numerical methods. Experience has shown that such is not the case. As we shall see in a later chapter, the use of numerical methods to solve partial di erential equations introduces an approximation that, in e ect, can change the form of the basic partial di erential equations themselves. The new equations, which 1
  • 11. 2 CHAPTER 1. INTRODUCTION are the ones actually being solved by the numerical process, are often referred to as the modi ed partial di erential equations. Since they are not precisely the same as the original equations, they can, and probably will, simulate the physical phenomena listed above in ways that are not exactly the same as an exact solution to the basic partial di erential equation. Mathematically, these di erences are usually referred to as truncation errors. However, the theory associated with the numerical analysis of uid mechanics was developed predominantly by scientists deeply interested in the physics of uid ow and, as a consequence, these errors are often identi ed with a particular physical phenomenon on which they have a strong e ect. Thus methods are said to have a lot of arti cial viscosity" or said to be highly dispersive. This means that the errors caused by the numerical approximation result in a modi ed partial di erential equation having additional terms that can be identi ed with the physics of dissipation in the rst case and dispersion in the second. There is nothing wrong, of course, with identifying an error with a physical process, nor with deliberately directing an error to a speci c physical process, as long as the error remains in some engineering sense small". It is safe to say, for example, that most numerical methods in practical use for solving the nondissipative Euler equations create a modi ed partial di erential equation that produces some form of dissipation. However, if used and interpreted properly, these methods give very useful information. Regardless of what the numerical errors are called, if their e ects are not thor- oughly understood and controlled, they can lead to serious di culties, producing answers that represent little, if any, physical reality. This motivates studying the concepts of stability, convergence, and consistency. On the other hand, even if the errors are kept small enough that they can be neglected (for engineering purposes), the resulting simulation can still be of little practical use if ine cient or inappropriate algorithms are used. This motivates studying the concepts of sti ness, factorization, and algorithm development in general. All of these concepts we hope to clarify in this book. 1.2 Background The eld of computational uid dynamics has a broad range of applicability. Indepen- dent of the speci c application under study, the following sequence of steps generally must be followed in order to obtain a satisfactory solution. 1.2.1 Problem Speci cation and Geometry Preparation The rst step involves the speci cation of the problem, including the geometry, ow conditions, and the requirements of the simulation. The geometry may result from
  • 12. 1.2. BACKGROUND 3 measurements of an existing con guration or may be associated with a design study. Alternatively, in a design context, no geometry need be supplied. Instead, a set of objectives and constraints must be speci ed. Flow conditions might include, for example, the Reynolds number and Mach number for the ow over an airfoil. The requirements of the simulation include issues such as the level of accuracy needed, the turnaround time required, and the solution parameters of interest. The rst two of these requirements are often in con ict and compromise is necessary. As an example of solution parameters of interest in computing the ow eld about an airfoil, one may be interested in i) the lift and pitching moment only, ii) the drag as well as the lift and pitching moment, or iii) the details of the ow at some speci c location. 1.2.2 Selection of Governing Equations and Boundary Con- ditions Once the problem has been speci ed, an appropriate set of governing equations and boundary conditions must be selected. It is generally accepted that the phenomena of importance to the eld of continuum uid dynamics are governed by the conservation of mass, momentum, and energy. The partial di erential equations resulting from these conservation laws are referred to as the Navier-Stokes equations. However, in the interest of e ciency, it is always prudent to consider solving simpli ed forms of the Navier-Stokes equations when the simpli cations retain the physics which are essential to the goals of the simulation. Possible simpli ed governing equations include the potential- ow equations, the Euler equations, and the thin-layer Navier-Stokes equations. These may be steady or unsteady and compressible or incompressible. Boundary types which may be encountered include solid walls, in ow and out ow boundaries, periodic boundaries, symmetry boundaries, etc. The boundary conditions which must be speci ed depend upon the governing equations. For example, at a solid wall, the Euler equations require ow tangency to be enforced, while the Navier-Stokes equations require the no-slip condition. If necessary, physical models must be chosen for processes which cannot be simulated within the speci ed constraints. Turbulence is an example of a physical process which is rarely simulated in a practical context (at the time of writing) and thus is often modelled. The success of a simulation depends greatly on the engineering insight involved in selecting the governing equations and physical models based on the problem speci cation. 1.2.3 Selection of Gridding Strategy and Numerical Method Next a numerical method and a strategy for dividing the ow domain into cells, or elements, must be selected. We concern ourselves here only with numerical meth- ods requiring such a tessellation of the domain, which is known as a grid, or mesh.
  • 13. 4 CHAPTER 1. INTRODUCTION Many di erent gridding strategies exist, including structured, unstructured, hybrid, composite, and overlapping grids. Furthermore, the grid can be altered based on the solution in an approach known as solution-adaptive gridding. The numerical methods generally used in CFD can be classi ed as nite-di erence, nite-volume, nite-element, or spectral methods. The choices of a numerical method and a grid- ding strategy are strongly interdependent. For example, the use of nite-di erence methods is typically restricted to structured grids. Here again, the success of a sim- ulation can depend on appropriate choices for the problem or class of problems of interest. 1.2.4 Assessment and Interpretation of Results Finally, the results of the simulation must be assessed and interpreted. This step can require post-processing of the data, for example calculation of forces and moments, and can be aided by sophisticated ow visualization tools and error estimation tech- niques. It is critical that the magnitude of both numerical and physical-model errors be well understood. 1.3 Overview It should be clear that successful simulation of uid ows can involve a wide range of issues from grid generation to turbulence modelling to the applicability of various sim- pli ed forms of the Navier-Stokes equations. Many of these issues are not addressed in this book. Some of them are presented in the books by Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Instead we focus on numerical methods, with emphasis on nite-di erence and nite-volume methods for the Euler and Navier-Stokes equa- tions. Rather than presenting the details of the most advanced methods, which are still evolving, we present a foundation for developing, analyzing, and understanding such methods. Fortunately, to develop, analyze, and understand most numerical methods used to nd solutions for the complete compressible Navier-Stokes equations, we can make use of much simpler expressions, the so-called model" equations. These model equations isolate certain aspects of the physics contained in the complete set of equations. Hence their numerical solution can illustrate the properties of a given numerical method when applied to a more complicated system of equations which governs similar phys- ical phenomena. Although the model equations are extremely simple and easy to solve, they have been carefully selected to be representative, when used intelligently, of di culties and complexities that arise in realistic two- and three-dimensional uid ow simulations. We believe that a thorough understanding of what happens when
  • 14. 1.4. NOTATION 5 numerical approximations are applied to the model equations is a major rst step in making con dent and competent use of numerical approximations to the Euler and Navier-Stokes equations. As a word of caution, however, it should be noted that, although we can learn a great deal by studying numerical methods as applied to the model equations and can use that information in the design and application of nu- merical methods to practical problems, there are many aspects of practical problems which can only be understood in the context of the complete physical systems. 1.4 Notation The notation is generally explained as it is introduced. Bold type is reserved for real physical vectors, such as velocity. The vector symbol ~ is used for the vectors (or column matrices) which contain the values of the dependent variable at the nodes of a grid. Otherwise, the use of a vector consisting of a collection of scalars should be apparent from the context and is not identi ed by any special notation. For example, the variable u can denote a scalar Cartesian velocity component in the Euler and Navier-Stokes equations, a scalar quantity in the linear convection and di usion equations, and a vector consisting of a collection of scalars in our presentation of hyperbolic systems. Some of the abbreviations used throughout the text are listed and de ned below. PDE Partial di erential equation ODE Ordinary di erential equation O E Ordinary di erence equation RHS Right-hand side P.S. Particular solution of an ODE or system of ODE's S.S. Fixed (time-invariant) steady-state solution k-D k-dimensional space ~ bc Boundary conditions, usually a vector O( ) A term of order (i.e., proportional to)
  • 15. 6 CHAPTER 1. INTRODUCTION
  • 16. Chapter 2 CONSERVATION LAWS AND THE MODEL EQUATIONS We start out by casting our equations in the most general form, the integral conserva- tion-law form, which is useful in understanding the concepts involved in nite-volume schemes. The equations are then recast into divergence form, which is natural for nite-di erence schemes. The Euler and Navier-Stokes equations are brie y discussed in this Chapter. The main focus, though, will be on representative model equations, in particular, the convection and di usion equations. These equations contain many of the salient mathematical and physical features of the full Navier-Stokes equations. The concepts of convection and di usion are prevalent in our development of nu- merical methods for computational uid dynamics, and the recurring use of these model equations allows us to develop a consistent framework of analysis for consis- tency, accuracy, stability, and convergence. The model equations we study have two properties in common. They are linear partial di erential equations (PDE's) with coe cients that are constant in both space and time, and they represent phenomena of importance to the analysis of certain aspects of uid dynamic problems. 2.1 Conservation Laws Conservation laws, such as the Euler and Navier-Stokes equations and our model equations, can be written in the following integral form: Z Z Z t2 I Z t2 Z QdV ; QdV + n:FdSdt = PdV dt (2.1) V (t2 ) V (t1 ) t1 S (t) t1 V (t) In this equation, Q is a vector containing the set of variables which are conserved, e.g., mass, momentum, and energy, per unit volume. The equation is a statement of 7
  • 17. 8 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS the conservation of these quantities in a nite region of space with volume V (t) and surface area S (t) over a nite interval of time t2 ; t1 . In two dimensions, the region of space, or cell, is an area A(t) bounded by a closed contour C (t). The vector n is a unit vector normal to the surface pointing outward, F is a set of vectors, or tensor, containing the ux of Q per unit area per unit time, and P is the rate of production of Q per unit volume per unit time. If all variables are continuous in time, then Eq. 2.1 can be rewritten as d Z QdV + I n:FdS = Z PdV (2.2) dt V (t) S (t) V (t) Those methods which make various numerical approximations of the integrals in Eqs. 2.1 and 2.2 and nd a solution for Q on that basis are referred to as nite-volume methods. Many of the advanced codes written for CFD applications are based on the nite-volume concept. On the other hand, a partial derivative form of a conservation law can also be derived. The divergence form of Eq. 2.2 is obtained by applying Gauss's theorem to the ux integral, leading to @Q + r:F = P (2.3) @t where r: is the well-known divergence operator given, in Cartesian coordinates, by ! @ +j @ +k @ : r: i @x @y @z (2.4) and i j, and k are unit vectors in the x y, and z coordinate directions, respectively. Those methods which make various approximations of the derivatives in Eq. 2.3 and nd a solution for Q on that basis are referred to as nite-di erence methods. 2.2 The Navier-Stokes and Euler Equations The Navier-Stokes equations form a coupled system of nonlinear PDE's describing the conservation of mass, momentum and energy for a uid. For a Newtonian uid in one dimension, they can be written as @Q + @E = 0 (2.5) @t @x with 2 3 2 u 3 2 0 3 6 6 7 7 6 6 7 6 7 6 7 7 Q=6 6 u7 7 E =6 6 u 2+p 7;6 7 6 4 @u 7 7 (2.6) 6 7 6 7 6 3 @x 7 4 5 4 5 4 5 e u(e + p) 4 3 u @u + @x @T @x
  • 18. 2.2. THE NAVIER-STOKES AND EULER EQUATIONS 9 where is the uid density, u is the velocity, e is the total energy per unit volume, p is the pressure, T is the temperature, is the coe cient of viscosity, and is the thermal conductivity. The total energy e includes internal energy per unit volume (where is the internal energy per unit mass) and kinetic energy per unit volume u2=2. These equations must be supplemented by relations between and and the uid state as well as an equation of state, such as the ideal gas law. Details can be found in Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Note that the convective uxes lead to rst derivatives in space, while the viscous and heat conduction terms involve second derivatives. This form of the equations is called conservation-law or conservative form. Non-conservative forms can be obtained by expanding derivatives of products using the product rule or by introducing di erent dependent variables, such as u and p. Although non-conservative forms of the equations are analytically the same as the above form, they can lead to quite di erent numerical solutions in terms of shock strength and shock speed, for example. Thus the conservative form is appropriate for solving ows with features such as shock waves. Many ows of engineering interest are steady (time-invariant), or at least may be treated as such. For such ows, we are often interested in the steady-state solution of the Navier-Stokes equations, with no interest in the transient portion of the solution. The steady solution to the one-dimensional Navier-Stokes equations must satisfy @E = 0 (2.7) @x If we neglect viscosity and heat conduction, the Euler equations are obtained. In two-dimensional Cartesian coordinates, these can be written as @Q + @E + @F = 0 (2.8) @t @x @y with 2 3 2 3 2 q1 u 3 2 v 3 Q = 6 q2 7 = 6 u 7 E = 6 u uv p 7 F = 6 v2uv p 7 6 7 6 7 6 2+ 7 6 7 6 7 6 7 4 q3 5 4 v 5 6 4 7 5 6 4 + 7 5 (2.9) q4 e u(e + p) v(e + p) where u and v are the Cartesian velocity components. Later on we will make use of the following form of the Euler equations as well: @Q + A @Q + B @Q = 0 (2.10) @t @x @y @E @F The matrices A = @Q and B = @Q are known as the ux Jacobians. The ux vectors given above are written in terms of the primitive variables, , u, v, and p. In order
  • 19. 10 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS to derive the ux Jacobian matrices, we must rst write the ux vectors E and F in terms of the conservative variables, q1 , q2, q3 , and q4 , as follows: 2 3 2 E1 3 6 q2 7 6 6 7 6 7 6 7 7 6 7 6 2 7 3; q2 ; ;1 q3 7 6 6 E2 7 6 7 6 ( ; 1)q4 + 2 q1 2 q1 7 2 E =6 6 7=6 7 6 7 7 (2.11) 6 7 6 7 6 q3 q2 7 7 6 6 E3 7 6 q1 7 6 7 6 7 4 5 6 6 7 7 E4 4 q4 q2 ; ;1 q2 + q3 2 3 2q 5 q1 2 q1 2 q1 2 2 3 2 q3 3 6 F1 7 6 7 6 6 7 6 7 6 6 7 7 7 q3 q2 6 6 F2 7 6 7 6 q1 7 7 F =6 6 6 7=6 7 6 7 7 (2.12) 6 6 F3 7 6 7 6 7 6 ( ; 1)q4 + 3; 2 q3 2 q1 ; 2 7 ;1 q2 7 2 q1 7 6 7 6 7 4 5 6 4 7 5 F4 q4 q 3 ; ;1 q2 2 3 2q + q3 3 q1 2 q1 q1 2 We have assumed that the pressure satis es p = ( ; 1) e ; (u2 + v2)=2] from the ideal gas law, where is the ratio of speci c heats, cp=cv . From this it follows that the ux Jacobian of E can be written in terms of the conservative variables as 2 3 6 0 1 0 0 7 6 6 7 7 6 a21 q (3 ; ) q2 (1 ; ) q3 ;1 7 6 @Ei = 6 1 q1 7 7 A= 6 7 (2.13) @qj 6 6 ; q2 q1 q q q2 0 7 7 6 6 6 q1 3 q3 1 q1 7 7 7 6 7 4 q2 5 a41 a42 a43 q1 where ! !2 a21 = ; 1 q3 2 ; 3 ; q2 2 q1 2 q1
  • 20. 2.2. THE NAVIER-STOKES AND EULER EQUATIONS 11 2 !3 !2 !3 ! ! a41 = ( ; 1)4 q2 + q3 q2 5; q4 q2 q1 q1 q1 q1 q1 ! 2 !2 !2 3 a42 = q4 ; ; 1 43 q2 + q3 5 q1 2 q1 q1 ! ! a43 = ;( ; 1) q q q2 q3 (2.14) 1 1 and in terms of the primitive variables as 2 3 6 0 1 0 0 7 6 6 7 7 6 6 a21 (3 ; )u (1 ; )v ( ; 1) 7 7 A=6 6 6 7 7 7 (2.15) 6 6 ;uv v u 0 7 7 6 7 4 5 a41 a42 a43 u where a21 = ; 1 v2 ; 3 ; u2 2 2 a41 = ( ; 1)u(u2 + v2) ; ue a42 = e ; ; 1 (3u2 + v2 ) 2 a43 = (1 ; )uv (2.16) Derivation of the two forms of B = @F=@Q is similar. The eigenvalues of the ux Jacobian matrices are purely real. This is the de ning feature of hyperbolic systems of PDE's, which are further discussed in Section 2.5. The homogeneous property of the Euler equations is discussed in Appendix C. The Navier-Stokes equations include both convective and di usive uxes. This motivates the choice of our two scalar model equations associated with the physics of convection and di usion. Furthermore, aspects of convective phenomena associ- ated with coupled systems of equations such as the Euler equations are important in developing numerical methods and boundary conditions. Thus we also study linear hyperbolic systems of PDE's.
  • 21. 12 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS 2.3 The Linear Convection Equation 2.3.1 Di erential Form The simplest linear model for convection and wave propagation is the linear convection equation given by the following PDE: @u + a @u = 0 (2.17) @t @x Here u(x t) is a scalar quantity propagating with speed a, a real constant which may be positive or negative. The manner in which the boundary conditions are speci ed separates the following two phenomena for which this equation is a model: (1) In one type, the scalar quantity u is given on one boundary, corresponding to a wave entering the domain through this in ow" boundary. No bound- ary condition is speci ed at the opposite side, the out ow" boundary. This is consistent in terms of the well-posedness of a 1st-order PDE. Hence the wave leaves the domain through the out ow boundary without distortion or re ection. This type of phenomenon is referred to, simply, as the convection problem. It represents most of the usual" situations encountered in convect- ing systems. Note that the left-hand boundary is the in ow boundary when a is positive, while the right-hand boundary is the in ow boundary when a is negative. (2) In the other type, the ow being simulated is periodic. At any given time, what enters on one side of the domain must be the same as that which is leaving on the other. This is referred to as the biconvection problem. It is the simplest to study and serves to illustrate many of the basic properties of numerical methods applied to problems involving convection, without special consideration of boundaries. Hence, we pay a great deal of attention to it in the initial chapters. Now let us consider a situation in which the initial condition is given by u(x 0) = u0(x), and the domain is in nite. It is easy to show by substitution that the exact solution to the linear convection equation is then u(x t) = u0(x ; at) (2.18) The initial waveform propagates unaltered with speed jaj to the right if a is positive and to the left if a is negative. With periodic boundary conditions, the waveform travels through one boundary and reappears at the other boundary, eventually re- turning to its initial position. In this case, the process continues forever without any
  • 22. 2.3. THE LINEAR CONVECTION EQUATION 13 change in the shape of the solution. Preserving the shape of the initial condition u0(x) can be a di cult challenge for a numerical method. 2.3.2 Solution in Wave Space We now examine the biconvection problem in more detail. Let the domain be given by 0 x 2 . We restrict our attention to initial conditions in the form u(x 0) = f (0)ei x (2.19) where f (0) is a complex constant, and is the wavenumber. In order to satisfy the periodic boundary conditions, must be an integer. It is a measure of the number of wavelengths within the domain. With such an initial condition, the solution can be written as u(x t) = f (t)ei x (2.20) where the time dependence is contained in the complex function f (t). Substituting this solution into the linear convection equation, Eq. 2.17, we nd that f (t) satis es the following ordinary di erential equation (ODE) df = ;ia f (2.21) dt which has the solution f (t) = f (0)e;ia t (2.22) Substituting f (t) into Eq. 2.20 gives the following solution u(x t) = f (0)ei (x;at) = f (0)ei( x;!t) (2.23) where the frequency, !, the wavenumber, , and the phase speed, a, are related by != a (2.24) The relation between the frequency and the wavenumber is known as the dispersion relation. The linear relation given by Eq. 2.24 is characteristic of wave propagation in a nondispersive medium. This means that the phase speed is the same for all wavenumbers. As we shall see later, most numerical methods introduce some disper- sion that is, in a simulation, waves with di erent wavenumbers travel at di erent speeds. An arbitrary initial waveform can be produced by summing initial conditions of the form of Eq. 2.19. For M modes, one obtains M X u(x 0) = fm (0)ei mx (2.25) m=1
  • 23. 14 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS where the wavenumbers are often ordered such that 1 2 M . Since the wave equation is linear, the solution is obtained by summing solutions of the form of Eq. 2.23, giving M X u(x t) = fm (0)ei m(x;at) (2.26) m=1 Dispersion and dissipation resulting from a numerical approximation will cause the shape of the solution to change from that of the original waveform. 2.4 The Di usion Equation 2.4.1 Di erential Form Di usive uxes are associated with molecular motion in a continuum uid. A simple linear model equation for a di usive process is @u = @ 2 u (2.27) @t @x2 where is a positive real constant. For example, with u representing the tempera- ture, this parabolic PDE governs the di usion of heat in one dimension. Boundary conditions can be periodic, Dirichlet (speci ed u), Neumann (speci ed @u=@x), or mixed Dirichlet/Neumann. In contrast to the linear convection equation, the di usion equation has a nontrivial steady-state solution, which is one that satis es the governing PDE with the partial derivative in time equal to zero. In the case of Eq. 2.27, the steady-state solution must satisfy @2u = 0 (2.28) @x2 Therefore, u must vary linearly with x at steady state such that the boundary con- ditions are satis ed. Other steady-state solutions are obtained if a source term g(x) is added to Eq. 2.27, as follows: " 2 # @u = @u ; g(x) (2.29) @t @x2 giving a steady state-solution which satis es @ 2 u ; g(x) = 0 (2.30) @x2
  • 24. 2.4. THE DIFFUSION EQUATION 15 In two dimensions, the di usion equation becomes " # @u = @ 2 u + @ 2 u ; g(x y) (2.31) @t @x2 @y2 where g(x y) is again a source term. The corresponding steady equation is @ 2 u + @ 2 u ; g(x y) = 0 (2.32) @x2 @y2 While Eq. 2.31 is parabolic, Eq. 2.32 is elliptic. The latter is known as the Poisson equation for nonzero g, and as Laplace's equation for zero g. 2.4.2 Solution in Wave Space We now consider a series solution to Eq. 2.27. Let the domain be given by 0 x with boundary conditions u(0) = ua, u( ) = ub. It is clear that the steady-state solution is given by a linear function which satis es the boundary conditions, i.e., h(x) = ua + (ub ; ua)x= . Let the initial condition be M X u(x 0) = fm(0) sin m x + h(x) (2.33) m=1 where must be an integer in order to satisfy the boundary conditions. A solution of the form M X u(x t) = fm(t) sin mx + h(x) (2.34) m=1 satis es the initial and boundary conditions. Substituting this form into Eq. 2.27 gives the following ODE for fm : dfm = ; 2 f (2.35) dt m m and we nd fm(t) = fm(0)e; 2 t m (2.36) Substituting fm(t) into equation 2.34, we obtain M X u(x t) = fm (0)e; 2 t sin m x + h(x) m (2.37) m=1 The steady-state solution (t ! 1) is simply h(x). Eq. 2.37 shows that high wavenum- ber components (large m) of the solution decay more rapidly than low wavenumber components, consistent with the physics of di usion.
  • 25. 16 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS 2.5 Linear Hyperbolic Systems The Euler equations, Eq. 2.8, form a hyperbolic system of partial di erential equa- tions. Other systems of equations governing convection and wave propagation phe- nomena, such as the Maxwell equations describing the propagation of electromagnetic waves, are also of hyperbolic type. Many aspects of numerical methods for such sys- tems can be understood by studying a one-dimensional constant-coe cient linear system of the form @u + A @u = 0 (2.38) @t @x where u = u(x t) is a vector of length m and A is a real m m matrix. For conservation laws, this equation can also be written in the form @u + @f = 0 (2.39) @t @x @f where f is the ux vector and A = @u is the ux Jacobian matrix. The entries in the ux Jacobian are @f aij = @ui (2.40) j The ux Jacobian for the Euler equations is derived in Section 2.2. Such a system is hyperbolic if A is diagonalizable with real eigenvalues.1 Thus = X ;1AX (2.41) where is a diagonal matrix containing the eigenvalues of A, and X is the matrix of right eigenvectors. Premultiplying Eq. 2.38 by X ;1 , postmultiplying A by the product XX ;1, and noting that X and X ;1 are constants, we obtain z }| { @X ;1u @ X ;1AX X ;1u @t + @x =0 (2.42) With w = X ;1u, this can be rewritten as @w + @w = 0 (2.43) @t @x When written in this manner, the equations have been decoupled into m scalar equa- tions of the form @wi + @wi = 0 (2.44) i @t @x 1 See Appendix A for a brief review of some basic relations and de nitions from linear algebra.
  • 26. 2.6. PROBLEMS 17 The elements of w are known as characteristic variables. Each characteristic variable satis es the linear convection equation with the speed given by the corresponding eigenvalue of A. Based on the above, we see that a hyperbolic system in the form of Eq. 2.38 has a solution given by the superposition of waves which can travel in either the positive or negative directions and at varying speeds. While the scalar linear convection equation is clearly an excellent model equation for hyperbolic systems, we must ensure that our numerical methods are appropriate for wave speeds of arbitrary sign and possibly widely varying magnitudes. The one-dimensional Euler equations can also be diagonalized, leading to three equations in the form of the linear convection equation, although they remain non- linear, of course. The eigenvalues of the ux Jacobian matrix, or wave speeds, are q u u + c, and u ; c, where u is the local uid velocity, and c = p= is the local speed of sound. The speed u is associated with convection of the uid, while u + c and u ; c are associated with sound waves. Therefore, in a supersonic ow, where juj > c, all of the wave speeds have the same sign. In a subsonic ow, where juj < c, wave speeds of both positive and negative sign are present, corresponding to the fact that sound waves can travel upstream in a subsonic ow. The signs of the eigenvalues of the matrix A are also important in determining suitable boundary conditions. The characteristic variables each satisfy the linear con- vection equation with the wave speed given by the corresponding eigenvalue. There- fore, the boundary conditions can be speci ed accordingly. That is, characteristic variables associated with positive eigenvalues can be speci ed at the left boundary, which corresponds to in ow for these variables. Characteristic variables associated with negative eigenvalues can be speci ed at the right boundary, which is the in- ow boundary for these variables. While other boundary condition treatments are possible, they must be consistent with this approach. 2.6 Problems 1. Show that the 1-D Euler equations can be written in terms of the primitive variables R = u p]T as follows: @R + M @R = 0 @t @x where 2 3 u 0 M = 6 0 u ;1 7 4 5 0 p u
  • 27. 18 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS Assume an ideal gas, p = ( ; 1)(e ; u2=2). 2. Find the eigenvalues and eigenvectors of the matrix M derived in question 1. 3. Derive the ux Jacobian matrix A = @E=@Q for the 1-D Euler equations result- ing from the conservative variable formulation (Eq. 2.5). Find its eigenvalues and compare with those obtained in question 2. 4. Show that the two matrices M and A derived in questions 1 and 3, respectively, are related by a similarity transform. (Hint: make use of the matrix S = @Q=@R.) 5. Write the 2-D di usion equation, Eq. 2.31, in the form of Eq. 2.2. 6. Given the initial condition u(x 0) = sin x de ned on 0 x 2 , write it in the form of Eq. 2.25, that is, nd the necessary values of fm (0). (Hint: use M = 2 with 1 = 1 and 2 = ;1.) Next consider the same initial condition de ned only at x = 2 j=4, j = 0 1 2 3. Find the values of fm(0) required to reproduce the initial condition at these discrete points using M = 4 with m = m ; 1. 7. Plot the rst three basis functions used in constructing the exact solution to the di usion equation in Section 2.4.2. Next consider a solution with boundary conditions ua = ub = 0, and initial conditions from Eq. 2.33 with fm(0) = 1 for 1 m 3, fm (0) = 0 for m > 3. Plot the initial condition on the domain 0 x . Plot the solution at t = 1 with = 1. 8. Write the classical wave equation @ 2 u=@t2 = c2 @ 2 u=@x2 as a rst-order system, i.e., in the form @U + A @U = 0 @t @x where U = @u=@x @u=@t]T . Find the eigenvalues and eigenvectors of A. 9. The Cauchy-Riemann equations are formed from the coupling of the steady compressible continuity (conservation of mass) equation @ u+@ v =0 @x @y and the vorticity de nition ! = ; @x + @u = 0 @v @y
  • 28. 2.6. PROBLEMS 19 where ! = 0 for irrotational ow. For isentropic and homenthalpic ow, the system is closed by the relation = 1 ; ; 1 u2 + v2 ; 1 1 ;1 2 Note that the variables have been nondimensionalized. Combining the two PDE's, we have @f (q) + @g(q) = 0 @x @y where q= u v f = ;v u g = ;u ; v One approach to solving these equations is to add a time-dependent term and nd the steady solution of the following equation: @q + @f + @g = 0 @t @x @y (a) Find the ux Jacobians of f and g with respect to q. (b) Determine the eigenvalues of the ux Jacobians. (c) Determine the conditions (in terms of and u) under which the system is hyperbolic, i.e., has real eigenvalues. (d) Are the above uxes homogeneous? (See Appendix C.)
  • 29. 20 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
  • 31. ¦   H ‰B d 4 Y H h 5 D h H h H H 2 2 5B D T D 5 2 h 2 T Y 7 d H D H F D H 2 n H h 5 D Y R Y DB 7 d H  H d R ` n YB F D q 5 2 5B †X‚QW6IkGÆQI6QIÅ8EGVG¢I¬I¢–9W6GeIW‰II6IkG‘IwGE9W6s‚I8U…EIG‘¢Å8EGD r 4 H  Y 2B 2 i ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y YB H 4 T  Y h 2 T H 7B D F D 5 ‰ ` 2B by 5 b 2B F Y H 7 D Y Hy  7B Y H F –Q†WIEe™j’   p™WI8EvX‰CcIWvXuQVUWeIV9XGŽW¢†…IXx„88oX‚Q9Š‚6XI9X‚Iut ¶ à ¹ » ´ » à 9Q”av–Ä ± Á ¶ ± À ± ¿ ¹ ½ ¼ ± » ¹ ¶ ¹ ‘ej)6¾hfv6egº¸ · ¶ ´ ² ± ³ ² ewµ”± ° ¯ ® c­ ’ 2 5B D T 4By   T y T 4B D 4 T d ‹8EGVQXEII¢›VgXW6¢WI ` 2B Y 5y d 5 H bB D 4B d D Y H d iy R h 2 R ` 2B H ‰ D R 5 F DB IX‚8X98‰8EW6EWGfQ‚¬EIIpIrIEQ†9p8IWEC@ QGfx‚«VƒW6Gf¢ŠªQ6¢U‚XISQ©¢‚Iv@ 7 H DY i Y 2 TB Y H Dd T  h H 4 T  YB R P H 2 T H Y R H YB Y iy T 2 T i 4 T d R 4 4 T ` 2B @ 5yy 5q H F D q 5 F 4 R 7 2B t 2 5 Y T H d YB F D d 5 ¤ ’ Y 2 5B D T R P H h H 7 d 5q Y 2 T d XWx„¢U¢6VGI6Q¢IECcXX¢•9IWŠ¢ƒI…AX§‹8WVgWwXpG8UeQp8XWVUSQAQ9W8•fI¢WGD H F D q 5 Y D 2 HB 4 ¨ H 5 4 Hy ‰ TB d T b 5 D 2B h H ‰ d 5 Y ‰ T YB 2 5B D TB d T b 4B d D H 7 5 H ` H F D yy T ’ 7 d 5qB 2 R YB }   œ pGpVvGo6XQ9‡˜6”XIVƒWV¢CGoEwQ†W¢WI¢§E8XWVƒ‚¢V”XWW698Q¢vIW¢XV¢‰W8•„II˜Xhƒxp3ž  ¢†lŸš¢£x†™lƒIu§8E˜”Wp8XvuEwCcI‚›¢s‡ƒxp3V¢†lŸš¢£x†™lƒ#QEX¢Q3V‚uuX‹E¢V‚QWoXB  „ ‡yx x ¢ œ { ‡  H F t ’ ¦’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t }   œž    „ ‡yx x ¢ œ { ‡  h Hyy T 4r 5 Y T 2B Yy T b d H D 2 h H 4 T  YB R P H F DB @ F Y H 7 2 TB Y H D d T  7 d 5qB 2 R T 5 D h H 7 d 5q Y 2 T d D H ‰ 2 T 4 }   œ ž    y ž  ‚ œ 2 Q6¢U‚XISQG„CW6#¢ƒ‚QW‚¢Š¡‚8•EpI††GAQ9W8•fI¢GW9†rVgƒxp3v¢WŸ‡cxUeXB Y H D T 2B h d 5 5 4 d T H 2ByB b d R 4 y T d H 2 H ` 2B h H Y Y H d  — H Y H F Y H 7 q 5 Y H Y Y Ty 4 y T d H 2 H ` H DB R P D T F D D 4 T 6GVIXI‚8˜6Š¢QIXEXx‚I6›¢G6IQ¢‰EeQ‚WQ‚I˜‡‘QI‚Q9vVf6WWVƒQ›VGQpQ8uG„ISCVUW‘‡¢šq H F D H ŒB Y T F  7 H H ™ ’ 7 H D Y i Y 2 TB Y H D d T  T 2B h H D 2 H Y H d  YB @ 5y H ‰ y TB d H D T 7 H F D q 5 yy pG…QEW¢II#6…w‰QW‚x‚e¢XW6G‚VŠeXAQWS6W6WIEsEQ†˜¢ƒ‚QGld‘IWj¢vE™i ’ — d H D  T F  2B h H Y Y R 4 YB h H ‰ yyB @ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h r H DB 2 n H Y H F If6GpVU•‰X6W‚IQ‚XIu†hXEC•I8EGV#X˜gWpI¢uQpQW6h„I3–G„IUuWQpGD ` 2B iy   T d 5q Y HB ` H D T d D ” ’ “ d H D  T F  2B h H D T H d D H d T Y H bB D T bB d H h H 7B D ’ Y H bB D T bB d H h y TB D T  pXxEIp¢u8••6X86GVWGx€˜CQG˜¢U•‰Xe6GVQWWW¢u68„GVVE‚QIf#EGp6Q¢EGl¢„W6Ih¢XGVIWY 2 5 YB d H D  T F  YB F D 2B YB Y T F  7 H d R “ ’ Y H bB D T bB d H h H 7B D d 5 Y H bB D T bB d H h y TB D T  Y 5 D d H F DB 8‘X™QG˜¢U•EIG‰XfXWVUI9Q™p™Q68„GVVE‚QIw9XGC8fQ8„GVV„WQpm¢XGVIWdWf6IG„QH h HBy   T H ‰ 2 T 4 H Y H F t ’ h H D 2 H Y H d  YB Y H bB D T bB d H h y TB D d T  5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB 6XEII¢#sr¢gŽ‚QIu†‹QWoQW6WIuEwQ¢EWVVEW6Ij¢XG‚VUWI8XWV#X˜gWIIVŽQpQW6h„Ih r H DB 2 n q 5 D  H 4 2 5 4 H F D t d H D  T F 4 YB F D 2 1 ’ H d H F h H ŒB Y T F  7 H F 4 T 5 d   T H F D YB YB F t ’ h H by 5 ‡G„IUm¢p6QI¢QwIGUQ6GpVUƒfEIG3ŠVWQpQ6X‚¢UI9Q†ƒ¢oWpI¢aIGuXCEIuŠ‹68E¢WY H ‰ 2 T 4 F 4B F @ Y 2 5B D T R P H H 4 2 H d H gB h q 5 D H Y T Y H 4 R h 5 d  F 4B F @ ˆ ‡ ‚x } { … „y ‚  €  { ~ } {yx †rVg)ƒEICwp8XWVUSQ9QI6W6h„IŠ¢w6‚‰wQQpI˜‚IrƒEIC9QU|‡d†x|xƒG¢93‡d|zkT 5 D ` 2B h T Hy t D — H 2 h H D T 7B — 5 d   T H d T Y H bB D T bB d H h H 7B D H F t ’ Y 2 5B D T R P H y TB D 2 H d H gB h i d T 2B WwIEI¢QXpQx‡I#QGldEpg‚II¢™W¢vQ¢EGl¢„W6If9XWfIuj6I8EGVUS6†VƒGo6WQsEp–‚¢UEIh r d 5 q 5 7 H D Y i Y T ` 2B 4 R h 5 d  i ‰ H d H F D t D Y d n Y H bB D T bB d H h y TB D T  Y H F D H D T 7B — 5 d   T 2 T 4 H 2 f8ˆ¢pQGfx‚depXQpI˜‚Io6WQpGhQ‚WI™Q¢EGl¢„W6ImVƒGlUW…pGuGV#X˜gWIp¢k¢gwI85 t8„Q8„GVIWQWEfjQI8EGVIx6QpQW6h„IwpXG„IW6WfIG™¢E8‚eQIWdI¢9„WI¢QI¢GEIwXW™WQpGD iy H bB D T 2 d H Dy i ’ Y 2 5B D T R P H H 4 2 H d H gB h ` 2B Dy R Y H d H F D H by 5 Y 2 H F D h 2 T iy Y R 5 H 2 T Dy R 7B Y H Y H F H D T 7B — 5 d   T 2 T 4 H 2 “ ’ H 7B D h 2 T H 4 T  Y F D 5 ‰ 5 D D 4 H  Y H d F DB @ Y H bB D T bB d H h y TB D d T  2B T D 2 5 GV#X˜gWIp¢–¢g•I”V#EG…I¢C6¢U‚‘G¢†Gˆ‡Q†WQ‚…G„CvQ¢EWVVEW6Ix¢ƒW‚¢UwX¢GS¢Q4 Y 2 5B D T R P H y H h 5 7 d R 5 t @ 5 q hB R q i h T H D Y 2 R ` 2B 2 d H b 5 ` Y 2 5B D T R P H H F D F DB @ 2 5 7 7 5 4 2 p8XWVUSQ€QIx9wI8vusIrXIIpVgGfIIeIEIW68c8aI8XWVUSQ#IGGECA89#86)31 0 ' ) % ( ' $ % £ $ #! © ¨ ¦ §¥ ¤ £
  • 32. ’ D 2 H 2 5  — H 2 QoQI8†˜‡‰¢T ¢W•Š„‰‚XI¢IXW‚Xp9Wf6WQpGoQ‚¢U 7 5 dq DB F YB R ` 2B D YB h 5 D Y H Y H F D 2 H d T F DB @ h H Y 5y 4 2 H iyy T R Y R YB h 2 T D B d 4 Y d H  R Y T Y i T @y T YB H 7B D t d H F D H ` 5 D h H Y R 2 H F @ D R WECÅQ‚8X6IQEE¢UWp…X¬I¢9˜XW6W‚Q†IW–xgŠ„¢‘EŽ#EGjQ6IG‡88W¬6WIÆQpC‘pI‰ t D B d 4 Y ‰ R Y T Y T d T H   T Y H 4B h 2B H 4 T  Y h 2 T H 7B D H F D F D 5 ‰ t H 2 5y T h H Y R 2 H F @ D T F D H 4B D 5 QpX‚Q‚IIW‘C¢‘¢Qsp¢uQ6XIpXwQ¢U‚I¢9XWupGeG¢†pVI8E¢6WI‰QICulUG6XGVfò   ü ¢í ¡‚£Ý ä ç ñ õ ø Þà ß î þ ø ßæ ¡†p«˜‚˜‘¬‘|mÝ ¤ý ü ¥Icï ç ’ ¥ 8¥ pšæ   ü í Ý ä ç ß îû þ ø ù æ ¡‚xÿˆs‘XŽÆ™ê ‚mÝ ä ç ß î þ ø ßæ ¾s…¬‘|vÝ ý ü ï Ý ä ç ñ û õ ø ìù æ IgUðˆë|x©9ú‚mÝ ä ç ñ õ ø Þæ ¡†p«‹•mÝ Û Y @ 5yy 5q Y T YB ` 2B — H h 2B D B d 4 Y d H  R Y h 2 T D B d 4 Y ‰ R Y d 5q 2 5B D 2 H b 2 5 4 H F QCcXE8•u¢CX–IE˜‡IIE‘pX‚QW‚Q†IW‰I¢fpEW6WII‚u8•†¢XGo68o8QwIut ’ Y R 5B b ‰ 5 ` 2B 2 T H 7 H F D H ÷ T 7 hy R 5 F 6I8E˜o8‘pXI¢Q#uIW¢¢#XI8pWY Dx‡Wo8Qu¢Q˜EC‡p‚¢WW6QQp96#EG‡#8‚#EºƒXpC•e6W8†WpI#6IGV#8•©QWp†‚¢ƒs–8£vì — H D 2 5 4 y T 4 5y t ç i d T Y Y H 4 H 2 Y H 7B D H 7 5 Y YB F 4B F @æ Y H Y 5  d R  d H F D 5 d 5q h H Y R H d T ö à õ à êà 2 H F ™ ’ i T @ d TyB 7B Y T 2B â h 2 T á d 5q h H Y R H d T ö h 2 T õ d H D T ô ’ D R 5 F ` R 5 d F D Þ î ä ñ D T F Qpª•8g•v¢XX9XW–†X#†I¢Ž‘¢•Q‚IuW¢j†I¢6GV˜vgp¢I8I8‚IG•‘óe™VIGD HD 5 ò W¢f‘’   pwWp8Xv†XeCcI‚™¢s–XdpXQVUWaIGu…p¢A†EdIEQ¢U‚wIWuXk…‘W6IC@ ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t Þ 2B ` 2B 4 T  Y H F D Þ î h 2 T ß 2B ` 2B 4 T  Y H F D YB ß î H d H F ç   pšæ ’ ¥ ñ ì ä Þ î ì ä ï ›ª€…‹ða3Þ ä ¡Þ ç ¦’ ¥ cEpšæ ß î ê ä í …S«uxß ä ß hB d ` h H 4 T  YB R P H 2 T 2 5 2 H F t ’ ì ž   è   YB X‚86Q¢IWXpx6¢¢Qpujv•s¢€é¢wEŠÞ d 5q D T F D h 2 T t ê ž   è   YB ß d 5q — H h 2B F Y H 7 H F t ’ h H 7 R Y Y T YB d H F D 5 H F D 2 5 H 4 2 H h 2 H  H ¢•uVUG‰I¢ëUˆc¢€é¢wXC¢•e‡IpX‚Q9apu•‹6#I‚W¢CEf6IGVwpG8…QpQII6s6Ih t h H D 5 2 H h YB Hy ‰ TB d T b H 2 5 iy 2 5 2 H F ™ ’ ç Þ à ßæ Ý ä Ý H Y T 4 ã r ¦ H F D iyB d T 7B d  d H hB Y 2 5 4 H hQGVIQI™XwXI¢XW¢Vwp8„I8kQpªu–‚W˜•måe‘W¢QÏÔ6eIWd„XWVdEWI6IX‚I8Q‘v@ Y d H D  T F 4 y T d H b H Y D Y d n H F D d 5 ¤ ’ â à á à ß h 2 T t Þ Y Hy ‰ TB d T b D 2 H h 2 H  H h 2B H F D q 5 Y 2 5B D 4 2 Rq H d W6GpVUƒh¢WQ¢6W•‚‚UfIWj8Ujpƒ†G˜dIVp–jQEI¢XW¢VŠoQpIQ†QIpX™pG‹¢vI8EG6pI•‘‚¢T t Hy  7 T — H d 5q t Ý t Y Hy ‰ TB d T b D 2 H h 2 H  H h H F D ty T d H 2 H ` 2 1 ’ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H DB 2 ¢Xp#¢p–Š8•˜˜˜QQEI¢XW¢VCoQII6s6IIW˜ŸVGQpQ83”6I8XWV#X˜gWIIVuQI6WQsEpG„IUn ’ Y H 4 T  Y y T 2 5B D T D R  7 5 4 h 2 T y T 4B Y i F Q6Q¢IWhVU8XWVƒ˜I#¢Q‰I¢˜¢QXWxojÜ Û ¦’ ¥ H d R `B 8„puWI¢Xv¤ x y Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç   8 
  • 33. ’ 7 d 5qB 2 R YB ` 2B 4 T  Y H F D t ß î d 5 Þ î 2 5 D B d 4 Y ‰ R Y 5 2 YB H d H F D 2 H F †‚8•EpIuX–IEQ¢U‚uIGU˜…C8Š…‰8fpX‚Q‚IIW–IuEa‚QIW‰6Iª™ ç 9’ ¥ ¢%pšæ ’ 4D ¢W6H à ï Ý 6 4 ü ï Ý ä ï Ý ˜UÅ85cUªaë‘î à í ß 6 4 üí ß ä í ß sxr'5‚xªCx…î à ïÞ 6 4 ü ï I3r75c3Þ ä ïÞ a3…î D T F D F 4 R Y h H 2 n H h YB F 4B F @ t î y 5 ‰ 7 i VUW†ƒI‚QpU6IuE†ƒEICIe˜8†…x‚Y H F D YB 2 5B D  H 4 — H H 2 5 H F t ’ ` 2B 2 T H 7 H YB 4 H d  Y DB H 2B 7 d H D H h 5 D h H Y R H d T Y i T @ d H F D “ ’ pGXk8EGp6Q˜‡‘p8‘IuuIIEI¢g9‘WEQ6WIWE…pX9WQW6IWk6WI‘‚¢wxc•QpG™…S( y 5 ‰ 7 i Y H F D 2B h HB d d T 4 D 5 2 YB 2 5B D T 7B — 5 d   T H F D q 5 ç d H h d 5 h 2 Tæ H d R D T 2 H YB 4 H d  H F D D R 8sw˜fuIGŽE‰6X‚W¢QC¢IuXd8XWVdE˜c‚II¢upG§¢•ƒ6IW8‰I¢š9WIWVUuWEQ6WIuIWupI‰ ç ’ ¥ 8“ pšæ 0 ¥21¥ ( à 321 ( 0 t Hy  7 T — H d 5q t D T F D F 4 R Y H bB D T bB d H h T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h ¢Xp#¢p–u8•pglUG‰ƒIWu8„GVV„WQp–9Wd8XWV#X˜gWIIVw6IQ‚QsEI‘T D 2 H Y H d  H d 5 D h H Y R YB ( y 5 ‰ 7 i Y H F D D T F D 2 T H 7 H @ YB F D i ’ H R PB 2 R D 5 2 YB DB ç 2 5B D  H 4 — H H 2 oQ‚QWpQW‘GaQWp§Eu)¢s…xfvIWmlUGu¢g9•v›XIWv'VISXIpv¢p§E§E›ë8XWpQ6˜‡€I85 F DB @æ D R ‰ i F  5 Y 5yB F  H 7 T Y H F D Y @ 5yy 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h d 5q 2 5B D T D 5 2 H F WEC•pI…Sp8W8EXIpf9¢G‘IW”CsEX8•”p8XWVdE˜c‚II¢™QI6W6h„Iˆ8•‘8XWVƒ¢p™Iut ’ ß 5 D D 4 H  Y H d F DB @ Ý q 5 H bB D T bB d H h D Y d n H F D D 2 H Y H d  H d 5 D h H Y R H ‰ D 5 2 yyB ˜9W‘‡Q†W6W‰GEC‰vV8EWVVE‚QI‘‚‚UIGfoQW6WI6W–G‰Q‚Is‘¢phXEC@ ‘ISut Ý Y R F ’ Y H bB D T bB d H h Y Y H d  — H 5 D h H Y R d H b H 2 H d T Y Hy ‰ TB d T b D 2 H h 2 H  H h 2 5 Y D B d 4 Y ‰ R Y D — H D YB F D 2 QQ¢EWVVEW6IuW6WI˜‡dGQ‚IQ¢6IaW¢fQEI¢XW¢VoQIpQ†QI¢GpEWQ‚II‚x‡GCXpG31 Þ ç $’ ¥ ¢%pšæ ä #˜!Ý Ý H Y R H @ ã “ q 5 i h R D Y H F D 2B H bB D T bB d H h H 7B D i d T 2B h d 5 H F D d 5 ‚Iu•uY u”¢ppG‚uIWeX8„GVV„WQp#EG#‚¢UEIW¢wpGŠ8U¤ ß Þ ß ç ’ ¥ o— pšæ ’ 4D ¢W6H à ä eÝ ¥ à ä eÝ à ä eÝ Ý Ý Ý iy ‰ T H ` 2 T F 4 d H D 2B H Y R H @ H 7B D d 5 H 4 T  Y 2B Y H bB D T bB d H „I¢Q8I¢Uƒ‚QWSEa‚Iw•™9XWŠ8wQ¢U‚eXCQ¢EWVVEW6Ih y TB D d T  d 5q Y R F t ’ Y 2 5B D 2 H b 2 5 4 y T R Y R H F D 5 D ` 2B h d 5 4 4 ¢ƒW‚¢I‘8•#ISu©QI8EGoQ¢o8QC¢U‚IIGeWAIEIW¢QQVT Q‚WQ‚I˜‡WV#68„GVVE‚Qã h H Y Y H d  — H H d T Y H bB D T bB d H ’ D 2 H 7 H ` 2 T d d T hB d ` H 7B Dr H 4 T  goQ9Q¢I¢G‚¢X‚89XGŸ‡6¢U˜” Û   p‚I8Ev¤ ’ ¥ H d R `B x j+2 j+1 j j-1 j-2 © © © n-1 ∆t n ∆x n+1 Points Node Grid or t ¨ ¥   Ó × Ò Ë É Ë × u‡§™IawÓ Ì Ç Ó Ì Í Ì Ñ Ñ Ò ÖÕ Ì Ë Ò Ó Ò Ñ Ö Ó É Ú Ì È Ú Ì Ù Ð ¦Ð ”…ˆfˆ”vԐŸˆmQfÔv™™‰€™˜v†º8§xÎ